ESBL/pAmpC-Producing Escherichia coli Causing Urinary Tract Infections in Non-Related Companion Animals and Humans
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Resistance and Phylogenetic Group of 3GC-Resistant E. coli
2.2. Pathogenicity Island Markers and Virulence Genotyping of 3GC-Resistant E. coli
2.3. Clonal Lineages of ESBL/pAmpC-Producing E. coli
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Antimicrobial Susceptibility Testing
4.3. Molecular Detection of Antimicrobial Resistance Genes
4.4. Uropathogenic Escherichia coli Phylogenetic Typing, Pathogenicity Island Markers, and Virulence Genotyping
4.5. ESBL/pAmpC-Producing Escherichia coli Multi-Locus Sequence Typing
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010, 7, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, L.; Spangholm, D.J.; Pedersen, K.; Jensen, L.B.; Emborg, H.D.; Agersø, Y.; Aarestrup, F.M.; Hammerum, A.M.; Frimodt-Møller, N. Broiler chikens, broiler chiken meat, pigs and pork as sources of ExPEC related virulence genes and resistance in Escherichia coli isolates from community—Dwelling humans and UTI patients. Int. J. Food Microbiol. 2010, 142, 264–272. [Google Scholar] [CrossRef]
- Marques, C.; Belas, A.; Franco, A.; Aboim, C.; Gama, L.T.; Pomba, C. Increase in antimicrobial resistance and emergence of major international high-risk clonal lineages in dogs and cats with urinary tract infection: 16-year retrospective study. J. Antimicrob. Chemother. 2018, 73, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Critically Important Antimicrobials for Human Medicine. 6th Revision WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf (accessed on 15 January 2022).
- Ruiz, J. Antimicrobial Resistance, from Bench-to-Publicside. Microbes Infect. Chemother. 2021, 1, e1182. [Google Scholar] [CrossRef]
- Ewers, C.; Antão, E.M.; Diehl, I.; Philipp, H.C.; Wieler, L.H. Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl. Environ. Microbiol. 2009, 75, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Ewers, C.; Grobbel, M.; Stamm, I.; Kopp, P.A.; Diehl, I.; Semmler, T.; Fruth, A.; Beutlich, J.; Guerra, B.; Wieler, L.H.; et al. Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-beta-lactamase-producing Escherichia coli among companion animals. J. Antimicrob. Chemother. 2010, 65, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Narciso, A.; Nunes, F.; Amores, T.; Lito, L.; Melo-Cristino, J.; Duarte, A. Persistence of uropathogenic Escherichia coli strains in the host for long periods of time: Relationship between phylogenetic groups and virulence factors. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1211–1217. [Google Scholar] [CrossRef]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Mathers, A.J.; Peirano, G.; Pitout, J.D. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015, 28, 565–591. [Google Scholar] [CrossRef] [Green Version]
- Peirano, G.; Pitout, J.D.D. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Update on molecular epidemiology and treatment options. Drugs 2019, 79, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Bethe, A.; Stamm, I.; Grobbel, M.; Kopp, P.A.; Guerra, B.; Stubbe, M.; Doi, Y.; Zong, Z.; Kola, A.; et al. CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: Another pandemic clone combining multiresistance and extraintestinal virulence? J. Antimicrob. Chemother. 2014, 69, 1224–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M.; et al. Public health risk of antimicrobial resistance transfer from companion animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef]
- Johnson, J.R.; Miller, S.; Johnston, B.; Clabots, C.; DebRoy, C. Sharing of Escherichia coli Sequence Type ST131 and other multidrug-resistant and urovirulent E. coli strains among dogs and cats within a household. J. Clin. Microbiol. 2009, 47, 3721–3725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.R.; Menard, M.; Johnston, B.; Kuskowski, M.A.; Nichol, K.; Zhanel, G. Epidemic clonal groups of Escherichia coli as a cause of antimicrobial—Resistant urinary tract infections in Canada, 2002–2004. Antimicrob. Agents Chemother. 2009, 53, 2733–2739. [Google Scholar] [CrossRef] [Green Version]
- Pomba, C.; López-Cerero, L.; Bellido, M.; Serrano, L.; Belas, A.; Couto, N.; Cavaco-Silva, P.; Rodríguez-Baño, J.; Pascual, A. Within-lineage variability of ST131 Escherichia coli isolates from humans and companion animals in the south of Europe. J. Antimicrob. Chemother. 2014, 69, 271–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barroso, M.; López-Cerero, I.; Navarro, L.; Gutiérrez-Gutiérrez, M.D.; Pascual, B.; Rodríguez-Baño, J. Intestinal colonization due to Escherichia coli ST131: Risk factors and prevalence. Antimicrob. Resist. Infect. Control 2018, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Belas, A.; Marques, C.; Aboim, C.; Pomba, C. Emergence of Escherichia coli ST131 H30/H30-Rx subclones in companion animals. J. Antimicrob. Chemother. 2019, 74, 266–269. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Thungrat, K.; Boothe, D.M. Occurrence of OXA-48 carbapenemases and other β-lactamase genes in ESBL-producing multidrug resistant Escherichia coli from dogs and cats in the United States, 2009–2013. Front. Microbiol. 2016, 7, 1057. [Google Scholar] [CrossRef] [Green Version]
- Sabaté, M.; Moreno, E.; Perez, T.; Andreu, A.; Prats, G. Pathogenicity Island markers in commensal and uropathogenic Escherichia coli isolates. Clin. Microbiol. Infect. 2006, 12, 880–886. [Google Scholar] [CrossRef] [Green Version]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nipič, D.; Podlesek, Z.; Budič, M.; Črnigoj, M.; Žgur-Bertok, D. Escherichia coli uropathogenic-specific protein, Usp, is a bacteriocin-like genotoxin. J. Infect. Dis. 2013, 208, 1545–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crnigoj, M.; Podlesek, Z.; Budič, M.; Zgur-Bertok, D. The Escherichia coli uropathogenic-specific-protein-associated immunity protein 3 (Imu3) has nucleic acid -binding activity. BMC Microbiol. 2014, 14, 16. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, Y.; Pitout, J.D.; Gomi, R.; Matsuda, T.; Noguchi, T.; Yamamoto, M.; Peirano, G.; DeVinney, R.; Bradford, P.A.; Motyl, M.R.; et al. Global Escherichia coli sequence Type 131 clade with blaCTX-M-27 gene. Emerg. Infect. Dis. 2016, 22, 1900–1907. [Google Scholar] [CrossRef] [Green Version]
- Day, M.J.; Rodríguez, I.; van Essen-Zandbergen, A.; Dierikx, C.; Kadlec, K.; Schink, A.K.; Wu, G.; Chattaway, M.A.; DoNascimento, V.; Wain, J.; et al. Diversity of STs, plasmids and ESBL genes among Escherichia coli from humans, animals and food in Germany, the Netherlands and the UK. J. Antimicrob. Chemother. 2016, 71, 1178–1182. [Google Scholar] [CrossRef] [Green Version]
- Hansen, K.H.; Bortolaia, V.; Nielsen, C.A.; Nielsen, J.B.; Schønning, K.; Agersø, Y.; Guardabassi, L. Host-specific patterns of genetic diversity among IncI1-Igamma and IncK plasmids encoding CMY-2 beta-lactamase in Escherichia coli isolates from humans, poultry meat, poultry, and dogs in Denmark. Appl. Environ. Microbiol. 2016, 82, 4705–4714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, K.; Nakai, Y.; Kataoka, Y. Mechanisms of resistance to cephalosporin and emergence of O25b-ST131 clone harboring CTX-M-27 β-lactamase in extraintestinal pathogenic Escherichia coli from dogs and cats in Japan. Microbiol. Immunol. 2012, 56, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [Green Version]
- Melo, L.C.; Haenni, M.; Saras, E.; Duprilot, M.; Nicolas-Chanoine, M.H.; Madec, J.Y. Emergence of the C1-M27 cluster in ST131 Escherichia coli from companion animals in France. J. Antimicrob. Chemother. 2019, 74, 3111–3113. [Google Scholar] [CrossRef]
- Birgy, A.; Bidet, P.; Levy, C.; Sobral, E.; Cohen, R.; Bonacorsi, S. CTX-M-27-producing Escherichia coli of sequence type 131 and clade C1-M27, France. Emerg. Infect. Dis. 2017, 23, 885. [Google Scholar] [CrossRef]
- Ghosh, H.; Doijad, S.; Falgenhauer, L.; Fritzenwanker, M.; Imirzalioglu, C.; Chakraborty, T. blaCTX-M-27-encoding Escherichia coli sequence type 131 lineage C1-M27 clone in clinical isolates, Germany. Emerg. Infect. Dis. 2017, 23, 1754–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merino, I.; Hernández-García, M.; Turrientes, M.C.; Pérez-Viso, B.; López-Fresneña, N.; Diaz-Agero, C.; Maechler, F.; Fankhauser-Rodriguez, C.; Kola, A.; Schrenzel, J.; et al. Emergence of ESBL-producing Escherichia coli ST131-C1-M27 clade colonizing patients in Europe. J. Antimicrob. Chemother. 2018, 73, 2973–2980. [Google Scholar] [CrossRef] [PubMed]
- Zendri, F.; Maciuca, I.E.; Moon, S.; Jones, P.H.; Wattret, A.; Jenkins, R.; Baxter, A.; Timofte, D. Occurrence of ESBL-producing Escherichia coli ST131, including the H30-Rx and C1-M27 subclones, among urban seagulls from the United Kingdom. Microb. Drug Resist. 2020, 26, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Duggett, N.; Ellington, M.J.; Hopkins, K.L.; Ellaby, N.; Randall, L.; Lemma, F.; Teale, C.; Anjum, M.F. Detection in livestock of the human pandemic Escherichia coli ST131 fimH30(R) clone carrying blaCTX-M-27. J. Antimicrob. Chemother. 2021, 76, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.; Machado, E.; Fernandes, S.; Peixe, L.; Novais, Â. An update on faecal carriage of ESBL-producing Enterobacteriaceae by Portuguese healthy humans: Detection of the H30 subclone of B2-ST131 Escherichia coli producing CTX-M-27. J. Antimicrob. Chemother. 2016, 71, 1120–1122. [Google Scholar] [CrossRef] [Green Version]
- Adler, A.; Gniadkowski, M.; Baraniak, A.; Izdebski, R.; Fiett, J.; Hryniewicz, W.; Malhotra-Kumar, S.; Goossens, H.; Lammens, C.; Lerman, Y.; et al. Transmission dynamics of ESBL-producing Escherichia coli clones in rehabilitation wards at a tertiary care centre. Clin. Microbiol. Infect. 2012, 18, E497–E505. [Google Scholar] [CrossRef] [Green Version]
- Kurittu, P.; Khakipoor, B.; Jalava, J.; Karhukorpi, J.; Heikinheimo, A. Whole-genome sequencing of extended-spectrum beta-lactamase-producing Escherichia coli from human infections in Finland revealed isolates belonging to internationally successful ST131-C1-M27 subclade but distinct from non-human sources. Front. Microbiol. 2022, 12, 789280. [Google Scholar] [CrossRef]
- Johnson, J.R.; Clermont, O.; Johnston, B.; Clabots, C.; Tchesnokova, V.; Sokurenko, E.; Junka, A.F.; Maczynska, B.; Denamur, E. Rapid and specific detection, molecular epidemiology, and experimental virulence of the O16 subgroup within Escherichia coli sequence type 131. J. Clin. Microbiol. 2014, 52, 1358–1365. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, Y.; Yamamoto, M.; Nagao, M.; Ito, Y.; Takakura, S.; Ichiyama, S.; Kyoto-Shiga Clinical Microbiology Study Group. Association of fluoroquinolone resistance, virulence genes, and IncF plasmids with extended-spectrum-β-lactamase-producing Escherichia coli sequence type 131 (ST131) and ST405 clonal groups. Antimicrob. Agents Chemother. 2013, 57, 4736–4742. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, R.; Johnson, J.R. A new clone sweeps clean: The enigmatic emergence of Escherichia coli sequence type 131. Antimicrob. Agents Chemother. 2014, 58, 4997–5004. [Google Scholar] [CrossRef] [Green Version]
- Huber, H.; Zweifel, C.; Wittenbrink, M.M.; Stephan, R. ESBL-producing uropathogenic Escherichia coli isolated from dogs and cats in Switzerland. Vet. Microbiol. 2013, 162, 992–996. [Google Scholar] [CrossRef]
- Tamang, M.D.; Nam, H.M.; Jang, G.C.; Kim, S.R.; Chae, M.H.; Jung, S.C.; Byun, J.W.; Park, Y.H.; Lim, S.K. Molecular characterization of extended-spectrum-β-lactamase-producing and plasmid-mediated AmpC β-lactamase-producing Escherichia coli isolated from stray dogs in South Korea. Antimicrob. Agents Chemother. 2012, 56, 2705–2712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toleman, M.A.; Bugert, J.J.; Nizam, S.A. Extensively drug-resistant New Delhi metallo-β-lactamase-encoding bacteria in the environment, Dhaka, Bangladesh, 2012. Emerg. Infect. Dis. 2015, 21, 1027–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Liu, J.; Zhou, Y.; Miao, Z. Characterization of ESBL-producing Escherichia coli recovered from companion dogs in Taiwan, China. J. Infect. Dev. Ctries. 2017, 11, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Solgi, H.; Giske, C.G.; Badmasti, F.; Aghamohammad, S.; Havaei, S.A.; Sabeti, S.; Mostafavizadeh, K.; Shahcheraghi, F. Emergence of carbapenem resistant Escherichia coli isolates producing blaNDM and blaOXA-48-like carried on IncA/C and IncL/M plasmids at two Iranian university hospitals. Infect. Genet. Evol. 2017, 55, 318–323. [Google Scholar] [CrossRef]
- Sellera, F.P.; Fernandes, M.R.; Ruiz, R.; Falleiros, A.C.M.; Rodrigues, F.P.; Cerdeira, L.; Lincopan, N. Identification of KPC-2-producing Escherichia coli in a companion animal: A new challenge for veterinary clinicians. J. Antimicrob. Chemother. 2018, 73, 2259–2261. [Google Scholar] [CrossRef]
- Fernandes, M.R.; Sellera, F.P.; Moura, Q.; Gaspar, V.C.; Cerdeira, L.; Lincopan, N. International high-risk clonal lineages of CTX-M-producing Escherichia coli F-ST648 in free-roaming cats, South America. Infect. Genet. Evol. 2018, 66, 48–51. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 289–316. [Google Scholar] [CrossRef] [Green Version]
- Van Hoek, A.H.A.M.; Veenman, C.; Florijn, A.; Huijbers, P.M.C.; Graat, E.A.M.; de Greeff, S.; Dierikx, C.M.; van Duijkeren, E. Longitudinal study of ESBL Escherichia coli carriage on an organic broiler farm. J. Antimicrob. Chemother. 2018, 73, 3298–3304. [Google Scholar] [CrossRef]
- Borges, C.A.; Tarlton, N.J.; Riley, L.W. Escherichia coli from commercial broiler and backyard chickens share sequence types, antimicrobial resistance profiles, and resistance genes with human extraintestinal pathogenic Escherichia coli. Foodborne Pathog. Dis. 2019, 16, 813–822. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, M.; Wang, Z.; Chen, R.; Zhuge, X.; Dai, J. Characterization of antimicrobial resistance in chicken-source phylogroup F Escherichia coli: Similar populations and resistance spectrums between E. coli recovered from chicken colibacillosis tissues and retail raw meats in Eastern China. Poult. Sci. 2021, 100, 101370. [Google Scholar] [CrossRef] [PubMed]
- Mora, A.; Blanco, M.; López, C.; Mamani, R.; Blanco, J.E.; Alonso, M.P.; García-Garrote, F.; Dahbi, G.; Herrera, A.; Fernández, A.; et al. Emergence of clonal groups O1:HNM-D-ST59, O15:H1-D-ST393, O20:H34/HNM-D-ST354, O25b:H4-B2-ST131 and ONT:H21,42-B1-ST101 among CTX-M-14-producing Escherichia coli clinical isolates in Galicia, northwest Spain. Int. J. Antimicrob. Agents 2011, 37, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingram, P.R.; Rogers, B.A.; Sidjabat, H.E.; Gibson, J.S.; Inglis, T.J.J. Co-selection may explain high rates of ciprofloxacin non-susceptible Escherichia coli from retail poultry reared without prior fluoroquinolone exposure. J. Med. Microbiol. 2013, 62 Pt 11, 1743–1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vangchhia, B.; Abraham, S.; Bell, J.M.; Collignon, P.; Gibson, J.S.; Ingram, P.R.; Johnson, J.R.; Kennedy, K.; Trott, D.J.; Turnidge, J.D.; et al. Phylogenetic diversity, antimicrobial susceptibility and virulence characteristics of phylogroup F Escherichia coli in Australia. Microbiology 2016, 162, 1904–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, A.C.C.; Andrade, N.L.; Ferdous, M.; Chlebowicz, M.A.; Santos, C.C.; Correal, J.C.D.; Lo Ten Foe, J.R.; Rosa, A.C.P.; Damasco, P.V.; Friedrich, A.W.; et al. Corrigendum: Comprehensive molecular characterization of Escherichia coli isolates from urine samples of hospitalized patients in Rio de Janeiro, Brazil. Front. Microbiol. 2020, 11, 599031, Erratum in Front. Microbiol. 2018, 9, 243. [Google Scholar] [CrossRef] [PubMed]
- Falgenhauer, L.; Imirzalioglu, C.; Ghosh, H.; Gwozdzinski, K.; Schmiedel, J.; Gentil, K.; Bauerfeind, R.; Kämpfer, P.; Seifert, H.; Michael, G.B.; et al. Circulation of clonal populations of fluoroquinolone-resistant CTX-M-15-producing Escherichia coli ST410 in humans and animals in Germany. Int. J. Antimicrob. Agents 2016, 47, 457–565. [Google Scholar] [CrossRef]
- Schaufler, K.; Semmler, T.; Wieler, L.H.; Wöhrmann, M.; Baddam, R.; Ahmed, N.; Müller, K.; Kola, A.; Fruth, A.; Ewers, C.; et al. Clonal spread and interspecies transmission of clinically relevant ESBL-producing Escherichia coli of ST410—Another successful pandemic clone? FEMS Microbiol. Ecol. 2016, 92, fiv155. [Google Scholar] [CrossRef] [Green Version]
- Qin, S.; Zhou, M.; Zhang, Q.; Tao, H.; Ye, Y.; Chen, H.; Xu, L.; Xu, H.; Wang, P.; Feng, X. First identification of NDM-4-producing Escherichia coli ST410 in China. Emerg. Microbes Infect. 2016, 5, e118. [Google Scholar] [CrossRef] [Green Version]
- Roer, L.; Overballe-Petersen, S.; Hansen, F.; Schønning, K.; Wang, M.; Røder, B.L.; Hansen, D.S.; Justesen, U.S.; Andersen, L.P.; Fulgsang-Damgaard, D.; et al. Escherichia coli sequence type 410 is causing new international high-risk clones. mSphere 2018, 3, e00337-18. [Google Scholar] [CrossRef] [Green Version]
- Falgenhauer, L.; Waezsada, S.E.; Gwozdzinski, K.; Ghosh, H.; Doijad, S.; Bunk, B.; Spröer, C.; Imirzalioglu, C.; Seifert, H.; Irrgang, A.; et al. Chromosomal locations of mcr-1 and blaCTX-M-15 in fluoroquinolone-resistant Escherichia coli ST410. Emerg. Infect. Dis. 2016, 22, 1689–1691. [Google Scholar] [CrossRef] [Green Version]
- Nigg, A.; Brilhante, M.; Dazio, V.; Clément, M.; Collaud, A.; Gobeli Brawand, S.; Willi, B.; Endimiani, A.; Schuller, S.; Perreten, V. Shedding of OXA-181 carbapenemase-producing Escherichia coli from companion animals after hospitalisation in Switzerland: An outbreak in 2018. Eurosurveillance 2019, 24, 1900071. [Google Scholar] [CrossRef]
- Brilhante, M.; Menezes, J.; Belas, A.; Feudi, C.; Schwarz, S.; Pomba, C.; Perreten, V. OXA-181-producing extraintestinal pathogenic Escherichia coli sequence type 410 isolated from a dog in Portugal. Antimicrob. Agents Chemother. 2020, 64, e02298-19. [Google Scholar] [CrossRef] [PubMed]
- Valverde, A.; Cantón, R.; Garcillán-Barcia, M.P.; Novais, A.; Galán, J.C.; Alvarado, A.; de la Cruz, F.; Baquero, F.; Coque, T.M. Spread of bla(CTX-M-14) is driven mainly by IncK plasmids disseminated among Escherichia coli phylogroups A, B1, and D in Spain. Antimicrob. Agents Chemother. 2009, 53, 5204–5212. [Google Scholar] [CrossRef] [Green Version]
- Bado, I.; Gutiérrez, C.; García-Fulgueiras, V.; Cordeiro, N.F.; Araújo Pirez, L.; Seija, V.; Bazet, C.; Rieppi, G.; Vignoli, R. CTX-M-15 in combination with aac(6′)-Ib-cr is the most prevalent mechanism of resistance both in Escherichia coli and Klebsiella pneumoniae, including K. pneumoniae ST258, in an ICU in Uruguay. J. Glob. Antimicrob. Resist. 2016, 6, 5–9. [Google Scholar] [CrossRef]
- Maluta, R.P.; Logue, C.M.; Casas, M.R.; Meng, T.; Guastalli, E.A.; Rojas, T.C.; Montelli, A.C.; Sadatsune, T.; de Carvalho Ramos, M.; Nolan, L.K.; et al. Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli isolated in Brazil. PLoS ONE 2014, 9, e105016. [Google Scholar] [CrossRef] [PubMed]
- Umpiérrez, A.; Bado, I.; Oliver, M.; Acquistapace, S.; Etcheverría, A.; Padola, N.L.; Vignoli, R.; Zunino, P. Zoonotic potential and antibiotic resistance of Escherichia coli in neonatal calves in Uruguay. Microbes Environ. 2017, 32, 275–282. [Google Scholar] [CrossRef] [Green Version]
- McDaniels, A.E.; Rice, E.W.; Reyes, A.L.; Johnson, C.H.; Haugland, R.A.; Stelma, G.N., Jr. Confirmational identification of Escherichia coli, a comparison of genotypic and phenotypic assays for glutamate decarboxylase and beta-d-glucuronidase. Appl. Environ. Microbiol. 1996, 62, 3350–3354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing—27th Edition. Approved Standard. M100-S29; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals—5th Edition Approved Standard; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Pomba, C.; Mendonça, N.; Costa, M.; Louro, D.; Baptista, B.; Ferreira, M.; Correia, J.D.; Caniça, M. Improved multiplex PCR method for the rapid detection of beta-lactamase genes in Escherichia coli of animal origin. Diagn. Microbiol. Infect. Dis. 2006, 56, 103–106. [Google Scholar] [CrossRef]
- Edelstein, M.; Pimkin, M.; Palagin, I.; Edelstein, I.; Stratchounski, L. Prevalence and molecular epidemiology of CTX-M Extended-Spectrumβ-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae in Russian Hospitals. Antimicrob. Agents Chemother. 2003, 47, 3724–3732. [Google Scholar] [CrossRef] [Green Version]
- Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. J. Antimicrob. Chemother. 2006, 57, 154–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, F.; Hanson, N. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using Multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belas, A.; Salazar, A.S.; Gama, L.T.; Couto, N.; Pomba, C. Risk factors for faecal colonisation with Escherichia coli producing extended-spectrum and plasmid-mediated AmpC β-lactamases in dogs. Vet. Rec. 2014, 175, 202. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Doumith, M.; Day, M.J.; Hope, R.; Wain, J.; Woodford, N. Improved multiplex PCR strategy for rapid assignment of the four major Escherichia coli phylogenetic groups. J. Clin. Microbiol. 2012, 50, 3108–3110. [Google Scholar] [CrossRef] [Green Version]
- Bronowski, C.; Smith, S.L.; Yokota, K.; Corkill, J.E.; Martin, H.M.; Campbell, B.J.; Rhodes, J.M.; Hart, C.A.; Winstanley, C. A subset of mucosa associated Escherichia coli isolates from patients with colon cancer, but not Crohn’s disease, share pathogenicity islands with urinary pathogenic E. coli. Microbiology 2008, 154 Pt 2, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Féria, C.P.; Correia, J.C.; Gonçalves, J.; Machado, J. Detection of virulence factors in uropathogenic Escherichia coli isolated from humans, dogs and cats in Portugal. Adv. Exp. Med. Biol. 2002, 485, 305–308. [Google Scholar] [CrossRef]
- Banerjee, R.; Robicsek, A.; Kuskowski, M.A.; Porter, S.; Johnston, B.D.; Sokurenko, E.; Tchesnokova, V.; Price, L.B.; Johnson, J.R. Molecular epidemiology of Escherichia coli Sequence Type 131 and its H30 and H30-Rx subclones among Extended-Spectrum-β-Lactamase-positive and -negative E. coli clinical isolates from the Chicago region, 2007 to 2010. Antimicrob. Agents Chemother. 2013, 57, 6385–6388. [Google Scholar] [CrossRef] [Green Version]
- Colpan, A.; Johnston, B.; Porter, S.; Clabots, C.; Anway, R.; Thao, L.; Kuskowski, M.A.; Tchesnokova, V.; Sokurenko, E.V.; Johnson, J.R.; et al. Escherichia coli sequence type 131 (ST131) subclone H30 as an emergent multidrug-resistant pathogen among US veterans. Clin. Infect. Dis. 2013, 57, 1256–1265. [Google Scholar] [CrossRef] [Green Version]
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.; Ochman, H.; et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef] [Green Version]
Antimicrobials | Companion Animal (N = 35) a %R (n) | Human-CA (N = 85) a %R (n) | p Value * |
---|---|---|---|
Ampicillin/amoxicillin | 100% (n = 35) | 100% (n = 85) | N.s. |
Amoxicillin/clavulanate | 77.1% (n = 27) | 27.1% (n = 23) | <0.0001 |
Cefoxitin | 62.9% (n = 22) | 8.2% (n = 7) | <0.0001 |
Cefotaxime | 91.4% (n = 32) | 100% (n = 85) | 0.023 |
Ceftazidime | 62.8% (n = 22) | 42.4% (n = 36) | 0.047 |
Imipenem | 0.0% (n = 0) | 0.0% (n = 0) | N.s. |
Meropenem | 0.0% (n = 0) | 0.0% (n = 0) | N.s. |
Ciprofloxacin | 74.3% (n = 26) | 88.2% (n = 75) | 0.096 |
Norfloxacin | 71.4% (n = 25) | 88.2% (n = 75) | 0.033 |
Nitrofurantoin | 5.7% (n = 2) | 2.4% (n = 2) | N.s. |
Gentamicin | 40.0% (n = 14) | 37.6% (n = 32) | 0.838 |
Amikacin | 5.7% (n = 2) | 10.6% (n = 9) | 0.506 |
Tobramycin | 31.4% (n = 11) | 49.4% (n = 42) | 0.105 |
Trimethoprim/sulfamethoxazole | 71.4% (n = 25) | 74.1% (n = 63) | 0.822 |
Multidrug resistant | 71.4% (n = 25) | 84.7% (n = 72) | 0.125 |
Phylogenetic Group | Companion Animal (N = 35) a % (n) | Human-CA (N = 85) a % (n) | p Value * |
---|---|---|---|
Group A | 22.9% (n = 8) | 12.9% (n = 11) | 0.187 |
Group B1 | 11.4% (n = 4) | 14.1% (n = 12) | 0.777 |
Group B2 | 17.1% (n = 6) | 67.0% (n = 57) | <0.0001 |
Group D | 48.6% (n = 17) | 5.9% (n = 5) | <0.0001 |
Phylogenetic Group | Companion Animal (N = 35) a | Phylogenetic Group | Human-CA (N = 85) a | p Value * ESBL Genes | p Value * pAMPc Genes | ||
---|---|---|---|---|---|---|---|
ESBL Genes % (n) | pAmpC Genes % (n) | ESBL Genes % (n) | pAmpC Genes % (n) | ||||
A (n = 8) | 62.5% (n = 5) | 0.0% (n = 0) | A (n = 11) | 100% (n = 11) | 0.0% (n = 0) | 0.057 | N.s |
B1 (n = 4) | 75.0% (n = 3) | 50.0% (n = 2) | B1 (n = 12) | 100% (n = 12) | 0.0% (n = 0) | 0.250 | 0.050 |
B2 (n = 6) | 83.3% (n = 5) | 33.3% (n = 2) | B2 (n = 57) | 94.7% (n = 54) | 5.3% (n = 3) | 0.337 | 0.067 |
D (n = 17) | 5.8% (n = 1) | 94.1% (n = 16) | D (n = 5) | 60.0% (n = 3) | 40.0% (n = 2) | 0.024 | <0.0001 |
Overall | 40.0% (n = 14) | 57.1% (n = 20) | Overall | 94.1% (n = 80) | 5.9% (n = 5) | <0.0001 | <0.0001 |
Beta-Lactamase Gene | Companion Animal (N = 35) a % (n) | Human-CA (N = 85) a % (n) |
---|---|---|
blaSHV-12 | 0.0% (n = 0) | 1.2% (n = 1) |
blaCTX-M-1 | 5.7% (n = 2) | 10.6% (n = 9) |
blaCTX-M-1-type | 5.7% (n = 2) | 0.0% (n = 0) |
blaCTX-M-15 | 20.0% (n = 7) | 54.2% (n = 46) |
blaCTX-M-15-type | 0.0% (n = 0) | 1.2% (n = 1) |
blaCTX-M-32 | 8.6% (n = 3) | 5.9% (n = 5) |
blaCTX-M-9 | 2.9% (n = 1) | 0.0% (n = 0) |
blaCTX-M-9-type | 0.0% (n = 0) | 4.7% (n = 4) |
blaCTX-M-14 | 0.0% (n = 0) | 8.2% (n = 7) |
blaCTX-M-27 | 0.0% (n = 0) | 7.1% (n = 6) |
blaCTX-M-2group | 0.0% (n = 0) | 1.2% (n = 1) |
blaCMY-2 | 57.1% (n = 20) | 5.9% (n = 5) |
Detected PAIs | Companion Animal (N = 35) a % (n) | Human-CA (N = 85) a % (n) | p Value * |
---|---|---|---|
PAIIJ96 | 0.0% (n = 0) | 0.0% (n = 0) | N.s. |
PAIIIJ96 | 11.4% (n = 4) | 41.2% (n = 35) | 0.004 |
PAII536 | 8.6% (n = 3) | 40.0% (n = 34) | 0.0005 |
PAIII536 | 22.9% (n = 8) | 35.3% (n = 30) | 0.203 |
PAIIII536 | 0.0% (n = 0) | 0.0% (n = 0) | N.s. |
PAIIV536 | 74.3% (n = 26) | 91.8% (n = 78) | 0.017 |
PAIICFT073 | 54.3% (n = 19) | 78.8% (n = 67) | 0.013 |
PAIIICFT073 | 20.0% (n = 7) | 69.4% (n = 59) | <0.0001 |
Target Virulence Determinant | Target Gene | Companion Animal (N = 35) a | Human-CA (N = 85) a | p Value * |
---|---|---|---|---|
Pap fimbriae | papEF operon segment | 45.7% (n = 16) | 49.4% (n = 42) | 0.841 |
Sfa fimbriae | sfa | 20.0% (n = 7) | 20.0% (n = 17) | N.s. |
Afa afimbrial adhesin | afa | 2.9% (n = 1) | 9.4% (n = 8) | 0.281 |
Alpha-hemolysin operon | hlyA | 40.0% (n = 14) | 42.4% (n = 36) | 0.841 |
Cytotoxic necrotizing factor-1 | cnf1 | 17.1% (n = 6) | 41.2% (n = 35) | 0.012 |
Aerobactin siderophore | iucD | 48.6% (n = 17) | 83.5% (n = 71) | 0.0002 |
E. coli common pilus | ecpA | 100% (n = 35) | 100% (n = 85) | N.s. |
Uropathogenic specific protein | usp | 2.9% (n = 1) | 0.0% (n = 0) | 0.292 |
Phylogroup | Sequence Type | Clonal Complex | β-Lactamase (ESBL/pAmpC) | Species (n) |
---|---|---|---|---|
A | ST10 | 10 | blaCTX-M-1 | Human (2) |
A | ST23 | 23 | blaCTX-M-32 | Cat (1) |
A | ST88 | 23 | blaCTX-M-1 | Dog (1) |
blaCTX-M-15 | Human (1) | |||
blaCTX-M-32 | Human (1) | |||
A | ST90 | 23 | blaCTX-M-9like | Human (1) |
blaCTX-M-27 | Human (1) | |||
A | ST167 | 10 | blaCTX-M-32 | Human (1) |
A | ST540 | - | blaCTX-M-32 | Human (1) |
A | ST609 | 46 | blaCTX-M-32 | Dog (1) |
A | ST617 | 10 | blaCTX-M-1 | Human (1) |
A | ST5257 | - | blaCTX-M-32 | Human (1) |
A | ST6023 | - | blaCTX-M-14 | Human (1) |
A | Unassigned ST * | - | blaCTX-M-15 | Dog (1) |
B1 | ST58 | 155 | blaCTX-M-1 | Human (2) |
B1 | ST224 | - | blaCTX-M-32 | Cat (1) |
B1 | ST453 | 86 | blaSHV-12 | Human (1) |
blaCTX-M-1 | Human (1) | |||
blaCTX-M-15 | Human (1) | |||
blaCTX-M-14 | Human (3) | |||
B1 | ST533 | - | blaCTX-M-15 + blaCMY-2 | Dog (1) |
B1 | ST539 | blaCTX-M-1like | Dog (1) | |
blaCMY-2 | Cat (1) | |||
B1 | ST847 | - | blaCTX-M-14 | Human (1) |
B1 | ST1196 | - | blaCTX-M-1 | Human (1) |
B1 | ST1725 | - | blaCTX-M-15 | Human (1) |
B1 | ND | - | blaCTX-M-2group | Human (1) |
B2 | ST131 | 131 | blaCTX-M-1 | Cat (1), human (2) |
blaCTX-M-15 | Dog (2), cat (1), human (42) | |||
blaCTX-M-32 | Human (1) | |||
blaCTX-M-9like | Human (3) | |||
blaCTX-M-14 | Human (1) | |||
blaCTX-M-27 | Human (5) | |||
blaCMY-2 | Dog (1), human (3) | |||
B2 | ST372 | - | blaCTX-M-15 | Dog (1) |
D | ST57 | 350 | blaCMY-2 | Dog (1) |
D | ST117 | - | blaCTX-M-15 | Human (1) |
D | ST354 | 354 | blaCTX-M-14 | Human (1) |
blaCMY-2 | Dog (1) | |||
D | ST405 | 405 | blaCMY-2 | Dog (1) |
D | ST410 | - | blaCTX-M-15 | Human (1) |
D | ST648 | 648 | blaCTX-M-9 + blaCMY-2 | Cat (1) |
blaCMY-2 | Dog (3), cat (7), human (1) | |||
D | ST778 | 38 | blaCMY-2 | Human (1) |
D | ST1775 | - | blaCMY-2 | Dog (2) |
D | ST3258 | - | blaCMY-2 | Cat (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belas, A.; Marques, C.; Menezes, J.; da Gama, L.T.; Cavaco-Silva, P.; Pomba, C. ESBL/pAmpC-Producing Escherichia coli Causing Urinary Tract Infections in Non-Related Companion Animals and Humans. Antibiotics 2022, 11, 559. https://doi.org/10.3390/antibiotics11050559
Belas A, Marques C, Menezes J, da Gama LT, Cavaco-Silva P, Pomba C. ESBL/pAmpC-Producing Escherichia coli Causing Urinary Tract Infections in Non-Related Companion Animals and Humans. Antibiotics. 2022; 11(5):559. https://doi.org/10.3390/antibiotics11050559
Chicago/Turabian StyleBelas, Adriana, Cátia Marques, Juliana Menezes, Luís Telo da Gama, Patrícia Cavaco-Silva, and Constança Pomba. 2022. "ESBL/pAmpC-Producing Escherichia coli Causing Urinary Tract Infections in Non-Related Companion Animals and Humans" Antibiotics 11, no. 5: 559. https://doi.org/10.3390/antibiotics11050559
APA StyleBelas, A., Marques, C., Menezes, J., da Gama, L. T., Cavaco-Silva, P., & Pomba, C. (2022). ESBL/pAmpC-Producing Escherichia coli Causing Urinary Tract Infections in Non-Related Companion Animals and Humans. Antibiotics, 11(5), 559. https://doi.org/10.3390/antibiotics11050559