Evaluating the Effectiveness of Hospital Antiseptics on Multidrug-Resistant Acinetobacter baumannii: Understanding the Relationship between Microbicide and Antibiotic Resistance
Abstract
:1. Introduction
2. Results
2.1. Antiseptic Tolerance of Planktonic Acinetobacter baumannii Isolates
2.2. The Presence of Known Microbicide Resistance Genes Confers Higher Tolerance, and Is more Prevalent among Susceptible Strains
2.3. Determination of MICs and MBCs of Components of Antiseptic Wipes
2.4. Antiseptic Tolerance of A. baumannii Biofilms
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains, Media, and Growth Conditions
4.2. Time Kill Assays with Planktonic Bacteria
4.3. Time Kill Assays with Bacterial Biofilms
4.4. Polymerase Chain Reaction
4.5. Minimum Inhibitory Concentration (MIC) and minimum Bactericidal Concentration (MBC) Determinations
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fraimow, H.; Nahra, R. Resistant Gram-negative infections. Crit. Care Clin. 2013, 29, 895–921. [Google Scholar] [CrossRef] [PubMed]
- Sunenshine, R.H.; Wright, M.O.; Maragakis, L.L.; Harris, A.D.; Song, X.; Hebden, J.; Cosgrove, S.E.; Anderson, A.; Carnell, J.; Jernigan, D.B.; et al. Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg. Infect. Dis. 2007, 13, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.E.; Slayton, R.B.; Stevens, V.W.; Jones, M.M.; Khader, K.; Rubin, M.A.; Jernigan, J.A.; Samore, M.H. Attributable mortality of healthcare-associated infections due to multidrug-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Infect. Control. Hosp. Epidemiol. 2017, 38, 848–856. [Google Scholar] [CrossRef]
- Almasaudi, S.B. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi J. Biol. Sci. 2018, 25, 586–596. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, F.A.M.; Helal, Z.H.; Khan, M.I. High Prevalence of blaNDM-1, blaVIM, qacE, and qacEΔ1 genes and their association with decreased susceptibility to antibiotics and common hospital biocides in clinical isolates of Acinetobacter baumannii. Microorganisms 2017, 5, 18. [Google Scholar] [CrossRef]
- Biggest Threats and Data Antibiotic/Antimicrobial Resistance CDC. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html#acine (accessed on 19 March 2022).
- Gilbert, D.N.; Chambers, H.F.; Saag, M.S.; Boucher, H.W.; Black, D.; Freedman, K.; Schwartz, B.S. The Sanford Guide to Antimicrobial Therapy, 51st ed.; Antimicrobial Therapy, Inc.: Sperryville, VA, USA, 2021. [Google Scholar]
- Jamal, S.; Al Atrouni, A.; Rafei, R.; Dabboussi, F.; Hamze, M.; Osman, M. Molecular mechanisms of antimicrobial resistance in Acinetobacter baumannii, with a special focus on its epidemiology in Lebanon. J. Glob. Antimicrob Resist. 2018, 15, 154–163. [Google Scholar] [CrossRef]
- Noval, M.; Banoub, M.; Claeys, K.C.; Heil, E. The battle is on: New beta-lactams for the treatment of multidrug-resistant Gram-negative organisms. Curr Infect. Dis Rep. 2020, 22, 1. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Portsmouth, S.; Echols, R.; Toyoizumi, K.; Tillotson, G.; Nagata, T.D. Structured patient interview to assess clinical outcomes in complicated urinary tract infections in the APEKS-cUTI study: Pilot investigation. Ther. Adv. Infect. Dis. 2021, 8, 20499361211058257. [Google Scholar] [CrossRef]
- Fournier, P.E.; Richet, H. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin. Infect. Dis. 2006, 42, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Multi-Site Gram-negative Surveillance Initiative. Available online: https://www.cdc.gov/hai/eip/mugsi.html#publications (accessed on 22 April 2022).
- Acinetobacter in Healthcare Settings HAI CDC. Available online: https://www.cdc.gov/hai/organisms/acinetobacter.html (accessed on 22 April 2022).
- Piperaki, E.T.; Tzouvelekis, L.S.; Miriagou, V.; Daikos, G.L. Carbapenem-resistant Acinetobacter baumannii: In pursuit of an effective treatment. Clin. Microbiol. Infect. 2019, 25, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Mohd Sazlly Lim, S.; Zainal Abidin, A.; Liew, S.M.; Roberts, J.A.; Sime, F.B. The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: A systematic review and meta-analysis. J. Infect. 2019, 79, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Gikas, A.; Astrinaki, E.; Kritsotakis, E.I. Excess mortality due to pandrug-resistant Acinetobacter baumannii infections in hospitalized patients. J. Hosp. Infect. 2020, 106, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Chastre, J.; Fagon, J.Y. Ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2002, 165, 867–903. [Google Scholar] [CrossRef]
- Zilberberg, M.D.; Nathanson, B.H.; Sulham, K.; Fan, W.; Shorr, A.F. Multidrug resistance, inappropriate empiric therapy, and hospital mortality in Acinetobacter baumannii pneumonia and sepsis. Crit. Care 2016, 20, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed, M.H. Multiple heavy metal and antibiotic resistance of Acinetobacter baumannii strain HAF—13 isolated from industrial effluents. Am. J. Microbiol. Res. 2016, 4, 26–36. [Google Scholar]
- Carvalheira, A.; Silva, J.; Teixeira, P. Acinetobacter spp. in food and drinking water—A review. Food Microbiol. 2021, 95, 103675. [Google Scholar] [CrossRef]
- Hrenovic, J.; Durn, G.; Music, M.S.; Dekic, S.; Troskot-Corbic, T.; Skoric, D. Extensively and multi drug-resistant Acinetobacter baumannii recovered from technosol at a dump site in Croatia. Sci. Total Environ. 2017, 607–608, 1049–1055. [Google Scholar] [CrossRef]
- Higgins, P.G.; Hrenovic, J.; Seifert, H.; Dekic, S. Characterization of Acinetobacter baumannii from water and sludge line of secondary wastewater treatment plant. Water Res. 2018, 140, 261–267. [Google Scholar] [CrossRef]
- Bravo, Z.; Orruño, M.; Navascues, T.; Ogayar, E.; Ramos-Vivas, J.; Kaberdin, V.R.; Arana, I. Analysis of Acinetobacter baumannii survival in liquid media and on solid matrices as well as effect of disinfectants. J. Hosp. Infect. 2019, 103, e42–e52. [Google Scholar] [CrossRef]
- Catalano, M.; Quelle, L.S.; Jeric, P.E.; Di Martino, A.; Maimone, S.M. Survival of Acinetobacter baumannii on bed rails during an outbreak and during sporadic cases. J. Hosp. Infect. 1999, 42, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Glossary Disinfection & Sterilization Guidelines Library Infection Control CDC. Available online: https://www.cdc.gov/infectioncontrol/guidelines/disinfection/glossary.html#M (accessed on 19 March 2022).
- Kawamura-Sato, K.; Wachino, J.; Kondo, T.; Ito, H.; Arakawa, Y. Correlation between reduced susceptibility to disinfectants and multidrug resistance among clinical isolates of Acinetobacter species. J. Antimicrob. Chemother. 2010, 65, 1975–1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanković, T.; Goić-Barišić, I.; Hrenović, J. Reduced susceptibility to disinfectants of Acinetobacter baumannii biofilms on glass and ceramic. Arh. Hig. Rada I Toksikol. 2017, 68, 99–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.H.; Su, P.W.; Moi, S.H.; Chuang, L.Y. Biofilm formation in Acinetobacter baumannii: Genotype-phenotype correlation. Molecules 2019, 24, 1849. [Google Scholar] [CrossRef] [Green Version]
- Rozhin, A.; Batasheva, S.; Kruychkova, M.; Cherednichenko, Y.; Rozhina, E.; Fakhrullin, R. Biogenic silver nanoparticles: Synthesis and application as antibacterial and antifungal agents. Micromachines 2021, 12, 1480. [Google Scholar] [CrossRef]
- Hetta, H.F.; Al-Kadmy, I.M.S.; Khazaal, S.S.; Abbas, S.; Suhail, A.; El-Mokhtar, M.A.; Ellah, N.H.A.; Ahmed, E.A.; Abd-Ellatief, R.B.; El-Masry, E.A.; et al. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Sci. Rep. 2021, 11, 10751. [Google Scholar] [CrossRef]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [Green Version]
- Kwaśniewska, D.; Chen, Y.-L.; Wieczorek, D. Biological activity of quaternary ammonium salts and their derivatives. Pathogens 2020, 12, 459. [Google Scholar] [CrossRef]
- Milani, E.S.; Hasani, A.; Varschochi, M.; Sadeghi, J.; Memar, M.Y. Biocide resistance in Acinetobacter baumannii: Appraising the mechanisms. J. Hosp. Infect. 2021, 117, 135–146. [Google Scholar] [CrossRef]
- Coyne, S.; Courvalin, P.; Perichon, B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob. Agents Chemother. 2011, 55, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.; Xu, Y.; Chang, Y.; Liu, C.; Jia, X.; Ling, B. Molecular characterization of reduced susceptibility to biocides in clinical isolates of Acinetobacter baumannii. Front. Microbiol. 2017, 8, 1836. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.T.; Chen, H.C.; Chuang, Y.P.; Chang, S.C.; Wang, J.T. Cloning of a cation efflux pump gene associated with chlorhexidine resistance in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2002, 46, 2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babaei, M.; Sulong, A.; Hamat, R.; Nordin, S.; Neela, V. Extremely high prevalence of antiseptic resistant quaternary ammonium compound E gene among clinical isolates of multiple drug resistant Acinetobacter baumannii in Malaysia. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayakumar, R.; Sandle, T.; Al-Aboody, M.S.; AlFonaisan, M.K.; Alturaiki, W.; Mickymaray, S.; Premanathan, M.; Alsagaby, S.A. Distribution of biocide resistant genes and biocides susceptibility in multidrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii—A first report from the Kingdom of Saudi Arabia. J. Infect. Public Health 2018, 11, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Shirmohammadlou, N.; Zeighami, H.; Haghi, F.; Kashefieh, M. Resistance pattern and distribution of carbapenemase and antiseptic resistance genes among multidrug-resistant Acinetobacter baumannii isolated from intensive care unit patients. J. Med. Microbiol 2018, 67, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Wisplinghoff, H.; Schmitt, R.; Wohrmann, A.; Stefanik, D.; Seifert, H. Resistance to disinfectants in epidemiologically defined clinical isolates of Acinetobacter baumannii. J. Hosp. Infect. 2007, 66, 174–181. [Google Scholar] [CrossRef]
- Fernández-Cuenca, F.; Tomás, M.; Caballero-Moyano, F.-J.; Bou, G.; Martínez-Martínez, L.; Vila, J.; Pachón, J.; Cisneros, J.-M.; Rodríguez-Baño, J.; Pascual, Á.; et al. Reduced susceptibility to biocides in Acinetobacter baumannii: Association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps. J. Antimicrob. Chemother. 2015, 70, 3222–3229. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Product Performance Test Guidelines: OCSPP 810.2300 Sanitizers for Use on Hard Surfaces-Efficacy Data Recommendations [EPA 712-C-07-091]; US EPA Office of Pesticide Programs: Washington, DC, USA, 2012; p. 13.
- US EPA Office of Pesticide Programs, US EPA. Pesticide Product Label, PDI SANI-CLOTH BLEACH WIPES; US EPA Office of Pesticide Programs: Washington, DC, USA, 2020.
- Kampf, G.; Kramer, A. Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clin. Microbiol. Rev. 2004, 17, 863–893. [Google Scholar] [CrossRef] [Green Version]
- US EPA Office of Pesticide Programs, US EPA. Pesticide Product Label, Wonder Woman Formula B Germicidal Disposable Cloth; US EPA Office of Pesticide Programs: Washington, DC, USA, 2016.
- US EPA Office of Pesticide Programs, US EPA. Pesticide Product Label, SANI-CLOTH GERMICIDAL WIPES; US EPA Office of Pesticide Programs: Washington, DC, USA, 2020.
- Levison, M.E. Pharmacodynamics of antimicrobial drugs. Infect. Dis. Clin. N. Am. 2004, 18, 451–465. [Google Scholar] [CrossRef]
- Knapp, L.; Amezquita, A.; McClure, P.; Stewart, S.; Maillard, J.Y. Development of a protocol for predicting bacterial resistance to microbicides. Appl. Environ. Microbiol. 2015, 81, 2652–2659. [Google Scholar] [CrossRef] [Green Version]
- Eze, E.C.; Chenia, H.Y.; El Zowalaty, M.E. Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect. Drug Resist. 2018, 11, 2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, C.; Wu, J.; Rickard, A.H.; Xi, C. Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces. Lett. Appl. Microbiol. 2016, 63, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 2018, 16, 91. [Google Scholar] [CrossRef] [PubMed]
- Carbapenem Resistant Acinetobacter. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/acinetobacter-508.pdf (accessed on 24 April 2022).
- Fraimow, H.; Division of Infectious Diseases, Department of Medicine, Cooper University Hospital, Camden, NJ, USA. Cooper University Hospital Antibiogram, 2004–2012. Personal communication.
- Bhargava, A.; Riederer, K.; Sharma, M.; Fukushima, E.A.; Johnson, L.; Saravolatz, L. High rate of multidrug-resistant organisms (MDROs) among COVID-19 patients presenting with bacteremia upon hospital admission. Am. J. Infect. Control. 2021, 49, 1441–1442. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.R.O.; Salgado, D.R.; Lopes, L.P.N.; Castanheira, D.; Emmerick, I.C.M.; Lima, E.C. Increased use of antibiotics in the intensive care unit during coronavirus disease (COVID-19) pandemic in a brazilian hospital. Front. Pharmacol. 2021, 12, 778386. [Google Scholar] [CrossRef]
- Increase in Hospital-Acquired Carbapenem-Resistant Acinetobacter baumannii Infection and Colonization in an Acute Care Hospital During a Surge in COVID-19 Admissions—New Jersey, February–July 2020. Available online: https://www.cdc.gov/mmwr/volumes/69/wr/mm6948e1.htm (accessed on 22 April 2022).
- Fisher, R.A.; Gollan, B.; Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 2017, 15, 453–464. [Google Scholar] [CrossRef]
- Trastoy, R.; Manso, T.; Fernández-García, L.; Blasco, L.; Ambroa, A.; del Molino, M.L.P.; Bou, G.; García-Contreras, R.; Wood, T.K.; Tomás, M. Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments. Clin. Microbiol. Rev. 2018, 31, e00023-18. [Google Scholar] [CrossRef] [Green Version]
- Nordholt, N.; Kanaris, O.; Schmidt, S.B.I.; Schreiber, F. Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection. Nat. Commun. 2021, 12, 6792. [Google Scholar] [CrossRef]
- Hooper, D.C.; Bacterial resistance to antimicrobial agents. Harrison’s Principles of Internal Medicine, 20th ed.; Jameson, J., Fauci, A.S., Kasper, D.L., Hauser, S.L., Longo, D.L., Loscalzo, J., Eds.; McGraw Hill: New York, NY, USA, 2018; Available online: https://accessmedicine.mhmedical.com/content.aspx?bookid=2129§ionid=192021126 (accessed on 22 April 2022).
- Russell, A.D. Mechanisms of antimicrobial action of antiseptics and disinfectants: An increasingly important area of investigation. J. Antimicrob. Chemother. 2002, 49, 597–599. [Google Scholar] [CrossRef]
- Stewart, P. Antimicrobial tolerance in biofilms. Microbiol. Spectr. 2015, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Dewasthale, S.; Mani, I.; Vasdev, K. Microbial biofilm: Current challenges in healthcare industry. J. Appl. Biotechnol. Bioeng. 2018, 5, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Greene, C.; Vadlamudi, G.; Newton, D.; Foxman, B.; Xi, C. The influence of biofilm formation and multidrug resistance on environmental survival of clinical and environmental isolates of Acinetobacter baumannii. Am. J. Infect. Control. 2016, 44, e65–e71. [Google Scholar] [CrossRef]
- Chiang, S.R.; Jung, F.; Tang, H.J.; Chen, C.H.; Chen, C.C.; Chou, H.Y.; Chuang, Y.C. Desiccation and ethanol resistances of multidrug resistant Acinetobacter baumannii embedded in biofilm: The favorable antiseptic efficacy of combination chlorhexidine gluconate and ethanol. J. Microbiol. Immunol. Infect. 2018, 51, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Maki, D.G.; Alvarado, C.J.; Hassemer, C.A.; Zilz, M.A. Relation of the inanimate hospital environment to endemic nosocomial infection. N. Engl. J. Med. 1982, 307, 1562–1566. [Google Scholar] [CrossRef] [PubMed]
- Danforth, D.; Nicolle, L.E.; Hume, K.; Alfieri, N.; Sims, H. Nosocomial infections on nursing units with floors cleaned with a disinfectant compared with detergent. J. Hosp. Infect. 1987, 10, 229–235. [Google Scholar] [CrossRef]
- Rodriguez-Bano, J.; Garcia, L.; Ramirez, E.; Martinez-Martinez, L.; Muniain, M.A.; Fernandez-Cuenca, F.; Beltran, M.; Galvez, J.; Rodriguez, J.M.; Velasco, C.; et al. Long-term control of hospital-wide, endemic multidrug-resistant Acinetobacter baumannii through a comprehensive "bundle" approach. Am. J. Infect. Control. 2009, 37, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Farshadzadeh, Z.; Taheri, B.; Rahimi, S.; Shoja, S.; Pourhajibagher, M.; Haghighi, M.A.; Bahador, A. Growth rate and biofilm formation ability of clinical and laboratory-evolved colistin-resistant strains of Acinetobacter baumannii. Front. Microbiol. 2018, 9, 153. [Google Scholar] [CrossRef]
- Xu, Z.; Liang, Y.; Lin, S.; Chen, D.; Li, B.; Li, L.; Deng, Y. Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification. Curr. Microbiol. 2016, 73, 474–482. [Google Scholar] [CrossRef]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48 (Suppl. 1), 5–16. [Google Scholar] [CrossRef] [Green Version]
Strain | Resistance Pattern | qacA | qacEΔ1 | qacE | cepA |
---|---|---|---|---|---|
3 | PS | - | - | - | + |
4 | MDR | - | - | - | + |
5 | PS | - | - | - | + |
9 | MDR | - | - | - | + |
49 | MDR | - | - | - | + |
51 | MDR | - | - | - | + |
54 | PS | - | + | + | + |
55 | MDR | - | + | + | + |
56 | PS | - | + | + | + |
58 | PS | - | + | + | + |
MIC | MBC | MBC/MIC | |
---|---|---|---|
All strains | 0.037 | 0.098 | 2.65 |
MDR | 0.035 | 0.156 | 4.46 |
PS | 0.039 | 0.039 | 1.00 |
qacE, qacEΔ1, cepA | 0.039 | 0.186 | 4.77 |
cepA | 0.036 | 0.137 | 3.81 |
MIC | MBC | MBC/MIC | |
---|---|---|---|
All strains | 5.94 | 8.125 | 1.37 |
MDR | 6.25 | 10 | 1.60 |
PS | 5.63 | 6.25 | 1.11 |
qacE, qacEΔ1, cepA | 5.47 | 7.81 | 1.43 |
cepA | 6.25 | 8.33 | 1.33 |
MIC | MBC | MBC/MIC | |
---|---|---|---|
All strains | 6.25 | 8.33 | 1.33 |
MDR | 6.25 | 7.81 | 1.25 |
PS | 6.25 | 8.75 | 1.40 |
qacE, qacEΔ1, cepA | 6.25 | 10.94 | 1.75 |
cepA | 6.25 | 6.25 | 1.00 |
Name | Sequence (5′ → 3′) | Reference |
---|---|---|
qacE_For | CCCGAATTCATGAAAGGCTGGCTT | [5] |
qacE_Rev | TAAGCTTTCACCATGGCGTCGG | [5] |
qacΔE1_For | TAGCGAGGGCTTTACTAAGC | [5] |
qacΔE1_Rev | ATTCAGAATGCCGAACACCG | [5] |
cepA_For | CAACTCCTTCGCCTATCCCG | [5] |
cepA_Rev | TCAGGTCAGACCAAACGGCG | [5] |
qacA_For | GCTGCATTTATGACAATGTTTG | [39] |
qacA_Rev | AATCCCACCTACTAAAGCAG | [39] |
Antiseptic Component | “X” Value |
---|---|
Bleach | 5.0% |
Ethanol | 50% |
Isopropanol | 50% |
Dodecyl dimethyl ammonium chloride | 4.88% |
Alkyl dimethyl ethyl benzyl ammonium chloride | 1.12% |
Alkyl dimethyl benzyl ammonium chloride | 1.12% |
Chlorhexidine gluconate | 2.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betchen, M.; Giovinco, H.M.; Curry, M.; Luu, J.; Fraimow, H.; Carabetta, V.J.; Nahra, R. Evaluating the Effectiveness of Hospital Antiseptics on Multidrug-Resistant Acinetobacter baumannii: Understanding the Relationship between Microbicide and Antibiotic Resistance. Antibiotics 2022, 11, 614. https://doi.org/10.3390/antibiotics11050614
Betchen M, Giovinco HM, Curry M, Luu J, Fraimow H, Carabetta VJ, Nahra R. Evaluating the Effectiveness of Hospital Antiseptics on Multidrug-Resistant Acinetobacter baumannii: Understanding the Relationship between Microbicide and Antibiotic Resistance. Antibiotics. 2022; 11(5):614. https://doi.org/10.3390/antibiotics11050614
Chicago/Turabian StyleBetchen, Melanie, Holly M. Giovinco, Michael Curry, Jackson Luu, Henry Fraimow, Valerie J. Carabetta, and Raquel Nahra. 2022. "Evaluating the Effectiveness of Hospital Antiseptics on Multidrug-Resistant Acinetobacter baumannii: Understanding the Relationship between Microbicide and Antibiotic Resistance" Antibiotics 11, no. 5: 614. https://doi.org/10.3390/antibiotics11050614
APA StyleBetchen, M., Giovinco, H. M., Curry, M., Luu, J., Fraimow, H., Carabetta, V. J., & Nahra, R. (2022). Evaluating the Effectiveness of Hospital Antiseptics on Multidrug-Resistant Acinetobacter baumannii: Understanding the Relationship between Microbicide and Antibiotic Resistance. Antibiotics, 11(5), 614. https://doi.org/10.3390/antibiotics11050614