Surgical Antimicrobial Prophylaxis in Patients of Neonatal and Pediatric Age Subjected to Eye Surgery: A RAND/UCLA Appropriateness Method Consensus Study
Abstract
:1. Introduction
2. Methods
2.1. RAND/UCLA Method of Appropriateness
2.2. Recruiting the Expert Panel
2.3. Scenario Formulation
2.4. Two-Round Consensus Process
3. Results
3.1. SCENARIO #1. Pediatric Patient Undergoing Intraocular Surgery
3.2. SCENARIO #2. Pediatric Patient Undergoing Extraocular Surgery
3.3. SCENARIO #3. Pediatric Patient with Ocular Trauma
3.4. SCENARIO #4. Pediatric Patient Undergoing Ocular Surgery for Neoplasm
3.5. SCENARIO #5. Pediatric Patient Undergoing Ocular Surface Transplantations
3.6. SCENARIO #6. Pediatric Patient Undergoing Corneal Grafts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg. Infect. 2013, 14, 73–156. [Google Scholar] [CrossRef] [PubMed]
- Fitch, K.; Bernstein, S.J.; Aguilar, M.D. The RAND/UCLA Adeguateness Method User’s Manual; The RAND Corporation: Santa Monica, CA, USA, 2001. [Google Scholar]
- Hicks, N.R. Some observations on attempts to measure appropriateness of care. BMJ 1994, 309, 730–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmani, S.; Eliott, D. Postoperative Endophthalmitis: A Review of Risk Factors, Prophylaxis, Incidence, Microbiology, Treatment, and Outcomes. Semin. Ophthalmol. 2018, 33, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Haripriya, A. Antibiotic prophylaxis in cataract surgery—An evidence-based approach. Indian J. Ophthalmol. 2017, 65, 1390–1395. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Chen, X.; Song, Q.; Liu, W.; Lu, L. Perioperative Antibiotics to Prevent Acute Endophthalmitis after Ophthalmic Surgery: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0166141. [Google Scholar] [CrossRef] [Green Version]
- Trinavarat, A.; Atchaneeyasakul, L.-O.; Nopmaneejumruslers, C.; Inson, K. Reduction of endophthalmitis rate after cataract surgery with preoperative 5% povidone-iodine. Dermatology 2006, 212 (Suppl. 1), 35–40. [Google Scholar] [CrossRef]
- Wu, P.C.; Li, M.; Chang, S.J.; Teng, M.C.; Yow, S.G.; Shin, S.J.; Kuo, H.K. Risk of endophthalmitis after cataract surgery using different protocols for povidone- iodine preoperative disinfection. J. Ocul. Pharmacol. Ther. 2006, 22, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Halachimi-Eyal, O.; Lang, Y.; Keness, Y.; Miron, D. Preoperative topical moxifloxacin 0.5% and povidone–iodine 5.0% versus povidone–iodine 5.0% alone to reduce bacterial colonization in the conjunctival sac. J. Cataract. Refract. Surg. 2009, 35, 2109–2114. [Google Scholar] [CrossRef]
- Nentwich, M.M.; Ta, C.N.; Kreutzer, T.C.; Li, B.; Schwarzbach, F.; Yactayo-Miranda, Y.M.; Kampik, A.; Miño de Kaspar, H. Incidence of postoperative endophthalmitis from 1990 to 2009 using povidone-iodine but no intracameral antibiotics at a single academic institution. J. Cataract. Refract. Surg. 2015, 41, 58–66. [Google Scholar] [CrossRef]
- Haripriya, A.; Chang, D.F. Intracameral antibiotics during cataract surgery: Evidence and barriers. Curr. Opin. Ophthalmol. 2018, 29, 33–39. [Google Scholar] [CrossRef]
- Friling, E.; Montan, P. Bacteriology and cefuroxime resistance in endophthalmitis following cataract surgery before and after the introduction of prophylactic intracameral cefuroxime: A retrospective single-centre study. J. Hosp. Infect. 2019, 101, 88–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Sahu, S.K.; Dhillon, V.; Das, S.; Rath, S. Reevaluating intracameral cefuroxime as a prophylaxis against endophthalmitis after cataract surgery in India. J. Cataract Refract. Surg. 2015, 41, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Lundström, M.; Wejde, G.; Stenevi, U.; Thorburn, W.; Montan, P. Endophthalmitis after cataract surgery: A nationwide prospective study evaluating incidence in relation to incision type and location. Ophthalmology 2007, 114, 866–870. [Google Scholar] [CrossRef]
- Melega, M.V.; Alves, M.; Cavalcanti Lira, R.P.; Cardoso da Silva, I.; Ferreira, B.G.; Assis Filho, H.L.; Pedreira Chaves, F.R.; Martini, A.A.F.; Dias Freire, L.M.; Reis, R.D.; et al. Safety and efficacy of intracameral moxifloxacin for prevention of post-cataract endophthalmitis: Randomized controlled clinical trial. J. Cataract. Refract. Surg. 2019, 45, 343–350. [Google Scholar] [CrossRef]
- Kessel, L.; Flesner, P.; Andresen, J.; Erngaard, D.; Tendal, B.; Hjortdal, J. Antibiotic prevention of postcataract endophthalmitis: A systematic review and meta-analysis. Acta Ophthalmol. 2015, 93, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.C.; Zhou, A.X.; Bondalapati, S.; Lawyer, T.W.; Snow, K.B.; Evans, P.R.; Bardsley, T.; McFarland, M.; Kliethermes, M.; Shi, D.; et al. Comparative analysis of the safety and efficacy of intracameral cefuroxime, moxifloxacin and vancomycin at the end of cataract surgery: A meta-analysis. Br. J. Ophthalmol. 2018, 102, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Balestrazzi, A.; Malandrini, A.; Montagnani, F.; Nguisseu Chegoua, G.L.; Ciompi, L.; Zanchi, A.; Tosi, G.M.; Martone, G.L.; Motolese, I.; Fruschelli, M. Phacoemulsificator and sterile drapes contamination during cataract surgery: A microbiological study. Eur. J. Ophthalmol. 2012, 22, 188–194. [Google Scholar] [CrossRef]
- Murphy, C.C.; Nicholson, S.; Quah, S.A.; Batterbury, M.; Neal, T.; Kaye, S.B. Pharmacokinetics of vancomycin following intracameral bolus injection in patients undergoing phacoemulsification cataract surgery. Br. J. Ophthalmol. 2007, 91, 1350–1353. [Google Scholar] [CrossRef] [Green Version]
- Libre, P.E.; Mathews, S. Endophthalmitis prophylaxis by intracameral antibiotics: In vitro model comparing vancomycin, cefuroxime, and moxifloxacin. J. Cataract. Refract. Surg. 2017, 43, 833–838. [Google Scholar] [CrossRef]
- Herrinton, L.J.; Shorstein, N.H.; Paschal, J.F.; Liu, L.; Contreras, R.; Winthrop, K.L.; Chang, W.J.; Melles, R.B.; Fong, D.S. Comparative Effectiveness of Antibiotic Prophylaxis in Cataract Surgery. Ophthalmology 2016, 123, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Tuñí-Picado, J.; Martínez-Palmer, A.; Fernández-Sala, X.; Barceló-Vidal, J.; Castilla-Martí, M.; Cartagena-Guardado, Y.; Grau, S. Infectious postoperative endophthalmitis after cataract surgery performed over 7 years. The role of azithromycin versus ciprofloxacin eye drops. Rev. Esp. Quimioter. 2018, 31, 15–21. [Google Scholar] [PubMed]
- Barry, P.; Seal, D.V.; Gettinby, G.; Lees, F.; Peterson, M.; Revie, C.W.; ESCRS Endophthalmitis Study Group. ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery: Preliminary report of principal results from a European multicenter study. J. Cataract. Refract. Surg. 2006, 32, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Gore, D.M.; Angunawela, R.I.; Little, B.C. United Kingdom survey of antibiotic prophylaxis practice after publication of the ESCRS Endophthalmitis Study. J. Cataract. Refract. Surg. 2009, 35, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Barry, P. Adoption of intracameral antibiotic prophylaxis of endophthalmitis following cataract surgery: Update on the ESCRS Endophthalmitis Study. J. Cataract. Refract. Surg. 2014, 40, 138–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosso, A. Author’s reply to comments to: Adherence to European Society for Cataract and Refractive Surgery recommendations among Italian cataract surgeons: A survey. Eur. J. Ophthalmol. 2016, 26, e143. [Google Scholar] [CrossRef]
- Gower, E.W.; Lindsley, K.; Tulenko, S.E.; Nanji, A.A.; Leyngold, I.; McDonnell, P.J. Perioperative antibiotics for prevention of acute endophthalmitis after cataract surgery. Cochrane Database Syst. Rev. 2017, 2, CD006364. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.M.; Oetting, T.A.; Tweeten, J.P.; Carter, K.; Lee, B.S.; Lin, S.; Nanji, A.A.; Shorstein, N.H.; Musch, D.C. American Academy of Ophthalmology Preferred Practice Pattern Cataract/Anterior Segment Panel. Cataract in the Adult Eye Preferred Practice Pattern. Ophthalmology 2022, 129, 1–126. [Google Scholar] [CrossRef]
- Grzybowski, A.; Kuklo, P.; Pieczynski, J.; Beiko, G. A review of preoperative manoeuvres for prophylaxis of endophthalmitis in intraocular surgery: Topical application of antibiotics, disinfectants, or both? Curr. Opin. Ophthalmol. 2016, 27, 9–23. [Google Scholar] [CrossRef]
- Chang, D.F.; Braga-Mele, R.; Henderson, B.A.; Mamalis, N.; Vasavada, A. Antibiotic prophylaxis of postoperative endophthalmitis after cataract surgery: Results of the 2014 ASCRS member survey. J. Cataract. Refract. Surg. 2022, 48, 3–7. [Google Scholar] [CrossRef]
- Raghuveer, T.S.; Zackula, R. Strategies to Prevent Severe Retinopathy of Prematurity: A 2020 Update and Meta-analysis. Neoreviews 2020, 21, e249–e263. [Google Scholar] [CrossRef]
- Chan-Ling, T.; Gole, G.A.; Quinn, G.E.; Adamson, S.J.; Darlow, B.A. Pathophysiology, screening and treatment of ROP: A multi-disciplinary perspective. Prog. Retin. Eye Res. 2018, 62, 77–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogra, M.R.; Katoch, D.; Dogra, M. An Update on Retinopathy of Prematurity (ROP). Indian J. Pediatr. 2017, 84, 930–936. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Ophthalmology. Chapter 9: Infectious Diseases of The External Eye: Basic Concepts and Viral Infections. In: Weisenthal RW, Daly MK, de Freitas, D., Feder RS, editors. BCSC 2019–2020: External Disease and Cornea. Am. Acad. Ophthalmol. 2019, 65, 120. [Google Scholar]
- Ferneini, E.M.; Halepas, S.; Aronin, S.I. Antibiotic Prophylaxis in Blepharoplasty: Review of the Current Literature. J. Oral. Maxillofac. Surg. 2017, 75, 1477–1481. [Google Scholar] [CrossRef] [Green Version]
- Yazici, B.; Meyer, D.R. Selective antibiotic use to prevent postoperative wound infection after external dacryocystorhinostomy. Ophthal. Plast. Reconstr. Surg. 2002, 18, 331–335; Discussion 335. [Google Scholar] [CrossRef]
- Sheth, J.; Rath, S.; Tripathy, D. Oral versus single intravenous bolus dose antibiotic prophylaxis against postoperative surgical site infection in external dacryocystorhinostomy for primary acquired nasolacrimal duct obstruction—A randomized study. Indian J. Ophthalmol. 2019, 67, 382–385. [Google Scholar]
- Pinar-Sueiro, S.; Fernández-Hermida, R.-V.; Gibelalde, A.; Martínez-Indart, L. Study on the effectiveness of antibiotic prophylaxis in external dacryocystorhinostomy: A review of 697 cases. Ophthal. Plast Reconstr. Surg. 2010, 26, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Dulku, S.; Akinmade, A.; Durrani, O.M. Postoperative infection rate after dacryocystorhinostomy without the use of systemic antibiotic prophylaxis. Orbit 2012, 31, 44–47. [Google Scholar] [CrossRef]
- Schnall, B.M.; Feingold, A. Infection following strabismus surgery. Curr. Opin. Ophthalmol. 2018, 29, 407–411. [Google Scholar] [CrossRef]
- Eustis, H.S.; Rhodes, A. Suture contamination in strabismus surgery. J. Pediatr. Ophthalmol. Strabismus. 2012, 49, 206–209. [Google Scholar] [CrossRef]
- Benson, C.E.; Rogers, K.L.; Suh, D.W. Dual application versus single application of povidone-iodine in reducing surgical site contamination during strabismus surgery. J. AAPOS 2014, 18, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Koederitz, N.M.; Neely, D.E.; Plager, D.A.; Boehmer, B.; Ofner, S.; Sprunger, D.T.; Sondhi, N.; Roberts, G. Postoperative povidone-iodine prophylaxis in strabismus surgery. J. AAPOS 2008, 12, 396–400. [Google Scholar] [CrossRef] [PubMed]
- DeBenedictis, C.N.; Yassin, S.H.; Gunton, K.; Nelson, L.B.; Leiby, B.E.; Hegarty, S.E.; Schnall, B. Strabismus Surgery Infection Prophylaxis and Timing of First Postoperative Visit. J. Pediatr. Ophthalmol. Strabismus. 2019, 56, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hoskin, A.K.; Watson, S.L. Epidemiology, aetiology and outcome of paediatric ocular trauma in Sydney. J. Paediatr. Child Health 2021, 57, 1479–1484. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.L.; Chang, Y.S.; Tseng, S.H.; Cheng, H.C.; Huang, F.C.; Shih, M.H.; Hsu, S.M.; Kuo, P.H. Major pediatric ocular trauma in Taiwan. J. Pediatr. Ophthalmol. Strabismus. 2010, 47, 88–95. [Google Scholar] [CrossRef]
- Boret, C.; Brehin, C.; Cortey, C.; Chanut, M.; Houzé-Cerfon, C.H.; Soler, V.; Claudet, I. Pediatric ocular trauma: Characteristics and outcomes among a French cohort (2007–2016). Arch. Pediatr. 2020, 27, 128–134. [Google Scholar] [CrossRef]
- Puodžiuvienė, E.; Jokūbauskienė, G.; Vieversytė, M.; Asselineau, K. A five-year retrospective study of the epidemiological characteristics and visual outcomes of pediatric ocular trauma. BMC Ophthalmol. 2018, 18, 10. [Google Scholar] [CrossRef]
- Kwon, J.W.; Choi, M.Y.; Bae, J.M. Incidence and seasonality of major ocular trauma: A nationwide population-based study. Sci. Rep. 2020, 10, 10020. [Google Scholar] [CrossRef]
- Thompson, C.G.; Kumar, N.; Billson, F.A.; Martin, F. The aetiology of perforating ocular injuries in children. Br. J. Ophthalmol. 2002, 86, 920–922. [Google Scholar] [CrossRef] [Green Version]
- Awidi, A.; Kraus, C.L. A comparison of ocular trauma scores in a pediatric population. BMC Res. Notes 2019, 12, 569. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Su, W.Y.; Lee, L.; Yang, M.L. Pediatric ocular trauma in Taiwan. Chang Gung Med. J. 2008, 31, 59–65. [Google Scholar] [PubMed]
- Sheard, R.M.; Mireskandari, K.; Ezra, E.; Sullivan, P.M. Vitreoretinal surgery after childhood ocular trauma. Eye 2007, 21, 793–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brophy, M.; Sinclair, S.A.; Hostetler, S.G.; Xiang, H. Pediatric eye injury-related hospitalizations in the United States. Pediatrics 2006, 117, e1263–e1271. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Rahman, I.; Leatherbarrow, B. Open globe injuries in children: Factors predictive of a poor final visual acuity. Eye 2009, 23, 621–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenglinger, M.A.; Zorn, M.; Pilger, D.; von Sonnleithner, C.; Rossel, M.; Salchow, D.J.; Bertelmann, E. Firework-inflicted ocular trauma in children and adults in an urban German setting. Eur. J. Ophthalmol. 2021, 31, 709–715. [Google Scholar] [CrossRef]
- Li, X.; Zarbin, M.A.; Bhagat, N. Pediatric open globe injury: A review of the literature. J. Emerg. Trauma. Shock. 2015, 8, 216–223. [Google Scholar]
- Ram, J.; Verma, N.; Gupta, N.; Chaudhary, M. Effect of penetrating and blunt ocular trauma on the outcome of traumatic cataract in children in northern India. J. Trauma. Acute Care Surg. 2012, 73, 726–730. [Google Scholar] [CrossRef]
- Yardley, A.M.; Hoskin, A.K.; Hanman, K.; Wan, S.L.; Mackey, D.A. Animal-inflicted ocular and adnexal injuries in children: A systematic review. Surv. Ophthalmol. 2015, 60, 536–546. [Google Scholar] [CrossRef] [Green Version]
- Thakur, K.; Singh, G.; Chauhan, S.; Sood, A. Vidi, vini, vinci: External ophthalmomyiasis infection that occurred, and was diagnosed and treated in a single day: A rare case report. Oman. J. Ophthalmol. 2009, 2, 130–132. [Google Scholar]
- Bernardo, L.M.; Gardner, M.J.; Rosenfield, R.L.; Cohen, B.; Pitetti, R. A comparison of dog bite injuries in younger and older children treated in a pediatric emergency department. Pediatr. Emerg. Care 2002, 18, 247–249. [Google Scholar] [CrossRef]
- Kuhn, F.; Maisiak, R.; Mann, L.; Mester, V.; Morris, R.; Witherspoon, C.D. The Ocular Trauma Score (OTS). Ophthalmol. Clin. N. Am. 2002, 15, 163–165. [Google Scholar] [CrossRef]
- Acar, U.; Tok, O.Y.; Acar, D.E.; Burcu, A.; Ornek, F. A new ocular trauma score in pediatric penetrating eye injuries. Eye 2011, 25, 370–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pahor, D.; Gracner, T. Comparison of the Ocular Trauma Score and Pediatric Ocular Trauma Score as Two Prognostic Models in Pediatric Open Globe Injuries. Klin. Monbl. Augenheilkd. 2021, 238, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, M.P.; Karmacharya, P.C.; Koirala, S.; Shah, D.N.; Shakya, S.; Shrestha, J.K.; Bajracharya, H.; Gurung, C.K.; Whitcher, J.P. The Bhaktapur eye study: Ocular trauma and antibiotic prophylaxis for the prevention of corneal ulceration in Nepal. Br. J. Ophthalmol. 2001, 85, 388–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfaro, D.V.; Pince, K.; Park, J.; Runyan, T.; Ryan, S.J.; Liggett, P.E. Systemic antibiotic prophylaxis in penetrating ocular injuries. An experimental study. Retina 1992, 12 (Suppl. 3), S3–S6. [Google Scholar] [CrossRef]
- Erickson, B.P.; Feng, P.W.; Liao, S.D.; Modi, Y.S.; Ko, A.C.; Lee, W.W. Dog bite injuries of the eye and ocular adnexa. Orbit 2019, 38, 43–50. [Google Scholar] [CrossRef]
- Lou, B.; Lin, L.; Tan, J.; Yang, Y.; Yuan, Z.; Lin, X. Survey of Intraocular Antibiotics Prophylaxis Practice after Open Globe Injury in China. PLoS ONE 2016, 11, e0156856. [Google Scholar] [CrossRef] [Green Version]
- Pouzaud, F.; Rat, P.; Cambourieu, C.; Nourry, H.; Warnet, J.M. Prise en compte du potentiel ténotoxique des fluoroquinolones dans le choix d’une antibioprophylaxie chirurgicale en ophtalmologie [Tenotoxic potential of fluoroquinolones in the choice of surgical antibiotic prophylaxis in ophthalmology]. J. Fr. Ophtalmol. 2002, 25, 921–926. [Google Scholar]
- Andreoli, C.M.; Andreoli, M.T.; Kloek, C.E.; Ahuero, A.E.; Vavvas, D.; Durand, M.L. Low rate of endophthalmitis in a large series of open globe injuries. Am. J. Ophthalmol. 2009, 147, 601–608.e2. [Google Scholar] [CrossRef]
- Al-Mezaine, H.S.; Osman, E.A.; Kangave, D.; Abu El-Asrar, A.M. Risk factors for culture-positive endophthalmitis after repair of open globe injuries. Eur. J. Ophthalmol. 2010, 20, 201–208. [Google Scholar] [CrossRef]
- Huang, J.M.; Pansick, A.D.; Blomquist, P.H. Use of Intravenous Vancomycin and Cefepime in Preventing Endophthalmitis After Open Globe Injury. J. Ocul. Pharmacol. Ther. 2016, 32, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Abouammoh, M.A.; Al-Mousa, A.; Gogandi, M.; Al-Mezaine, H.; Osman, E.; Alsharidah, A.M.; Al-Kharashi, A.; Abu El-Asrar, A.M. Prophylactic intravitreal antibiotics reduce the risk of post-traumatic endophthalmitis after repair of open globe injuries. Acta Ophthalmol. 2018, 96, e361–e365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, B.K., Jr.; Di Nicola, M. Ocular Oncology-Primary and Metastatic Malignancies. Med. Clin. N. Am. 2021, 105, 531–550. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.Y.; Chintagumpala, M.M. Neonatal Retinoblastoma. Clin. Perinatol. 2021, 48, 53–70. [Google Scholar] [CrossRef]
- Leahey, A.M.; Gombos, D.S.; Chevez-Barrios, P. Retinoblastoma. In Pizzo and Poplack. Pedaitric Oncology, 8th ed.; Blaney, S.M., Adamson, P.C., Helman, L.J., Eds.; Ringgold Inc.: Beaverton, OR, USA, 2020; pp. 868–888. [Google Scholar]
- Wong, J.R.; Tucker, M.A.; Kleinerman, R.A.; Devesa, S.S. Retinoblastoma incidence patterns in the US Surveillance, Epidemiology, and End Results program. JAMA Ophthalmol. 2014, 132, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Dimaras, H.; Corson, T.W.; Cobrinik, D.; White, A.; Zhao, J.; Munier, F.L.; Abramson, D.H.; Shields, C.L.; Chantada, G.L.; Njuguna, F.; et al. Retinoblastoma. Nat. Rev. Dis. Primers 2015, 1, 15021. [Google Scholar] [CrossRef] [Green Version]
- Abramson, D.H.; Beaverson, K.; Sangani, P.; Vora, R.A.; Lee, T.C.; Hochberg, H.M.; Kirszrot, J.; Ranjithan, M. Screening for retinoblastoma: Presenting signs as prognosticators of patient and ocular survival. Pediatrics 2003, 112, 1248–1255. [Google Scholar] [CrossRef]
- Asensio-Sánchez, V.M.; Díaz-Cabanas, L.; Martín-Prieto, A. Photoleukocoria with smartphone photographs. Int. Med. Case Rep. J. 2018, 11, 117–119. [Google Scholar] [CrossRef] [Green Version]
- Shields, C.L.; Schoenberg, E.; Kocher, K.; Shukla, S.Y.; Kaliki, S.; Shields, J.A. Lesions simulating retinoblastoma (pseudoretinoblastoma) in 604 cases: Results based on age at presentation. Ophthalmology 2013, 120, 311–316. [Google Scholar] [CrossRef]
- Gombos, D.S. Retinoblastoma in the perinatal and neonatal child. Semin. Fetal. Neonatal. Med. 2012, 17, 239–242. [Google Scholar] [CrossRef]
- Abramson, D.H.; Shields, C.L.; Munier, F.L.; Chantada, G.L. Treatment of Retinoblastoma in 2015: Agreement and Disagreement. JAMA Ophthalmol. 2015, 133, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Gobin, Y.P.; Dunkel, I.J.; Marr, B.P.; Francis, J.H.; Brodie, S.E.; Abramson, D.H. Combined, sequential intravenous and intra-arterial chemotherapy (bridge chemotherapy) for young infants with retinoblastoma. PLoS ONE 2012, 7, e44322. [Google Scholar] [CrossRef] [PubMed]
- Qaddoumi, I.; Bass, J.K.; Wu, J.; Billups, C.A.; Wozniak, A.W.; Merchant, T.E.; Haik, B.G.; Wilson, M.W.; Rodriguez-Galindo, C. Carboplatin-associated ototoxicity in children with retinoblastoma. J. Clin. Oncol. 2012, 30, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Wilson, M.W.; Watkins, A.; Billups, C.; Qaddoumi, I.; Haik, B.H.; Rodriguez-Galindo, C. Comparison of two methods for carboplatin dosing in children with retinoblastoma. Pediatr. Blood Cancer 2010, 55, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Schaiquevich, P.; Fabius, A.W.; Francis, J.H.; Chantada, G.L.; Abramson, D.H. Ocular pharmacology of chemotherapy for retinoblastoma. Retina 2017, 37, 1–10. [Google Scholar] [CrossRef]
- Shields, C.L.; Sioufi, K.; Alset, A.E.; Boal, N.S.; Casey, M.G.; Knapp, A.N.; Sugarman, J.A.; Schoen, M.A.; Gordon, P.S.; Say, E.A.; et al. Clinical Features Differentiating Benign From Malignant Conjunctival Tumors in Children. JAMA Ophthalmol. 2017, 135, 215–224. [Google Scholar] [CrossRef]
- Shields, C.L.; Fasiuddin, A.F.; Mashayekhi, A.; Shields, J.A. Conjunctival nevi: Clinical features and natural course in 410 consecutive patients. Arch Ophthalmol. 2004, 122, 167–175. [Google Scholar] [CrossRef]
- Negretti, G.S.; Roelofs, K.A.; Damato, B.; Sagoo, M.; Parvizi, S.; Cohen, V.M.L. The natural history of conjunctival naevi in children and adolescents. Eye 2021, 35, 2579–2584. [Google Scholar] [CrossRef]
- Jeppesen, H.; Kielsen, K.; Siersma, V.; Lindegaard, J.; Julian, H.O.; Heegaard, S.; Sengeløv, H.; Müller, K. Ocular graft-versus-host disease and dry eye disease after paediatric haematopoietic stem cell transplantation–incidence and risk factors. Bone Marrow Transplant. 2022, 57, 487–498. [Google Scholar] [CrossRef]
- Fernández Jiménez-Ortiz, H.; Sampedro Yañez, R.; Villarrubia Torcal, B.; Maroto Rodriguez, B.; Nava Pérez, S.; Monja, N. Treatment and prevention of ocular motility restrictions with amniotic membrane transplantation. Strabismus 2021, 29, 228–242. [Google Scholar] [CrossRef]
- Iyer, G.; Srinivasan, B.; Dhiman, R.; Agarwal, M.; Rajagopal, R. Preliminary experience & rationale of primary allo Simple Limbal Epithelial Transplantation (SLET) following surgical excision of Ocular Surface Tumors. Ocul. Surf. 2021, 22, 120–122. [Google Scholar] [PubMed]
- Patil, M.; Mehta, J.S. Long Term Outcomes of Surgical Excision of Giant Papillae with Mitomycin C and Amniotic Membrane Transplantation in the Treatment of Refractory Palpebral Vernal Keratoconjunctivitis. Medicina 2021, 58, 19. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Lee, J.K.; Gore, P.K.; Lim, C.Y.; Chuck, R.S. Keratoplasty in the United States: A 10-Year Review from 2005 through 2014. Ophthalmology 2015, 122, 2432–2442. [Google Scholar] [CrossRef] [PubMed]
- Trief, D.; Marquezan, M.C.; Rapuano, C.J.; Prescott, C.R. Pediatric corneal transplants. Curr. Opin. Ophthalmol. 2017, 28, 477–484. [Google Scholar] [CrossRef]
- Cosar, C.B.; Laibson, P.R.; Cohen, E.J.; Rapuano, C.J. Topical cyclosporine in pediatric keratoplasty. Eye Contact. Lens. 2003, 29, 103–107. [Google Scholar] [CrossRef]
- Wagoner, M.D.; Al-Ghamdi, A.H.; Al-Rajhi, A.A. Bacterial keratitis after primary pediatric penetrating keratoplasty. Am. J. Ophthalmol. 2007, 143, 1045–1047. [Google Scholar] [CrossRef]
- Williams, L.; Malhotra, Y.; Murante, B. A single-blinded randomized clinical trial comparing polymyxin B–trimethoprim and moxifloxacin for treatment of acute conjunctivitis in children. J. Pediatr. 2013, 162, 857–861. [Google Scholar] [CrossRef]
- Jackson, M.A.; Schutze, G.E.; Committee on Infectious Diseases. The use of systemic and topical fluoroquinolones. Pediatrics 2016, 138, 1034–1045. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, S.G.; Grzybowski, A.; Flynn, H.W., Jr. Antibiotic prophylaxis: Different practice patterns within and outside the United States. Clin Ophthalmol. 2016, 10, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, E.T.; Shorstein, N.H. Preparation of intracameral antibiotics for injection. J. Cataract. Refract. Surg. 2013, 39, 1778–1779. [Google Scholar] [CrossRef] [Green Version]
- Juthani, V.V.; Clearfield, E.; Chuck, R.S. Non-steroidal anti-inflammatory drugs versus corticosteroids for controlling inflammation after uncomplicated cataract surgery. Cochrane Database Syst. Rev. 2017, 7, CD010516. [Google Scholar] [CrossRef] [PubMed]
- Chatziralli, I.P.; Papazisis, L.; Sergentanis, T.N. Ketorolac plus tobramycin/dexamethasone versus tobramycin/dexamethasone after uneventful phacoemulsification surgery: A randomized controlled trial. Ophthalmologica 2011, 225, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Stark, W.J. Are topical NSAIDs needed for routine cataract surgery? Am. J. Ophthalmol. 2008, 146, 483–485. [Google Scholar] [CrossRef] [PubMed]
Intraocular Surgery Lens surgery (infantile cataract) Trabecular meshwork surgery (infantile glaucoma) Vitreoretinal surgery [(retinopathy of the premature; hereditary vitreoretino pathies; retinal detachment (cerclage and/or scleral lead, vitrectomy, gas retinopexy)] Iris surgery: iridectomy or iridotomy (for glaucoma) Corneal surgery with full-thickness cutting |
Extraocular Surgery Lacrimal tract surgery Eyelid surgery (ptosis; blepharitis; chalazion; stye) Conjunctiva surgery (foreign body removal; conjunctiva repair; lesion removal) Corneal surgery, without full-thickness involvement Eye muscle surgery: strabismus correction Paralytic strabismus (innervation deficit of the eye muscles caused by congenital malformations, traumatic or inflammatory injuries or outcomes of surgery on the eyeball) Non-paralytic strabismus (due to a malfunction of the nerve centers responsible for coordinating eye movements) |
Surgery for Ocular Trauma |
Corneal Transplant Surgery |
Surgery for Tumor Removal |
Neoplasia | Surgery | Other Therapy * |
---|---|---|
Retinoblastoma | yes | yes |
Ocular superficial squamous neoplasm | yes | yes |
Melanoma of the conjunctiva | yes | yes |
Conjunctival lymphoma | yes | yes |
Nevus of conjunctiva | yes | no |
Melanoma of the uvea | yes | yes |
Lymphoma of the uvea | no | yes |
Vitreous and retinal lymphoma | no | yes |
Uveal metastases | no | yes |
Eye Surgery | Antibiotic Prophylaxis | Molecule |
---|---|---|
Clean intraocular eye surgery | Yes | Intrachamber cefuroxime 1 mg |
Clean extraocular eye surgery | No | - |
Intervention for ocular-penetrating trauma | Yes | Intraocular vancomycin and ceftazidime. The administration of vancomycin 15 mg/kg (max 1 g) IV in combination with ceftazidime 50 mg/kg (max 2 g) IV is recommended in cases in which the risk of infection is increased (i.e, age <1 year, poor initial visual acuity, posterior involvement, extensive injury, vitreous hemorrhage, retinal detachment, and endophthalmitis) |
Ocular neoplasm surgery | No | - |
Ocular surface transplantations | Yes | Multi-specialist evaluation |
Corneal grafts | Yes | Multi-specialist evaluation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchini, S.; Morini, C.; Nicoletti, L.; Monaco, S.; Rigotti, E.; Caminiti, C.; Conti, G.; De Luca, M.; Donà, D.; Maglietta, G.; et al. Surgical Antimicrobial Prophylaxis in Patients of Neonatal and Pediatric Age Subjected to Eye Surgery: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics 2022, 11, 561. https://doi.org/10.3390/antibiotics11050561
Bianchini S, Morini C, Nicoletti L, Monaco S, Rigotti E, Caminiti C, Conti G, De Luca M, Donà D, Maglietta G, et al. Surgical Antimicrobial Prophylaxis in Patients of Neonatal and Pediatric Age Subjected to Eye Surgery: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics. 2022; 11(5):561. https://doi.org/10.3390/antibiotics11050561
Chicago/Turabian StyleBianchini, Sonia, Chiara Morini, Laura Nicoletti, Sara Monaco, Erika Rigotti, Caterina Caminiti, Giorgio Conti, Maia De Luca, Daniele Donà, Giuseppe Maglietta, and et al. 2022. "Surgical Antimicrobial Prophylaxis in Patients of Neonatal and Pediatric Age Subjected to Eye Surgery: A RAND/UCLA Appropriateness Method Consensus Study" Antibiotics 11, no. 5: 561. https://doi.org/10.3390/antibiotics11050561
APA StyleBianchini, S., Morini, C., Nicoletti, L., Monaco, S., Rigotti, E., Caminiti, C., Conti, G., De Luca, M., Donà, D., Maglietta, G., Lancella, L., Lo Vecchio, A., Marchini, G., Pietrasanta, C., Principi, N., Simonini, A., Venturini, E., Longo, R., Gusson, E., ... on Behalf of the Peri-Operative Prophylaxis in Neonatal and Paediatric Age (POP-NeoPed) Study Group. (2022). Surgical Antimicrobial Prophylaxis in Patients of Neonatal and Pediatric Age Subjected to Eye Surgery: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics, 11(5), 561. https://doi.org/10.3390/antibiotics11050561