Orthopaedic Implant-Associated Staphylococcal Infections: A Critical Reappraisal of Unmet Clinical Needs Associated with the Implementation of the Best Antibiotic Choice
Abstract
:1. Introduction
2. Results
2.1. Issues in Microbiological Diagnosis of Infections Associated with Orthopaedic Implants
2.2. Role of Bacterial Biofilm
2.3. Real-World Use of Traditional and Novel Anti-Staphylococcal Agents for the Management of Infections Associated with Orthopaedic Implants
2.3.1. Novel Lipoglycopeptide (Dalbavancin, Oritavancin, and Telavancin)
2.3.2. Novel Anti-Staphylococcal Cephalosporins (Ceftaroline and Ceftobiprole)
2.3.3. Daptomycin
2.3.4. Linezolid and Tedizolid
2.3.5. Vancomycin and Teicoplanin
2.3.6. Rifampicin
2.3.7. Fluoroquinolones
2.3.8. Other Anti-Staphylococcal Agents (Fosfomycin, Cotrimoxazole, Tetracyclines, Clindamycin)
3. Discussion
4. Materials and Methods
- (a)
- Efficacy in implant-associated infections: at least three studies including more than 70 patients and an overall positive clinical outcome of at least 70% for scoring the performance of the agent as optimal;
- (b)
- Bone penetration: existence of at least one preclinical/clinical study reporting the achievement of antibiotic bone concentrations above the MIC50/MIC90 for Staphylococcus spp. for scoring the performance of the agent as optimal;
- (c)
- Antibiofilm activity: existence of at least one in vitro study reporting the potential achievement of antibiotic concentrations above the MBIC for scoring the performance of the agent as optimal;
- (d)
- Long-term safety: an overall AEs rate below 20% in the included clinical studies for scoring the performance of the agent as optimal, while a proportion of the overall AEs above 40% identified agents with poor long-term safety;
- (e)
- Feasibility for outpatient management: the availability of oral formulations, and/or the possibility to perform once/twice-weekly administration, as well as feasibility for outpatient parenteral antibiotic therapy were considered for scoring the performance of the agent as optimal.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trampuz, A.; Widmer, A.F. Infections Associated with Orthopedic Implants. Curr. Opin. Infect. Dis. 2006, 19, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Tande, A.J.; Patel, R. Prosthetic Joint Infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerli, W. Clinical Presentation and Treatment of Orthopaedic Implant-Associated Infection. J. Intern. Med. 2014, 276, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, W.; Trampuz, A.; Ochsner, P.E. Prosthetic-Joint Infections. N. Engl. J. Med. 2004, 351, 1645–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peel, T.N.; Cheng, A.C.; Buising, K.L.; Choong, P.F.M. Microbiological Aetiology, Epidemiology, and Clinical Profile of Prosthetic Joint Infections: Are Current Antibiotic Prophylaxis Guidelines Effective? Antimicrob. Agents Chemother. 2012, 56, 2386–2391. [Google Scholar] [CrossRef] [Green Version]
- Pea, F.; Viale, P. Bench-to-Bedside Review: Appropriate Antibiotic Therapy in Severe Sepsis and Septic Shock—Does the Dose Matter? Crit. Care 2009, 13, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thabit, A.K.; Fatani, D.F.; Bamakhrama, M.S.; Barnawi, O.A.; Basudan, L.O.; Alhejaili, S.F. Antibiotic Penetration into Bone and Joints: An Updated Review. Int. J. Infect. Dis. 2019, 81, 128–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pea, F. Penetration of Antibacterials into Bone: What Do We Really Need to Know for Optimal Prophylaxis and Treatment of Bone and Joint Infections? Clin. Pharm. 2009, 48, 125–127. [Google Scholar] [CrossRef]
- Jacqueline, C.; Caillon, J. Impact of Bacterial Biofilm on the Treatment of Prosthetic Joint Infections. J. Antimicrob. Chemother. 2014, 69 (Suppl. S1), i37–i40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatti, M.; Andreoni, M.; Pea, F.; Viale, P. Real-World Use of Dalbavancin in the Era of Empowerment of Outpatient Antimicrobial Treatment: A Careful Appraisal beyond Approved Indications Focusing on Unmet Clinical Needs. Drug Des. Dev. Ther. 2021, 15, 3349–3378. [Google Scholar] [CrossRef] [PubMed]
- Viale, P.; Tedeschi, S.; Scudeller, L.; Attard, L.; Badia, L.; Bartoletti, M.; Cascavilla, A.; Cristini, F.; Dentale, N.; Fasulo, G.; et al. Infectious Diseases Team for the Early Management of Severe Sepsis and Septic Shock in the Emergency Department. Clin. Infect. Dis. 2017, 65, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Gasparini, L.E.; Laratta, M.; Sigurtà, A.; Rossi, A.; Brioschi, P.; Chiara, O.; Vismara, C.; Scaglione, F.; Arlati, S. Intensive Multidisciplinary Management in Critical Care Patients Affected by Severe Necrotizing Soft Tissue Infections: A Cooperative Method to Improve the Efficacy of Treatment. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Approvazione Linee Di Indirizzo per Un Approccio Integrato Alla Prevenzione e Contrasto Alle Infezioni Correlate All’assistenza, All’antimicrobico-Resistenza e Alla Sepsi—Regione Toscana—Delibera n.1439 Del 17-12-2018 2018. Available online: http://www301.regione.toscana.it/bancadati/atti/DettaglioAttiG.xml?codprat=2018DG00000001574 (accessed on 10 January 2022).
- L’antibiotico-Resistenza E L’uso Di Antibiotici in Toscana. 2021. Available online: https://www.ars.toscana.it/images/pubblicazioni/Collana_ARS/2020/Documento_ARS_107/Doc_112_SMART_2021_DEF.pdf (accessed on 10 January 2022).
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R. Infectious Diseases Society of America Diagnosis and Management of Prosthetic Joint Infection: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, e1–e25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anemüller, R.; Belden, K.; Brause, B.; Citak, M.; Del Pozo, J.L.; Frommelt, L.; Gehrke, T.; Hewlett, A.; Higuera, C.A.; Hughes, H.; et al. Hip and Knee Section, Treatment, Antimicrobials: Proceedings of International Consensus on Orthopedic Infections. J. Arthroplast. 2019, 34, S463–S475. [Google Scholar] [CrossRef]
- Minassian, A.M.; Osmon, D.R.; Berendt, A.R. Clinical Guidelines in the Management of Prosthetic Joint Infection. J. Antimicrob. Chemother. 2014, 69 (Suppl. S1), i29–i35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkins, B.L.; Athanasou, N.; Deeks, J.J.; Crook, D.W.; Simpson, H.; Peto, T.E.; McLardy-Smith, P.; Berendt, A.R. Prospective Evaluation of Criteria for Microbiological Diagnosis of Prosthetic-Joint Infection at Revision Arthroplasty. The OSIRIS Collaborative Study Group. J. Clin. Microbiol. 1998, 36, 2932–2939. [Google Scholar] [CrossRef] [Green Version]
- Trampuz, A.; Piper, K.E.; Jacobson, M.J.; Hanssen, A.D.; Unni, K.K.; Osmon, D.R.; Mandrekar, J.N.; Cockerill, F.R.; Steckelberg, J.M.; Greenleaf, J.F.; et al. Sonication of Removed Hip and Knee Prostheses for Diagnosis of Infection. N. Engl. J. Med. 2007, 357, 654–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schäfer, P.; Fink, B.; Sandow, D.; Margull, A.; Berger, I.; Frommelt, L. Prolonged Bacterial Culture to Identify Late Periprosthetic Joint Infection: A Promising Strategy. Clin. Infect. Dis. 2008, 47, 1403–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roux, A.-L.; Sivadon-Tardy, V.; Bauer, T.; Lortat-Jacob, A.; Herrmann, J.-L.; Gaillard, J.-L.; Rottman, M. Diagnosis of Prosthetic Joint Infection by Beadmill Processing of a Periprosthetic Specimen. Clin. Microbiol. Infect. 2011, 17, 447–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holinka, J.; Bauer, L.; Hirschl, A.M.; Graninger, W.; Windhager, R.; Presterl, E. Sonication Cultures of Explanted Components as an Add-on Test to Routinely Conducted Microbiological Diagnostics Improve Pathogen Detection. J. Orthop. Res. 2011, 29, 617–622. [Google Scholar] [CrossRef]
- Karbysheva, S.; Di Luca, M.; Butini, M.E.; Winkler, T.; Schütz, M.; Trampuz, A. Comparison of Sonication with Chemical Biofilm Dislodgement Methods Using Chelating and Reducing Agents: Implications for the Microbiological Diagnosis of Implant Associated Infection. PLoS ONE 2020, 15, e0231389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suren, C.; Feihl, S.; Cabric, S.; Banke, I.J.; Haller, B.; Trampuz, A.; von Eisenhart-Rothe, R.; Prodinger, P.M. Improved Pre-Operative Diagnostic Accuracy for Low-Grade Prosthetic Joint Infections Using Second-Generation Multiplex Polymerase Chain Reaction on Joint Fluid Aspirate. Int. Orthop. 2020, 44, 1629–1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgenstern, C.; Cabric, S.; Perka, C.; Trampuz, A.; Renz, N. Synovial Fluid Multiplex PCR Is Superior to Culture for Detection of Low-Virulent Pathogens Causing Periprosthetic Joint Infection. Diagn. Microbiol. Infect. Dis. 2018, 90, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Kahl, B.C.; Becker, K.; Löffler, B. Clinical Significance and Pathogenesis of Staphylococcal Small Colony Variants in Persistent Infections. Clin. Microbiol. Rev. 2016, 29, 401–427. [Google Scholar] [CrossRef] [Green Version]
- Neut, D.; van der Mei, H.C.; Bulstra, S.K.; Busscher, H.J. The Role of Small-Colony Variants in Failure to Diagnose and Treat Biofilm Infections in Orthopedics. Acta Orthop. 2007, 78, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Ciofu, O.; Rojo-Molinero, E.; Macià, M.D.; Oliver, A. Antibiotic Treatment of Biofilm Infections. APMIS 2017, 125, 304–319. [Google Scholar] [CrossRef]
- Morata, L.; Cobo, J.; Fernández-Sampedro, M.; Guisado Vasco, P.; Ruano, E.; Lora-Tamayo, J.; Sánchez Somolinos, M.; González Ruano, P.; Rico Nieto, A.; Arnaiz, A.; et al. Safety and Efficacy of Prolonged Use of Dalbavancin in Bone and Joint Infections. Antimicrob. Agents Chemother. 2019, 63, e02280-18. [Google Scholar] [CrossRef] [Green Version]
- Wunsch, S.; Krause, R.; Valentin, T.; Prattes, J.; Janata, O.; Lenger, A.; Bellmann-Weiler, R.; Weiss, G.; Zollner-Schwetz, I. Multicenter Clinical Experience of Real Life Dalbavancin Use in Gram-Positive Infections. Int. J. Infect. Dis. 2019, 81, 210–214. [Google Scholar] [CrossRef] [Green Version]
- Bai, F.; Aldieri, C.; Cattelan, A.; Raumer, F.; Di Meco, E.; Moioli, M.C.; Tordato, F.; Morelli, P.; Borghi, F.; Rizzi, M.; et al. Efficacy and Safety of Dalbavancin in the Treatment of Acute Bacterial Skin and Skin Structure Infections (ABSSSIs) and Other Infections in a Real-Life Setting: Data from an Italian Observational Multicentric Study (DALBITA Study). Expert Rev. Anti Infect. Ther. 2020, 18, 1271–1279. [Google Scholar] [CrossRef]
- Tobudic, S.; Forstner, C.; Burgmann, H.; Lagler, H.; Steininger, C.; Traby, L.; Vossen, M.G.; Winkler, S.; Thalhammer, F. Real-World Experience with Dalbavancin Therapy in Gram-Positive Skin and Soft Tissue Infection, Bone and Joint Infection. Infection 2019, 47, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Bouza, E.; Valerio, M.; Soriano, A.; Morata, L.; Carus, E.G.; Rodríguez-González, C.; Hidalgo-Tenorio, M.C.; Plata, A.; Muñoz, P.; Vena, A. Dalbavancin in the Treatment of Different Gram-Positive Infections: A Real-Life Experience. Int. J. Antimicrob. Agents 2018, 51, 571–577. [Google Scholar] [CrossRef]
- Buzón Martín, L.; Mora Fernández, M.; Perales Ruiz, J.M.; Ortega Lafont, M.; Álvarez Paredes, L.; Morán Rodríguez, M.A.; Fernández Regueras, M.; Machín Morón, M.A.; Mejías Lobón, G. Dalbavancin for Treating Prosthetic Joint Infections Caused by Gram-Positive Bacteria: A Proposal for a Low Dose Strategy. A Retrospective Cohort Study. Rev. Esp. Quim. 2019, 32, 532–538. [Google Scholar]
- Bork, J.T.; Heil, E.L.; Berry, S.; Lopes, E.; Davé, R.; Gilliam, B.L.; Amoroso, A. Dalbavancin Use in Vulnerable Patients Receiving Outpatient Parenteral Antibiotic Therapy for Invasive Gram-Positive Infections. Infect. Dis. Ther. 2019, 8, 171–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brescini, L.; Della Martera, F.; Morroni, G.; Mazzanti, S.; Di Pietrantonio, M.; Mantini, P.; Candelaresi, B.; Pallotta, F.; Olivieri, S.; Iencinella, V.; et al. Use of Dalbavancin in Skin, Bone and Joint Infections: A Real-Life Experience in an Italian Center. Antibiotics 2021, 10, 1129. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Núñez, M.P.; Casas-Hidalgo, I.; García-Fumero, R.; Vallejo-Rodríguez, I.; Anguita-Santos, F.; Hernández-Quero, J.; Cabeza-Barrera, J.; Ruiz-Sancho, A. Dalbavancin Is a Novel Antimicrobial against Gram-Positive Pathogens: Clinical Experience beyond Labelled Indications. Eur. J. Hosp. Pharm. 2020, 27, 310–312. [Google Scholar] [CrossRef]
- Vazquez Deida, A.A.; Shihadeh, K.C.; Preslaski, C.R.; Young, H.L.; Wyles, D.L.; Jenkins, T.C. Use of a Standardized Dalbavancin Approach to Facilitate Earlier Hospital Discharge for Vulnerable Patients Receiving Prolonged Inpatient Antibiotic Therapy. Open Forum Infect. Dis. 2020, 7, ofaa293. [Google Scholar] [CrossRef]
- Azamgarhi, T.; Donaldson, J.; Shah, A.; Warren, S. Dalbavancin to Treat Infected Massive Endoprostheses: A Case Report and Cost Comparison Analysis. J. Bone Jt. Infect. 2019, 4, 234–237. [Google Scholar] [CrossRef]
- Trujillano Ruiz, A.; Mesquida Riera, J.; Serrano Fabiá, M.A.; Riera Pérez, E.; Mejía Benard, A.; Taberner Ferrer, M.D. Prolonged treatment with dalbavancin in prosthetic hip infection by methicillin-resistant Staphylococcus epidermidis. Rev. Esp. Quim. 2019, 32, 203–204. [Google Scholar]
- Carrión Madroñal, I.M.; Sánchez Del Moral, R.; Abad Zamora, J.M.; Martínez Marcos, F.J. Dalbavancin Combined with Linezolid in Prosthetic-Hip Infection. Rev. Esp. Quim. 2020, 33, 147–148. [Google Scholar] [CrossRef]
- Ramírez Hidalgo, M.; Jover-Sáenz, A.; García-González, M.; Barcenilla-Gaite, F. Dalbavancin Treatment of Prosthetic Knee Infection Due to Oxacillin-Resistant Staphylococcus epidermidis. Enferm. Infecc. Microbiol. Clin. 2018, 36, 142–143. [Google Scholar] [CrossRef]
- Fernández, J.; Greenwood-Quaintance, K.E.; Patel, R. In Vitro Activity of Dalbavancin against Biofilms of Staphylococci Isolated from Prosthetic Joint Infections. Diagn. Microbiol. Infect. Dis. 2016, 85, 449–451. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Malan, S.M.; Greenwood Quaintance, K.E.; Karau, M.J.; Patel, R. In Vitro Activity of Tedizolid against Staphylococci Isolated from Prosthetic Joint Infections. Diagn. Microbiol. Infect. Dis. 2016, 85, 77–79. [Google Scholar] [CrossRef]
- Knafl, D.; Tobudic, S.; Cheng, S.C.; Bellamy, D.R.; Thalhammer, F. Dalbavancin Reduces Biofilms of Methicillin-Resistant Staphylococcus aureus (MRSA) and Methicillin-Resistant Staphylococcus epidermidis (MRSE). Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 677–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neudorfer, K.; Schmidt-Malan, S.M.; Patel, R. Dalbavancin Is Active in Vitro against Biofilms Formed by Dalbavancin-Susceptible Enterococci. Diagn. Microbiol. Infect. Dis. 2018, 90, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Žiemytė, M.; Rodríguez-Díaz, J.C.; Ventero, M.P.; Mira, A.; Ferrer, M.D. Effect of Dalbavancin on Staphylococcal Biofilms When Administered Alone or in Combination With Biofilm-Detaching Compounds. Front. Microbiol. 2020, 11, 553. [Google Scholar] [CrossRef] [Green Version]
- Jacob, B.; Makarewicz, O.; Hartung, A.; Brodt, S.; Roehner, E.; Matziolis, G. In Vitro Additive Effects of Dalbavancin and Rifampicin against Biofilm of Staphylococcus aureus. Sci. Rep. 2021, 11, 23425. [Google Scholar] [CrossRef] [PubMed]
- Solon, E.G.; Dowell, J.A.; Lee, J.; King, S.P.; Damle, B.D. Distribution of Radioactivity in Bone and Related Structures Following Administration of [14C] Dalbavancin to New Zealand White Rabbits. Antimicrob. Agents Chemother. 2007, 51, 3008–3010. [Google Scholar] [CrossRef] [Green Version]
- Redell, M.; Sierra-Hoffman, M.; Assi, M.; Bochan, M.; Chansolme, D.; Gandhi, A.; Sheridan, K.; Soosaipillai, I.; Walsh, T.; Massey, J. The CHROME Study, a Real-World Experience of Single- and Multiple-Dose Oritavancin for Treatment of Gram-Positive Infections. Open Forum Infect. Dis. 2019, 6, ofz479. [Google Scholar] [CrossRef]
- Schulz, L.T.; Dworkin, E.; Dela-Pena, J.; Rose, W.E. Multiple-Dose Oritavancin Evaluation in a Retrospective Cohort of Patients with Complicated Infections. Pharmacotherapy 2018, 38, 152–159. [Google Scholar] [CrossRef]
- Yan, Q.; Karau, M.J.; Patel, R. In Vitro Activity of Oritavancin against Biofilms of Staphylococci Isolated from Prosthetic Joint Infection. Diagn. Microbiol. Infect. Dis. 2018, 92, 155–157. [Google Scholar] [CrossRef]
- Belley, A.; Neesham-Grenon, E.; McKay, G.; Arhin, F.F.; Harris, R.; Beveridge, T.; Parr, T.R.; Moeck, G. Oritavancin Kills Stationary-Phase and Biofilm Staphylococcus aureus Cells in Vitro. Antimicrob. Agents Chemother. 2009, 53, 918–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Q.; Karau, M.J.; Raval, Y.S.; Patel, R. Evaluation of Oritavancin Combinations with Rifampin, Gentamicin, or Linezolid against Prosthetic Joint Infection-Associated Methicillin-Resistant Staphylococcus aureus Biofilms by Time-Kill Assays. Antimicrob. Agents Chemother. 2018, 62, e00943-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehoux, D.; Ostiguy, V.; Cadieux, C.; Malouin, M.; Belanger, O.; Far, A.R.; Parr, T.R. Oritavancin Pharmacokinetics and Bone Penetration in Rabbits. Antimicrob. Agents Chemother. 2015, 59, 6501–6505. [Google Scholar] [CrossRef] [Green Version]
- Sims, C.R.; Bressler, A.M.; Graham, D.R.; Lacy, M.K.; Lombardi, D.A.; Castaneda-Ruiz, B. Real-World Clinical Use and Outcomes of Telavancin for the Treatment of Bone and Joint Infections: Results from the Telavancin Observational Use Registry (TOURTM). Drugs Real World Outcomes 2021, 8, 509–518. [Google Scholar] [CrossRef]
- Harting, J.; Fernandez, F.; Kelley, R.; Wiemken, T.; Peyrani, P.; Ramirez, J. Telavancin for the Treatment of Methicillin-Resistant Staphylococcus aureus Bone and Joint Infections. Diagn. Microbiol. Infect. Dis. 2017, 89, 294–299. [Google Scholar] [CrossRef]
- LaPlante, K.L.; Mermel, L.A. In Vitro Activities of Telavancin and Vancomycin against Biofilm-Producing Staphylococcus aureus, S. epidermidis, and Enterococcus faecalis Strains. Antimicrob. Agents Chemother. 2009, 53, 3166–3169. [Google Scholar] [CrossRef] [Green Version]
- Buzón-Martín, L.; Zollner-Schwetz, I.; Tobudic, S.; Cercenado, E.; Lora-Tamayo, J. Dalbavancin for the Treatment of Prosthetic Joint Infections: A Narrative Review. Antibiotics 2021, 10, 656. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Calic, D.; Schweizer, F.; Zelenitsky, S.; Adam, H.; Lagacé-Wiens, P.R.S.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; Karlowsky, J.A. New Lipoglycopeptides: A Comparative Review of Dalbavancin, Oritavancin and Telavancin. Drugs 2010, 70, 859–886. [Google Scholar] [CrossRef]
- Malandain, D.; Dinh, A.; Ferry, T.; Touchais, S.; Lustig, S.; Laurent, F.; Corvec, S.; Bémer, P.; Asseray, N.; Boutoille, D. Salvage Therapy for Complex Bone and Joint Infections with Ceftaroline: A Multicentre, Observational Study. Int. J. Antimicrob. Agents 2017, 50, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-H.; Greenwood-Quaintance, K.E.; Patel, R. In Vitro Activity of Ceftaroline against Staphylococci from Prosthetic Joint Infection. Diagn. Microbiol. Infect. Dis. 2016, 84, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Landini, G.; Riccobono, E.; Giani, T.; Arena, F.; Rossolini, G.M.; Pallecchi, L. Bactericidal Activity of Ceftaroline against Mature Staphylococcus aureus Biofilms. Int. J. Antimicrob. Agents 2015, 45, 551–553. [Google Scholar] [CrossRef] [PubMed]
- Barber, K.E.; Smith, J.R.; Ireland, C.E.; Boles, B.R.; Rose, W.E.; Rybak, M.J. Evaluation of Ceftaroline Alone and in Combination against Biofilm-Producing Methicillin-Resistant Staphylococcus aureus with Reduced Susceptibility to Daptomycin and Vancomycin in an In Vitro Pharmacokinetic/Pharmacodynamic Model. Antimicrob. Agents Chemother. 2015, 59, 4497–4503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatin, L.; Saleh-Mghir, A.; Tasse, J.; Ghout, I.; Laurent, F.; Crémieux, A.-C. Ceftaroline-Fosamil Efficacy against Methicillin-Resistant Staphylococcus aureus in a Rabbit Prosthetic Joint Infection Model. Antimicrob. Agents Chemother. 2014, 58, 6496–6500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhanel, G.G.; Kosar, J.; Baxter, M.; Dhami, R.; Borgia, S.; Irfan, N.; MacDonald, K.S.; Dow, G.; Lagacé-Wiens, P.; Dube, M.; et al. Real-Life Experience with Ceftobiprole in Canada: Results from the CLEAR (CanadianLEadership OnAntimicrobialReal-Life Usage) Registry. J. Glob. Antimicrob. Resist. 2021, 24, 335–339. [Google Scholar] [CrossRef]
- Abbanat, D.; Shang, W.; Amsler, K.; Santoro, C.; Baum, E.; Crespo-Carbone, S.; Lynch, A.S. Evaluation of the in Vitro Activities of Ceftobiprole and Comparators in Staphylococcal Colony or Microtitre Plate Biofilm Assays. Int. J. Antimicrob. Agents 2014, 43, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.-Y.; Calhoun, J.H.; Thomas, J.K.; Shapiro, S.; Schmitt-Hoffmann, A. Efficacies of Ceftobiprole Medocaril and Comparators in a Rabbit Model of Osteomyelitis Due to Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2008, 52, 1618–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byren, I.; Rege, S.; Campanaro, E.; Yankelev, S.; Anastasiou, D.; Kuropatkin, G.; Evans, R. Randomized Controlled Trial of the Safety and Efficacy of Daptomycin versus Standard-of-Care Therapy for Management of Patients with Osteomyelitis Associated with Prosthetic Devices Undergoing Two-Stage Revision Arthroplasty. Antimicrob. Agents Chemother. 2012, 56, 5626–5632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carli, A.V.; Miller, A.O.; Kapadia, M.; Chiu, Y.-F.; Westrich, G.H.; Brause, B.D.; Henry, M.W. Assessing the Role of Daptomycin as Antibiotic Therapy for Staphylococcal Prosthetic Joint Infection. J. Bone Jt. Infect. 2020, 5, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Joseph, C.; Robineau, O.; Titecat, M.; Putman, S.; Blondiaux, N.; Loiez, C.; Valette, M.; Schmit, J.L.; Beltrand, E.; Dézeque, H.; et al. Daptomycin versus Vancomycin as Post-Operative Empirical Antibiotic Treatment for Prosthetic Joint Infections: A Case-Control Study. J. Bone Jt. Infect. 2019, 4, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Rao, N.; Regalla, D.M. Uncertain Efficacy of Daptomycin for Prosthetic Joint Infections: A Prospective Case Series. Clin. Orthop. Relat. Res. 2006, 451, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Kuo, F.-C.; Yen, S.-H.; Peng, K.-T.; Wang, J.-W.; Lee, M.S. Methicillin-Resistant Staphylococcal Periprosthetic Joint Infections Can Be Effectively Controlled by Systemic and Local Daptomycin. BMC Infect. Dis. 2016, 16, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, S.; Sorlí, L.; Horcajada, J.P. High-Dose Daptomycin Together with Rifampin as Salvage Therapy for Prosthetic Joint Infections. Med. Clin. (Barc.) 2017, 149, 223–224. [Google Scholar] [CrossRef]
- Corona Pérez-Cardona, P.S.; Barro Ojeda, V.; Rodriguez Pardo, D.; Pigrau Serrallach, C.; Guerra Farfán, E.; Amat Mateu, C.; Flores Sanchez, X. Clinical Experience with Daptomycin for the Treatment of Patients with Knee and Hip Periprosthetic Joint Infections. J. Antimicrob. Chemother. 2012, 67, 1749–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lora-Tamayo, J.; Parra-Ruiz, J.; Rodríguez-Pardo, D.; Barberán, J.; Ribera, A.; Tornero, E.; Pigrau, C.; Mensa, J.; Ariza, J.; Soriano, A. High Doses of Daptomycin (10 Mg/Kg/d) plus Rifampin for the Treatment of Staphylococcal Prosthetic Joint Infection Managed with Implant Retention: A Comparative Study. Diagn. Microbiol. Infect. Dis. 2014, 80, 66–71. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Lee, M.S.; Lee, C.-H.; Lin, P.-C.; Kuo, F.-C. Daptomycin Treatment in Patients with Resistant Staphylococcal Periprosthetic Joint Infection. BMC Infect. Dis. 2017, 17, 736. [Google Scholar] [CrossRef]
- Yuste, J.R.; Quesada, M.; Díaz-Rada, P.; Del Pozo, J.L. Daptomycin in the Treatment of Prosthetic Joint Infection by Enterococcus faecalis: Safety and Efficacy of High-Dose and Prolonged Therapy. Int. J. Infect. Dis. 2014, 27, 65–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luengo, G.; Lora-Tamayo, J.; Paredes, D.; Muñoz-Gallego, I.; Díaz, A.; Delgado, E. Daptomycin Plus Fosfomycin as Salvage Therapy in a Difficult-to-Treat Total Femoral Replacement Infection. J. Bone Jt. Infect. 2018, 3, 207–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montange, D.; Berthier, F.; Leclerc, G.; Serre, A.; Jeunet, L.; Berard, M.; Muret, P.; Vettoretti, L.; Leroy, J.; Hoen, B.; et al. Penetration of Daptomycin into Bone and Synovial Fluid in Joint Replacement. Antimicrob. Agents Chemother. 2014, 58, 3991–3996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina-Manso, D.; del Prado, G.; Ortiz-Pérez, A.; Manrubia-Cobo, M.; Gómez-Barrena, E.; Cordero-Ampuero, J.; Esteban, J. In Vitro Susceptibility to Antibiotics of Staphylococci in Biofilms Isolated from Orthopaedic Infections. Int. J. Antimicrob. Agents 2013, 41, 521–523. [Google Scholar] [CrossRef] [PubMed]
- Garrigós, C.; Murillo, O.; Euba, G.; Verdaguer, R.; Tubau, F.; Cabellos, C.; Cabo, J.; Ariza, J. Efficacy of Usual and High Doses of Daptomycin in Combination with Rifampin versus Alternative Therapies in Experimental Foreign-Body Infection by Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 5251–5256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahanbakhsh, S.; Singh, N.B.; Yim, J.; Kebriaei, R.; Smith, J.R.; Lev, K.; Tran, T.T.; Rose, W.E.; Arias, C.A.; Rybak, M.J. Impact of Daptomycin Dose Exposure Alone or in Combination with β-Lactams or Rifampin against Vancomycin-Resistant Enterococci in an In Vitro Biofilm Model. Antimicrob. Agents Chemother. 2020, 64, e02074-19. [Google Scholar] [CrossRef] [PubMed]
- Soriano, A.; Gómez, J.; Gómez, L.; Azanza, J.R.; Pérez, R.; Romero, F.; Pons, M.; Bella, F.; Velasco, M.; Mensa, J. Efficacy and Tolerability of Prolonged Linezolid Therapy in the Treatment of Orthopedic Implant Infections. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Gómez, J.; Canovas, E.; Baños, V.; Martínez, L.; García, E.; Hernández-Torres, A.; Canteras, M.; Ruiz, J.; Medina, M.; Martínez, P.; et al. Linezolid plus Rifampin as a Salvage Therapy in Prosthetic Joint Infections Treated without Removing the Implant. Antimicrob. Agents Chemother. 2011, 55, 4308–4310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, N.; Hamilton, C.W. Efficacy and Safety of Linezolid for Gram-Positive Orthopedic Infections: A Prospective Case Series. Diagn. Microbiol. Infect. Dis. 2007, 59, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Cobo, J.; Lora-Tamayo, J.; Euba, G.; Jover-Sáenz, A.; Palomino, J.; del Toro, M.D.; Rodríguez-Pardo, D.; Riera, M.; Ariza, J.; Red Española para la Investigación en Patología Infecciosa (REIPI). Linezolid in Late-Chronic Prosthetic Joint Infection Caused by Gram-Positive Bacteria. Diagn. Microbiol. Infect. Dis. 2013, 76, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.; Pasquet, A.; Legout, L.; Beltrand, E.; Dubreuil, L.; Migaud, H.; Yazdanpanah, Y.; Senneville, E. Efficacy and Tolerance of Rifampicin-Linezolid Compared with Rifampicin-Cotrimoxazole Combinations in Prolonged Oral Therapy for Bone and Joint Infections. Clin. Microbiol. Infect. 2009, 15, 1163–1169. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.; Plachouras, D.; Giannitsioti, E.; Poulakou, G.; Giamarellou, H.; Kanellakopoulou, K. Efficacy and Tolerability of Linezolid in Chronic Osteomyelitis and Prosthetic Joint Infections: A Case-Control Study. J. Chemother. 2009, 21, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Morata, L.; Senneville, E.; Bernard, L.; Nguyen, S.; Buzelé, R.; Druon, J.; Tornero, E.; Mensa, J.; Soriano, A. A Retrospective Review of the Clinical Experience of Linezolid with or Without Rifampicin in Prosthetic Joint Infections Treated with Debridement and Implant Retention. Infect. Dis. Ther. 2014, 3, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senneville, E.; Legout, L.; Valette, M.; Yazdanpanah, Y.; Beltrand, E.; Caillaux, M.; Migaud, H.; Mouton, Y. Effectiveness and Tolerability of Prolonged Linezolid Treatment for Chronic Osteomyelitis: A Retrospective Study. Clin. Ther. 2006, 28, 1155–1163. [Google Scholar] [CrossRef]
- Bassetti, M.; Vitale, F.; Melica, G.; Righi, E.; Di Biagio, A.; Molfetta, L.; Pipino, F.; Cruciani, M.; Bassetti, D. Linezolid in the Treatment of Gram-Positive Prosthetic Joint Infections. J. Antimicrob. Chemother. 2005, 55, 387–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razonable, R.R.; Osmon, D.R.; Steckelberg, J.M. Linezolid Therapy for Orthopedic Infections. Mayo Clin. Proc. 2004, 79, 1137–1144. [Google Scholar] [CrossRef]
- Vercillo, M.; Patzakis, M.J.; Holtom, P.; Zalavras, C.G. Linezolid in the Treatment of Implant-Related Chronic Osteomyelitis. Clin. Orthop. Relat. Res. 2007, 461, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Oussedik, S.I.S.; Haddad, F.S. The Use of Linezolid in the Treatment of Infected Total Joint Arthroplasty. J. Arthroplast. 2008, 23, 273–278. [Google Scholar] [CrossRef]
- Benavent, E.; Morata, L.; Escrihuela-Vidal, F.; Reynaga, E.A.; Soldevila, L.; Albiach, L.; Pedro-Botet, M.L.; Padullés, A.; Soriano, A.; Murillo, O. Long-Term Use of Tedizolid in Osteoarticular Infections: Benefits among Oxazolidinone Drugs. Antibiotics 2021, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Ferry, T.; Batailler, C.; Conrad, A.; Triffault-Fillit, C.; Laurent, F.; Valour, F.; Chidiac, C.; Lyon BJI Study Group. Correction of Linezolid-Induced Myelotoxicity After Switch to Tedizolid in a Patient Requiring Suppressive Antimicrobial Therapy for Multidrug-Resistant Staphylococcus epidermidis Prosthetic-Joint Infection. Open Forum Infect. Dis. 2018, 5, ofy246. [Google Scholar] [CrossRef] [PubMed]
- Rana, B.; Butcher, I.; Grigoris, P.; Murnaghan, C.; Seaton, R.A.; Tobin, C.M. Linezolid Penetration into Osteo-Articular Tissues. J. Antimicrob. Chemother. 2002, 50, 747–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutscha-Lissberg, F.; Hebler, U.; Muhr, G.; Köller, M. Linezolid Penetration into Bone and Joint Tissues Infected with Methicillin-Resistant Staphylococci. Antimicrob. Agents Chemother. 2003, 47, 3964–3966. [Google Scholar] [CrossRef] [Green Version]
- Abad, L.; Tafani, V.; Tasse, J.; Josse, J.; Chidiac, C.; Lustig, S.; Ferry, T.; Diot, A.; Laurent, F.; Valour, F. Evaluation of the Ability of Linezolid and Tedizolid to Eradicate Intraosteoblastic and Biofilm-Embedded Staphylococcus aureus in the Bone and Joint Infection Setting. J. Antimicrob. Chemother. 2019, 74, 625–632. [Google Scholar] [CrossRef] [PubMed]
- El Haj, C.; Murillo, O.; Ribera, A.; Lloberas, N.; Gómez-Junyent, J.; Tubau, F.; Fontova, P.; Cabellos, C.; Ariza, J. Evaluation of Linezolid or Trimethoprim/Sulfamethoxazole in Combination with Rifampicin as Alternative Oral Treatments Based on an in Vitro Pharmacodynamic Model of Staphylococcal Biofilm. Int. J. Antimicrob. Agents 2018, 51, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Rappo, U.; Puttagunta, S.; Shevchenko, V.; Shevchenko, A.; Jandourek, A.; Gonzalez, P.L.; Suen, A.; Mas Casullo, V.; Melnick, D.; Miceli, R.; et al. Dalbavancin for the Treatment of Osteomyelitis in Adult Patients: A Randomized Clinical Trial of Efficacy and Safety. Open Forum Infect. Dis. 2019, 6, ofy331. [Google Scholar] [CrossRef] [PubMed]
- Veve, M.P.; Patel, N.; Smith, Z.A.; Yeager, S.D.; Wright, L.R.; Shorman, M.A. Comparison of Dalbavancin to Standard-of-Care for Outpatient Treatment of Invasive Gram-Positive Infections. Int. J. Antimicrob. Agents 2020, 56, 106210. [Google Scholar] [CrossRef] [PubMed]
- Graziani, A.L.; Lawson, L.A.; Gibson, G.A.; Steinberg, M.A.; MacGregor, R.R. Vancomycin Concentrations in Infected and Noninfected Human Bone. Antimicrob. Agents Chemother. 1988, 32, 1320–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bue, M.; Tøttrup, M.; Hanberg, P.; Langhoff, O.; Birke-Sørensen, H.; Thillemann, T.M.; Andersson, T.L.; Søballe, K. Bone and Subcutaneous Adipose Tissue Pharmacokinetics of Vancomycin in Total Knee Replacement Patients. Acta Orthop. 2018, 89, 95–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barberán, J. Management of Infections of Osteoarticular Prosthesis. Clin. Microbiol. Infect. 2006, 12 (Suppl. S3), 93–101. [Google Scholar] [CrossRef] [Green Version]
- Peeters, O.; Ferry, T.; Ader, F.; Boibieux, A.; Braun, E.; Bouaziz, A.; Karsenty, J.; Forestier, E.; Laurent, F.; Lustig, S.; et al. Teicoplanin-Based Antimicrobial Therapy in Staphylococcus aureus Bone and Joint Infection: Tolerance, Efficacy and Experience with Subcutaneous Administration. BMC Infect. Dis. 2016, 16, 622. [Google Scholar] [CrossRef] [Green Version]
- Pavoni, G.L.; Giannella, M.; Falcone, M.; Scorzolini, L.; Liberatore, M.; Carlesimo, B.; Serra, P.; Venditti, M. Conservative Medical Therapy of Prosthetic Joint Infections: Retrospective Analysis of an 8-Year Experience. Clin. Microbiol. Infect. 2004, 10, 831–837. [Google Scholar] [CrossRef] [Green Version]
- Claessens, J.; Roriz, M.; Merckx, R.; Baatsen, P.; Van Mellaert, L.; Van Eldere, J. Inefficacy of Vancomycin and Teicoplanin in Eradicating and Killing Staphylococcus epidermidis Biofilms in Vitro. Int. J. Antimicrob. Agents 2015, 45, 368–375. [Google Scholar] [CrossRef]
- Wilson, A.P.; Taylor, B.; Treasure, T.; Grüneberg, R.N.; Patton, K.; Felmingham, D.; Sturridge, M.F. Antibiotic Prophylaxis in Cardiac Surgery: Serum and Tissue Levels of Teicoplanin, Flucloxacillin and Tobramycin. J. Antimicrob. Chemother. 1988, 21, 201–212. [Google Scholar] [CrossRef]
- Nehrer, S.; Thalhammer, F.; Schwameis, E.; Breyer, S.; Kotz, R. Teicoplanin in the Prevention of Infection in Total Hip Replacement. Arch. Orthop. Trauma. Surg. 1998, 118, 32–36. [Google Scholar] [CrossRef]
- de Lalla, F.; Novelli, A.; Pellizzer, G.; Milocchi, F.; Viola, R.; Rigon, A.; Stecca, C.; Dal Pizzol, V.; Fallani, S.; Periti, P. Regional and Systemic Prophylaxis with Teicoplanin in Monolateral and Bilateral Total Knee Replacement Procedures: Study of Pharmacokinetics and Tissue Penetration. Antimicrob. Agents Chemother. 1993, 37, 2693–2698. [Google Scholar] [CrossRef] [Green Version]
- Lazzarini, L.; Novelli, A.; Marzano, N.; Timillero, L.; Fallani, S.; Viola, R.; de Lalla, F. Regional and Systemic Prophylaxis with Teicoplanin in Total Knee Arthroplasty: A Tissue Penetration Study. J. Arthroplast. 2003, 18, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, W.; Sendi, P. Role of Rifampin against Staphylococcal Biofilm Infections In Vitro, in Animal Models, and in Orthopedic-Device-Related Infections. Antimicrob. Agents Chemother. 2019, 63, e01746-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renz, N.; Trampuz, A.; Zimmerli, W. Controversy about the Role of Rifampin in Biofilm Infections: Is It Justified? Antibiotics 2021, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, W.; Widmer, A.F.; Blatter, M.; Frei, R.; Ochsner, P.E. Role of Rifampin for Treatment of Orthopedic Implant-Related Staphylococcal Infections: A Randomized Controlled Trial. Foreign-Body Infection (FBI) Study Group. JAMA 1998, 279, 1537–1541. [Google Scholar] [CrossRef] [Green Version]
- Karlsen, Ø.E.; Borgen, P.; Bragnes, B.; Figved, W.; Grøgaard, B.; Rydinge, J.; Sandberg, L.; Snorrason, F.; Wangen, H.; Witsøe, E.; et al. Rifampin Combination Therapy in Staphylococcal Prosthetic Joint Infections: A Randomized Controlled Trial. J. Orthop. Surg. Res. 2020, 15, 365. [Google Scholar] [CrossRef]
- Baldoni, D.; Furustrand Tafin, U.; Aeppli, S.; Angevaare, E.; Oliva, A.; Haschke, M.; Zimmerli, W.; Trampuz, A. Activity of Dalbavancin, Alone and in Combination with Rifampicin, against Meticillin-Resistant Staphylococcus aureus in a Foreign-Body Infection Model. Int. J. Antimicrob. Agents 2013, 42, 220–225. [Google Scholar] [CrossRef]
- Muller-Serieys, C.; Saleh Mghir, A.; Massias, L.; Fantin, B. Bactericidal Activity of the Combination of Levofloxacin with Rifampin in Experimental Prosthetic Knee Infection in Rabbits Due to Methicillin-Susceptible Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 2145–2148. [Google Scholar] [CrossRef] [Green Version]
- Landersdorfer, C.B.; Bulitta, J.B.; Kinzig, M.; Holzgrabe, U.; Sörgel, F. Penetration of Antibacterials into Bone: Pharmacokinetic, Pharmacodynamic and Bioanalytical Considerations. Clin. Pharm. 2009, 48, 89–124. [Google Scholar] [CrossRef]
- Sendi, P.; Zimmerli, W. Antimicrobial Treatment Concepts for Orthopaedic Device-Related Infection. Clin. Microbiol. Infect. 2012, 18, 1176–1184. [Google Scholar] [CrossRef] [Green Version]
- Lora-Tamayo, J.; Euba, G.; Cobo, J.; Horcajada, J.P.; Soriano, A.; Sandoval, E.; Pigrau, C.; Benito, N.; Falgueras, L.; Palomino, J.; et al. Short- versus Long-Duration Levofloxacin plus Rifampicin for Acute Staphylococcal Prosthetic Joint Infection Managed with Implant Retention: A Randomised Clinical Trial. Int. J. Antimicrob. Agents 2016, 48, 310–316. [Google Scholar] [CrossRef]
- Nguyen, S.; Robineau, O.; Titecat, M.; Blondiaux, N.; Valette, M.; Loiez, C.; Beltrand, E.; Migaud, H.; Senneville, E. Influence of Daily Dosage and Frequency of Administration of Rifampicin-Levofloxacin Therapy on Tolerance and Effectiveness in 154 Patients Treated for Prosthetic Joint Infections. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1675–1682. [Google Scholar] [CrossRef]
- Wouthuyzen-Bakker, M.; Tornero, E.; Morata, L.; Nannan Panday, P.V.; Jutte, P.C.; Bori, G.; Kampinga, G.A.; Soriano, A. Moxifloxacin plus Rifampin as an Alternative for Levofloxacin plus Rifampin in the Treatment of a Prosthetic Joint Infection with Staphylococcus aureus. Int. J. Antimicrob. Agents 2018, 51, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Fily, F.; Jolivet-Gougeon, A.; Polard, E.; Gicquel, T.; Dupont, M.; Verdier, M.C.; Arvieux, C. Moxifloxacin-Rifampicin Combination for the Treatment of Non-Staphylococcal Gram-Positive Orthopedic Implant-Related Infections. Med. Mal. Infect. 2019, 49, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Carmona, M.Á.; Muñoz-Gallego, I.; Viedma, E.; Lora-Tamayo, J.; Chaves, F. Intraosteoblastic Activity of Levofloxacin and Rifampin Alone and in Combination against Clinical Isolates of Meticillin-Susceptible Staphylococcus aureus Causing Prosthetic Joint Infection. Int. J. Antimicrob. Agents 2019, 54, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Rimmelé, T.; Boselli, E.; Breilh, D.; Djabarouti, S.; Bel, J.C.; Guyot, R.; Saux, M.C.; Allaouchiche, B. Diffusion of Levofloxacin into Bone and Synovial Tissues. J. Antimicrob. Chemother. 2004, 53, 533–535. [Google Scholar] [CrossRef] [Green Version]
- von Baum, H.; Böttcher, S.; Abel, R.; Gerner, H.J.; Sonntag, H.G. Tissue and Serum Concentrations of Levofloxacin in Orthopaedic Patients. Int. J. Antimicrob. Agents 2001, 18, 335–340. [Google Scholar] [CrossRef]
- Landersdorfer, C.B.; Kinzig, M.; Hennig, F.F.; Bulitta, J.B.; Holzgrabe, U.; Drusano, G.L.; Sörgel, F.; Gusinde, J. Penetration of Moxifloxacin into Bone Evaluated by Monte Carlo Simulation. Antimicrob. Agents Chemother. 2009, 53, 2074–2081. [Google Scholar] [CrossRef] [Green Version]
- Tsegka, K.G.; Voulgaris, G.L.; Kyriakidou, M.; Kapaskelis, A.; Falagas, M.E. Intravenous Fosfomycin for the Treatment of Patients with Bone and Joint Infections: A Review. Expert Rev. Anti Infect. Ther. 2021, 20, 33–43. [Google Scholar] [CrossRef]
- Schintler, M.V.; Traunmüller, F.; Metzler, J.; Kreuzwirt, G.; Spendel, S.; Mauric, O.; Popovic, M.; Scharnagl, E.; Joukhadar, C. High Fosfomycin Concentrations in Bone and Peripheral Soft Tissue in Diabetic Patients Presenting with Bacterial Foot Infection. J. Antimicrob. Chemother. 2009, 64, 574–578. [Google Scholar] [CrossRef] [Green Version]
- Pradier, M.; Robineau, O.; Boucher, A.; Titecat, M.; Blondiaux, N.; Valette, M.; Loïez, C.; Beltrand, E.; Nguyen, S.; Dézeque, H.; et al. Suppressive Antibiotic Therapy with Oral Tetracyclines for Prosthetic Joint Infections: A Retrospective Study of 78 Patients. Infection 2018, 46, 39–47. [Google Scholar] [CrossRef]
- Pradier, M.; Nguyen, S.; Robineau, O.; Titecat, M.; Blondiaux, N.; Valette, M.; Loïez, C.; Beltrand, E.; Dézeque, H.; Migaud, H.; et al. Suppressive Antibiotic Therapy with Oral Doxycycline for Staphylococcus aureus Prosthetic Joint Infection: A Retrospective Study of 39 Patients. Int. J. Antimicrob. Agents 2017, 50, 447–452. [Google Scholar] [CrossRef]
- Escudero-Sanchez, R.; Senneville, E.; Digumber, M.; Soriano, A.; Del Toro, M.D.; Bahamonde, A.; Del Pozo, J.L.; Guio, L.; Murillo, O.; Rico, A.; et al. Suppressive Antibiotic Therapy in Prosthetic Joint Infections: A Multicentre Cohort Study. Clin. Microbiol. Infect. 2020, 26, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Leijtens, B.; Weerwag, L.; Schreurs, B.W.; Kullberg, B.-J.; Rijnen, W. Clinical Outcome of Antibiotic Suppressive Therapy in Patients with a Prosthetic Joint Infection after Hip Replacement. J. Bone Jt. Infect. 2019, 4, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wouthuyzen-Bakker, M.; Nijman, J.M.; Kampinga, G.A.; van Assen, S.; Jutte, P.C. Efficacy of Antibiotic Suppressive Therapy in Patients with a Prosthetic Joint Infection. J. Bone Jt. Infect. 2017, 2, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deconinck, L.; Dinh, A.; Nich, C.; Tritz, T.; Matt, M.; Senard, O.; Bessis, S.; Bauer, T.; Rottman, M.; Salomon, J.; et al. Efficacy of Cotrimoxazole (Sulfamethoxazole-Trimethoprim) as a Salvage Therapy for the Treatment of Bone and Joint Infections (BJIs). PLoS ONE 2019, 14, e0224106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courjon, J.; Demonchy, E.; Cua, E.; Bernard, E.; Roger, P.-M. Efficacy and Safety of Clindamycin-Based Treatment for Bone and Joint Infections: A Cohort Study. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 2513–2518. [Google Scholar] [CrossRef] [PubMed]
- Zhuchenko, G.; Schmidt-Malan, S.; Patel, R. Planktonic and Biofilm Activity of Eravacycline against Staphylococci Isolated from Periprosthetic Joint Infections. Antimicrob. Agents Chemother. 2020, 64, e01304-20. [Google Scholar] [CrossRef]
- Dunne, M.W.; Puttagunta, S.; Sprenger, C.R.; Rubino, C.; Van Wart, S.; Baldassarre, J. Extended-Duration Dosing and Distribution of Dalbavancin into Bone and Articular Tissue. Antimicrob. Agents Chemother. 2015, 59, 1849–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cojutti, P.G.; Rinaldi, M.; Zamparini, E.; Rossi, N.; Tedeschi, S.; Conti, M.; Pea, F.; Viale, P. Population Pharmacokinetics of Dalbavancin and Dosing Consideration for Optimal Treatment of Adult Patients with Staphylococcal Osteoarticular Infections. Antimicrob. Agents Chemother. 2021, 65, e02260-20. [Google Scholar] [CrossRef] [PubMed]
- Cojutti, P.G.; Rinaldi, M.; Gatti, M.; Tedeschi, S.; Viale, P.; Pea, F. Usefulness of Therapeutic Drug Monitoring in Estimating the Duration of Dalbavancin Optimal Target Attainment in Staphylococcal Osteoarticular Infections: A Proof-of-Concept. Int. J. Antimicrob. Agents 2021, 58, 106445. [Google Scholar] [CrossRef] [PubMed]
- Cojutti, P.G.; Merelli, M.; Bassetti, M.; Pea, F. Proactive Therapeutic Drug Monitoring (TDM) May Be Helpful in Managing Long-Term Treatment with Linezolid Safely: Findings from a Monocentric, Prospective, Open-Label, Interventional Study. J. Antimicrob. Chemother. 2019, 74, 3588–3595. [Google Scholar] [CrossRef] [PubMed]
- Pea, F.; Viale, P.; Cojutti, P.; Del Pin, B.; Zamparini, E.; Furlanut, M. Therapeutic Drug Monitoring May Improve Safety Outcomes of Long-Term Treatment with Linezolid in Adult Patients. J. Antimicrob. Chemother. 2012, 67, 2034–2042. [Google Scholar] [CrossRef] [PubMed]
- Pea, F.; Cojutti, P.; Pagotto, A.; Cristini, F.; Furlanut, M.; Viale, P. Successful Long-Term Treatment of Cerebral Nocardiosis with Unexpectedly Low Doses of Linezolid in an Immunocompromised Patient Receiving Complex Polytherapy. Antimicrob. Agents Chemother. 2012, 56, 3438–3440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatti, M.; Fusaroli, M.; Raschi, E.; Moretti, U.; Poluzzi, E.; De Ponti, F. Serious Adverse Events with Tedizolid and Linezolid: Pharmacovigilance Insights through the FDA Adverse Event Reporting System. Expert Opin. Drug Saf. 2021, 20, 1421–1431. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Leone, S.; Noviello, S.; Ianniello, F.; Fiore, M.; Russo, M.; Foti, G.; Carpentieri, M.S.; Cellesi, C.; Zanelli, G.; et al. Outpatient Parenteral Antibiotic Therapy for Bone and Joint Infections: An Italian Multicenter Study. J. Chemother. 2007, 19, 417–422. [Google Scholar] [CrossRef]
- Allen, J.; Adams, K.; Thompson, F.; Cullen, L.; Barlow, G. Long-Term, Once-Weekly Outpatient Teicoplanin Use for Suppression of Chronic Prosthetic Joint Infection. Int. J. Antimicrob. Agents 2013, 41, 200–201. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Bianchin, M.; Raschi, E.; De Ponti, F. Assessing the Association between Fluoroquinolones and Emerging Adverse Drug Reactions Raised by Regulatory Agencies: An Umbrella Review. Eur. J. Intern. Med. 2020, 75, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, E.M.; McLaren, A.C.; Sculco, T.P.; Brause, B.; Bostrom, M.; Kates, S.L.; Parvizi, J.; Alt, V.; Arnold, W.V.; Carli, A.; et al. Adjuvant Antibiotic-loaded Bone Cement: Concerns with Current Use and Research to Make It Work. J Orthop Res 2021, 39, 227–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abosala, A.; Ali, M. The Use of Calcium Sulphate Beads in Periprosthetic Joint Infection, a Systematic Review. J. Bone Jt. Infect. 2020, 5, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Meo, D.; Ceccarelli, G.; Iaiani, G.; Lo Torto, F.; Ribuffo, D.; Persiani, P.; Villani, C. Clinical Application of Antibacterial Hydrogel and Coating in Orthopaedic and Traumatology Surgery. Gels 2021, 7, 126. [Google Scholar] [CrossRef] [PubMed]
- De Meo, D.; Cannari, F.M.; Petriello, L.; Persiani, P.; Villani, C. Gentamicin-Coated Tibia Nail in Fractures and Nonunion to Reduce Fracture-Related Infections: A Systematic Review. Molecules 2020, 25, 5471. [Google Scholar] [CrossRef] [PubMed]
- Bhimani, S.; Carli, A.; Sethuraman, A.; Yang, X.; Ross, F.P.; Bostrom, M.P. The Novel Antibiotic Dalbavancin Is Heat Stable, Elutes from PMMA Cement Spacers and Has Superior Antimicrobial Activity than Vancomycin in an in-Vitro Killing Assay of Staphylococcus aureus. 2017. Available online: http://www.ors.org/Transactions/63/1218.pdf (accessed on 10 January 2022).
- De Meo, D.; Calogero, V.; Are, L.; Cavallo, A.U.; Persiani, P.; Villani, C. Antibiotic-Loaded Hydrogel Coating to Reduce Early Postsurgical Infections in Aseptic Hip Revision Surgery: A Retrospective, Matched Case-Control Study. Microorganisms 2020, 8, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murad, M.H.; Asi, N.; Alsawas, M.; Alahdab, F. New Evidence Pyramid. Evid. Based Med. 2016, 21, 125–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatti, M.; Barnini, S.; Guarracino, F.; Parisio, E.M.; Spinicci, M.; Viaggi, B.; D’Arienzo, S.; Forni, S.; Galano, A.; Gemmi, F. Orthopaedic Implant-Associated Staphylococcal Infections: A Critical Reappraisal of Unmet Clinical Needs Associated with the Implementation of the Best Antibiotic Choice. Antibiotics 2022, 11, 406. https://doi.org/10.3390/antibiotics11030406
Gatti M, Barnini S, Guarracino F, Parisio EM, Spinicci M, Viaggi B, D’Arienzo S, Forni S, Galano A, Gemmi F. Orthopaedic Implant-Associated Staphylococcal Infections: A Critical Reappraisal of Unmet Clinical Needs Associated with the Implementation of the Best Antibiotic Choice. Antibiotics. 2022; 11(3):406. https://doi.org/10.3390/antibiotics11030406
Chicago/Turabian StyleGatti, Milo, Simona Barnini, Fabio Guarracino, Eva Maria Parisio, Michele Spinicci, Bruno Viaggi, Sara D’Arienzo, Silvia Forni, Angelo Galano, and Fabrizio Gemmi. 2022. "Orthopaedic Implant-Associated Staphylococcal Infections: A Critical Reappraisal of Unmet Clinical Needs Associated with the Implementation of the Best Antibiotic Choice" Antibiotics 11, no. 3: 406. https://doi.org/10.3390/antibiotics11030406
APA StyleGatti, M., Barnini, S., Guarracino, F., Parisio, E. M., Spinicci, M., Viaggi, B., D’Arienzo, S., Forni, S., Galano, A., & Gemmi, F. (2022). Orthopaedic Implant-Associated Staphylococcal Infections: A Critical Reappraisal of Unmet Clinical Needs Associated with the Implementation of the Best Antibiotic Choice. Antibiotics, 11(3), 406. https://doi.org/10.3390/antibiotics11030406