Impact of the Acceptance of the Recommendations Made by a Meropenem Stewardship Program in a University Hospital: A Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Demographics and the Basal Clinical Characteristics of Patients
2.2. Microbiological Data
2.3. Intervention Data
2.4. Outcomes
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newland, J.G.; Stach, L.M.; De Lurgio, S.A.; Hedican, E.; Yu, D.; Herigon, J.C.; Prasad, P.A.; Jackson, M.A.; Myers, A.L.; Zaoutis, T.E. Impact of a Prospective-Audit-With-Feedback Antimicrobial Stewardship Program at a Children’s Hospital. J. Pediatric Infect. Dis. Soc. 2012, 1, 179–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, S.H.; Ke, Y.F.; Chang, F.Y. National action plan to combat antimicrobial resistance in Taiwan. J. Microbiol. Immunol. Infect. 2014, 47, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Ingram, P.R.; Seet, J.M.; Budgeon, C.A.; Murray, R. Point-prevalence study of inappropriate antibiotic use at a tertiary Australian hospital. Intern. Med. J. 2012, 42, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Balkhy, H.H.; El-Saed, A.; El-Metwally, A.; Arabi, Y.M.; Aljohany, S.M.; Al Zaibag, M.; Baharoon, S.; Alothman, A.F. Antimicrobial consumption in five adult intensive care units: A 33-month surveillance study. Antimicrob. Resist. Infect. Control 2018, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Antibiotic Resistance Threats in The United States. US Dep Heal Hum Serv [Internet]. 2019; pp. 1–113. Available online: https://www.cdc.gov/drugresistance/biggest_threats.html (accessed on 20 July 2021).
- States, T.U. National strategy for combating antibiotic-resistant bacteria. Natl. Strateg. Action Plan Combat. Antibiot. Resist. Bact. 2015, 1–40. [Google Scholar]
- Dellit, T.H. Summary of the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Infect. Dis. Clin. Pract. 2007, 15, 263–264. [Google Scholar] [CrossRef] [Green Version]
- Légaré, F.; Labrecque, M.; Cauchon, M.; Castel, J.; Turcotte, S.; Grimshaw, J. Training family physicians in shared decision-making to reduce the overuse of antibiotics in acute respiratory infections: A cluster randomized trial. Cmaj 2012, 184, E726–E734. [Google Scholar] [CrossRef] [Green Version]
- Sunenshine, R.H.; Liedtke, L.A.; Jernigan, D.B.; Strausbaugh, L.J. Role of infectious diseases consultants in management of antimicrobial use in hospitals. Clin. Infect. Dis. 2004, 38, 934–938. [Google Scholar] [CrossRef] [Green Version]
- Craig, W.A. The pharmacology of meropenem, a new carbapenem antibiotic. Clin. Infect. Dis. 1997, 24 (Suppl. 2), 266–275. [Google Scholar] [CrossRef] [Green Version]
- Del Arco, A.; Tortajada, B.; de la Torre, J.; Olalla, J.; Prada, J.L.; Fernández, F.; Rivas, F.; García-Alegría, J.; Faus, V.; Montiel, N. The impact of an antimicrobial stewardship programme on the use of antimicrobials and the evolution of drug resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 34, 247–251. [Google Scholar] [CrossRef]
- Yo, C.H.; Lee, M.T.G.; Gi, W.T.; Chang, S.S.; Tsai, K.C.; Chen, S.C.; Lee, C.C. Prognostic determinants of community-acquired bloodstream infection in type 2 diabetic patients in ED. Am. J. Emerg. Med. 2014, 32, 1450–1454. [Google Scholar] [CrossRef] [PubMed]
- Eskesen, A.N.; Belle, M.A.; Blomfeldt, A. Predictors of one-year all-cause mortality and infection-related mortality in patients with Staphylococcus aureus bacteraemia. Infect. Dis. 2018, 50, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Sargenti, K.; Prytz, H.; Nilsson, E.; Kalaitzakis, E. Predictors of mortality among patients with compensated and decompensated liver cirrhosis: The role of bacterial infections and infection-related acute-on-chronic liver failure. Scand. J. Gastroenterol. 2015, 50, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Hernández, G.; Parra-Salcedo, F.; Ugarte-Martínez, P.; Contreras-Yáñez, I.; Ponce-de-León, A.; Pascual-Ramos, V. Sustained moderate-to-high disease activity and higher Charlson score are predictors of incidental serious infection events in RA patients treated with conventional disease-modifying anti-rheumatic drugs: A cohort study in the treat-to-target era. Clin. Exp. Rheumatol. 2016, 34, 261–269. [Google Scholar]
- Merino, E.; Caro, E.; Ramos, J.R.; Boix, V.; Gimeno, A.; Rodríguez, J.C.; Riera, G.; Más, P.; Sanchéz-Paya, J.; Reus, S.; et al. Impact of a stewardship program on bacteraemia in adult inpatients. Rev. Esp. Quimioter. 2017, 30, 257–263. [Google Scholar]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Scheer, C.S.; Fuchs, C.; Gründling, M.; Vollmer, M.; Bast, J.; Bohnert, J.A.; Zimmermann, K.; Hahnenkamp, K.; Rehberg, S.; Kuhn, S.O. Impact of antibiotic administration on blood culture positivity at the beginning of sepsis: A prospective clinical cohort study. Clin. Microbiol. Infect. 2019, 25, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.P.; Stenstrom, R.; Paquette, K.; Stabler, S.N.; Akhter, M.; Davidson, A.C.; Gavric, M.; Lawandi, A.; Jinah, R.; Saeed, Z.; et al. Blood Culture Results Before and After Antimicrobial Administration in Patients With Severe Manifestations of Sepsis: A Diagnostic Study. Ann. Intern. Med. 2019, 171, 547–554. [Google Scholar] [CrossRef]
- Leone, M.; Bechis, C.; Baumstarck, K.; Lefrant, J.Y.; Albanèse, J.; Jaber, S.; Lepape, A.; Constantin, J.M.; Papazian, L.; Bruder, N.; et al. De-escalation versus continuation of empirical antimicrobial treatment in severe sepsis: A multicenter non-blinded randomized noninferiority trial. Intensive Care Med. 2014, 40, 1399–1408. [Google Scholar] [CrossRef]
- Tabah, A.; Bassetti, M.; Kollef, M.H.; Zahar, J.R.; Paiva, J.A.; Timsit, J.F.; Roberts, J.A.; Schouten, J.; Giamarellou, H.; Rello, J.; et al. Antimicrobial de-escalation in critically ill patients: A position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patient. Intensive Care Med. 2020, 46, 245–265. [Google Scholar] [CrossRef]
- Van Prehn, J.; Kaiser, A.M.; van der Werff, S.D.; van Mansfeld, R.; Vandenbroucke-Grauls, C.M.J.E. Colonization sites in carriers of ESBL-producing Gram-negative bacteria. Antimicrob. Resist. Infect. Control 2018, 7, 4–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, A.D.; McGregor, J.C.; Johnson, J.A.; Strauss, S.M.; Moore, A.C.; Standiford, H.C.; Hedben, J.N.; Glenn Morris, J., Jr. Risk factors for colonization with extended-spectrum β-lactamase- producing bacteria and intensive care unit admission. Emerg. Infect. Dis. 2007, 13, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Gracia-Ahufinger, I.; Pérez-Nadales, E.; Causse, M.; Caston, J.J.; Guzman-Puche, J.; Torre-Giménez, J.; Kindelan, L.; et al. Risks of Infection and Mortality among Patients Colonized with Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Validation of Scores and Proposal for Management. Clin. Infect. Dis. 2018, 66, 1204–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vehreschild, M.J.G.T.; Hamprecht, A.; Peterson, L.; Schubert, S.; Häntschel, M.; Peter, S.; Schafhausen, P.; Rohde, H.; Lilienfeld-Toal, M.V.; Bekeredjian-Ding, I.; et al. A multicentre cohort study on colonization and infection with ESBL-producing Enterobacteriaceae in high-risk patients with haematological malignancies. J. Antimicrob. Chemother. 2014, 69, 3387–3392. [Google Scholar] [CrossRef]
- Russell, C.D.; Laurenson, I.F.; Evans, M.H.; Mackintosh, C.L. Tractable targets for meropenem-sparing antimicrobial stewardship interventions. JAC-Antimicrob. Resist. 2019, 1, dlz042. [Google Scholar] [CrossRef]
- Conlon-Bingham, G.M.; Hedderwick, S.A.; McKeating, C.M.; McKee, P.M.; McNally, J.C.; Lennon, L.M.; McGivern, O.; Lewis, K.; McKenna, D.; Lattyak, E.A.; et al. Preserving last resort antibiotics: A meropenem reduction strategy. Infect. Control Hosp. Epidemiol. 2021, 1–2. [Google Scholar] [CrossRef]
- Yahav, D.; Franceschini, E.; Koppel, F.; Turjeman, A.; Babich, T.; Bitterman, R.; Neuberger, A.; Ghanem-Zoubi, N.; Santoro, A.; Eliakim-Raz, N.; et al. Seven Versus 14 Days of Antibiotic Therapy for Uncomplicated Gram-negative Bacteremia: A Noninferiority Randomized Controlled Trial. Clin. Infect. Dis. 2019, 69, 1091–1098. [Google Scholar] [CrossRef]
- Ni Riain, U.; Tierney, M.; Doyle, C.; Vellinga, A.; Fleming, C.; Cormican, M. Targeted de-escalation rounds may effectively and safely reduce meropenem use. Ir. J. Med. Sci. 2017, 186, 729–732. [Google Scholar] [CrossRef]
- Chang, Y.Y.; Chen, H.P.; Lin, C.W.; Tang, J.J.; Hsu, T.Y.; Weng, Y.C.; Lee, Y.M.; Wang, W.S.; Lo, S.S. Implementation and outcomes of an antimicrobial stewardship program: Effectiveness of education. J. Chin. Med. Assoc. 2017, 80, 353–359. [Google Scholar] [CrossRef]
- García-Rodríguez, J.F.; Bardán-García, B.; Peña-Rodríguez, M.F.; Álvarez-Díaz, H.; Mariño-Callejo, A. Meropenem antimicrobial stewardship program: Clinical, economic, and antibiotic resistance impact. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 161–170. [Google Scholar] [CrossRef]
- Feinstein, A.R. The pre-therapeutic classification of co-morbidity in chronic disease. J. Chronic Dis. 1970, 23, 455–468. [Google Scholar] [CrossRef]
- Çelik, A.; Yaman, H.; Turan, S.; Kara, A.; Kara, F.; Zhu, B.; Qu, X.; Tao, Y.; Zhu, Z.; Dhokia, V.; et al. Guidelines for ATC classification and DDD assignment 2021. J. Mater. Process. Technol. 2018, 1, 1–8. [Google Scholar]
Total N = 96 | Accepted Audit (AA) N = 66 | Rejected Audit (RA) N = 30 | p Value | |
---|---|---|---|---|
Mean age, ± SD, years (range) | 67.5 ± 13.0 (39–98) | 66.6 ± 13.0 (39–92) | 69.5 ± 12.9 (42–98) | 0.31 |
Male Gender, no. (%) | 65 (67.7) | 42 (63.6) | 23 (76.7) | 0.21 |
Charlson index, median (Q1–Q3) | 6.0 (5.0–8.0) | 7.0 (5.0–9.0) | 6.0 (4.0–7.0) | 0.02 |
Department in charge, surgical, no. (%)- | 8 (8.3) | 8 (12.2) | 0 (0) | 0.06 |
Place of acquisition, no. (%) | ||||
Community | 16 (16.7) | 9 (13.6) | 7 (23.3) | 0.23 |
Heatlhcare related | 28 (29.1) | 18 (27.3) | 10 (33.3) | 0.63 |
Nosocomial | 52 (54.2) | 39 (59.1) | 13 (43.3) | 0.15 |
Bacteriemia, no. (%) | 1 (1.0) | 1 (1.5) | 0 (0) | 1 |
Infectious syndrome, no. (%) | ||||
Respiratory | 39 (40.6) | 24 (36.3) | 15 (50.0) | 0.21 |
Abdominal | 24 (25.0) | 18 (27.3) | 6 (20.0) | 0.44 |
Urinary | 10 (10.4) | 9 (13.6) | 1 (3.3) | 0.16 |
Skin and soft tissue | 7 (7.3) | 6 (9.0) | 1 (3.3) | 0.72 |
Bone and joint | 3 (3.2) | 2 (3.0) | 1 (3.3) | 0.68 |
Primary | 13 (13.5) | 7 (10.6) | 6 (20.0) | 0.14 |
Risk factors for MR * infection, no. (%) | ||||
Inpatient > 48 h last 2 months | 54 (56.3) | 36 (54.4) | 18 (60.0) | 0.61 |
Healthcare facility last 2 months | 6 (6.3) | 4 (6.1) | 2 (6.7) | 1 |
Antibiotic lasts 30 days | 57 (59.4) | 37 (56.1) | 20 (66.7) | 0.32 |
Admission days until ASP, median (Q1–Q3) | 8.0 (5.0–13.0) | 8.5 (5.0–13.0) | 6.5 (4.0–11.3) | 0.27 |
Meropenem DOT & until ASP, median (Q1–Q3) | 5.0 (4.0–7.8) | 5.0 (4.0–8.0) | 5.0 (3.8–6.3) | 0.7 |
Total meropenem DOT, median (Q1–Q3) | 8.0 (6.0–10.0) | 7.0 (5.0–9.0) | 10.0 (7.8–15.3) | <0.001 |
Total | Accepted Audit (AA) | Rejected Audit (RA) | p Value | |
---|---|---|---|---|
Infection site culture prior to meropenem, n°/total audits (%) | 90/96 (93.4) | 65/66 (98.5) | 25/30 (83.3) | 0.01 |
Isolation, n°/total cultures (%) | 49/90 (54.4) | 36/65 (54.5) | 13/25 (52.0) | 0.77 |
Gram-negative bacterial isolation —cases/total isolation—(%) | 36/49 (73.5) | 25/36 (69.4) | 11/13 (84.6) | 0.46 |
Special resistance mechanism, n°/total BGN isolation (%) | 4/36 (11.1) | 2/25 (8.0) | 2/11 (18.2) | 1 |
ESBL | 3/4 (75.0) | 1/2 (50.0) | 2/2 (100.0) | 1 |
AmpC | 1/4 (25.0) | 1/2 (50.0) | 0/2 (0) | 1 |
Carbapenem resistance | 0/4 (0) | 0/2 (0) | 0/2 (0) | - |
Screening cultures’ isolation, n°/total taken (%), at least one | 20/59 (33.9) | 15/33 (45.5) | 5/26 (19.2) | 0.03 |
Nasal | 1/20 (5.0) | 1/15 (6.7) | 0 (0) | - |
Inguinal | 12/20 (60.0) | 8/15 (53.3) | 4/5 (80.0) | 0.36 |
Perianal | 20/20 (100) | 15/15 (100.0) | 5/5(100.0) | 1.0 |
Screening cultures’ resistance, n°/total taken (%), at least one | 20/59 (33.9) | 15/33 (45.5) | 5/26 (19.2) | 0.03 |
ESBL | 12/20 (60.0) | 11/15 (73.3) | 1/5 (20.0) | 0.12 |
AmpC | 6/20 (30.0) | 3/15 (20.0) | 3/5 (60.0) | 0.07 |
Carbapenem resistance | 2/20 (10.0) | 1/15 (6.7) | 1/5 (20.0) | 0.44 |
Accepted Audit | Rejected Audit | p Value | |
---|---|---|---|
Reason and recommendation of meropenem audit: Unnecessary/Discontinuation of meropenem (UM), n°/UM (%) Excessively broad spectrum/De-escalate (OS), n°/OS (%) TOTAL, n°/total (%)— | 25 (83.3) 41 (62.2) 66 (68.7) | 5 (16.7) 25 (37.8) 30 (31.3) | 0.04 |
De-escalation recommedation: Carbapenem, ertapenem (CE), n°/CE (%) Non-Carbapenem (NC), n°/NC (%) TOTAL, n°/total (%) | 14 (100) 27 (51.9) 41 (62.2) | 0 (0) 25 (48.1) 25 (37.8) | 0.001 |
Total N = 96 | Accepted Group N = 66 | Rejected Group N = 30 | p Value | |
---|---|---|---|---|
Clinical outcomes | ||||
Inpatient mortality, n°/audits (%) | 12/96 (12.5) | 11/66 (16.4) | 1/30 (3.3) | 0.08 |
Infection-related | 4/12 (33.3) | 3/11 (27.3) | 1/1 (100) | 0.33 |
30-day mortality, n°/audits-mortality (%) | 6/84 (7.1) | 4/55 (7.3) | 2/29 (6.9) | 1.0 |
Infection-related, n°/30-day mortality | 2/6 (33.3) | 2/4 (50.0) | 0/2 (0) | 0.53 |
30-day readmission, n°/audits-mortality (%) | 26/84 (31.0) | 18/55 (32.7) | 8/29 (27.6) | 0.80 |
Infection-related, n°/30-day readmission | 16/26 (61.6) | 12/18 (66.7) | 4/8 (50.0) | 0.66 |
Clinical cure at end of meropenem treatment, n°/audits (%) | 84/96 (87.5) | 55/66 (83.3) | 29/30 (96.7) | 0.1 |
Total length of stay, median (Q1–Q3) (days) | 16.0 (10.3–28.5) | 15.0 (11.0–29.5) | 17.0 (9.0–27.5) | 0.89 |
Length of stay after audit-median (Q1–Q3) (days) | 6.0 (3.0–14.0) | 6.0 (2.0–11.8) | 7.0 (3.0–17.8) | 0.34 |
CD infection, n°. (%) | 7 (7.3) | 4 (6.1) | 3 (10.0) | 0.37 |
Carbapenem-resistant organism within 30 days of the start of carbapenem therapy, n°. (%) | 0 (0) | 0 (0) | 0 (0) | - |
Economic and consumption outcomes | ||||
DDD meropenem per 1000 patient-day, median (Q1–Q3) (days) | 0.042 (0.032–0.058) | 0.037 (0.030–0.051) | 0.054 (0.039–0.091) | <0.001 |
DOT meropenem per 1000 patient-day, median (Q1–Q3) (days) | 0.034 (0.026–0.043) | 0.030 (0.022–0.039) | 0.043 (0.034–0.066) | <0.001 |
Hospitalization charges, median (Q1–Q3), € | 17,077.0 (9320.3–34,261.3) | 14,903.0 (8995.1–34,285.0) | 18,412.9 (9947.4–35,449.2) | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alba Fernandez, J.; del Pozo, J.L.; Leiva, J.; Fernandez-Alonso, M.; Aquerreta, I.; Aldaz, A.; Blanco, A.; Yuste, J.R. Impact of the Acceptance of the Recommendations Made by a Meropenem Stewardship Program in a University Hospital: A Pilot Study. Antibiotics 2022, 11, 330. https://doi.org/10.3390/antibiotics11030330
Alba Fernandez J, del Pozo JL, Leiva J, Fernandez-Alonso M, Aquerreta I, Aldaz A, Blanco A, Yuste JR. Impact of the Acceptance of the Recommendations Made by a Meropenem Stewardship Program in a University Hospital: A Pilot Study. Antibiotics. 2022; 11(3):330. https://doi.org/10.3390/antibiotics11030330
Chicago/Turabian StyleAlba Fernandez, Jorge, Jose Luis del Pozo, Jose Leiva, Mirian Fernandez-Alonso, Irene Aquerreta, Azucena Aldaz, Andres Blanco, and Jose Ramón Yuste. 2022. "Impact of the Acceptance of the Recommendations Made by a Meropenem Stewardship Program in a University Hospital: A Pilot Study" Antibiotics 11, no. 3: 330. https://doi.org/10.3390/antibiotics11030330
APA StyleAlba Fernandez, J., del Pozo, J. L., Leiva, J., Fernandez-Alonso, M., Aquerreta, I., Aldaz, A., Blanco, A., & Yuste, J. R. (2022). Impact of the Acceptance of the Recommendations Made by a Meropenem Stewardship Program in a University Hospital: A Pilot Study. Antibiotics, 11(3), 330. https://doi.org/10.3390/antibiotics11030330