Resistome Diversity and Dissemination of WHO Priority Antibiotic Resistant Pathogens in Lebanese Estuaries
Abstract
:1. Introduction
2. Results
2.1. Bacterial Culture
2.2. Susceptibility Profiles
2.3. Targeted Resistome Assessment by High-Throughput qPCR
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collignon, P.; Beggs, J.J.; Walsh, T.; Gandra, S.; Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: A univariate and multivariable analysis. Lancet Planet. Health 2018, 2, e398–e405. [Google Scholar] [CrossRef]
- Pieri, A.; Aschbacher, R.; Fasani, G.; Mariella, J.; Brusetti, L.; Pagani, E.; Sartelli, M.; Pagani, L. Country income is only one of the tiles: The global journey of antimicrobial resistance among humans, animals, and environment. Antibiotics 2020, 9, 473. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, K.; Molinier, L.; Hallit, S.; Sartelli, M.; Catena, F.; Coccolini, F.; Hardcastle, T.C.; Roques, C.; Salameh, P. Drivers of Antibiotic Resistance Transmission in Low- and Middle-Income Countries from a “One Health” Perspective—A Review. Antibiotics 2020, 9, 372. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.B.; Arnipalli, S.R.; Ziouzenkova, O. Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiotics 2020, 9, 688. [Google Scholar] [CrossRef] [PubMed]
- Goulas, A.; Belhadi, D.; Descamps, A.; Andremont, A.; Benoit, P.; Courtois, S.; Dagot, C.; Grall, N.; Makowski, D.; Nazaret, S.; et al. How effective are strategies to control the dissemination of antibiotic resistance in the environment? A systematic review. Environ. Evid. 2020, 9, 4. [Google Scholar] [CrossRef]
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef]
- Chatterjee, A.; Modarai, M.; Naylor, N.; Boyd, S.E.; Atun, R.; Barlow, J.; Holmes, A.H.; Johnson, A.; Robotham, J. Quantifying drivers of antibiotic resistance in humans: A systematic review. Lancet Infect. Dis. 2018, 18, e368–e378. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, A.; Power, A.; Hansen, M.; Brandt, K.; Piliposian, G.; Appleby, P.; O’Neill, P.; Jones, R.; Sierocinski, P.; Koskella, B.; et al. Heavy metal pollution and co-selection for antibiotic resistance: A microbial palaeontology approach. Environ. Int. 2019, 132, 105117. [Google Scholar] [CrossRef]
- Xiang, Q.; Chen, Q.-L.; Zhu, D.; An, X.-L.; Yang, X.-R.; Su, J.-Q.; Qiao, M.; Zhu, Y.-G. Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities. Environ. Pollut. 2018, 235, 525–533. [Google Scholar] [CrossRef]
- Buelow, E.; Rico, A.; Gaschet, M.; Lourenço, J.; Kennedy, S.P.; Wiest, L.; Ploy, M.-C.; Dagot, C. Hospital discharges in urban sanitation systems: Long-term monitoring of wastewater resistome and microbiota in relationship to their eco-exposome. Water Res. X 2020, 7, 100045. [Google Scholar] [CrossRef]
- Pazda, M.; Kumirska, J.; Stepnowski, P.; Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems—A review. Sci. Total Environ. 2019, 697, 134023. [Google Scholar] [CrossRef]
- Aubertheau, E.; Stalder, T.; Mondamert, L.; Ploy, M.-C.; Dagot, C.; Labanowski, J. Impact of wastewater treatment plant discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance. Sci. Total Environ. 2017, 579, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Pärnänen, K.M.M.; Narciso-Da-Rocha, C.; Kneis, D.; Berendonk, T.U.; Cacace, D.; Do, T.T.; Elpers, C.; Fatta-Kassinos, D.; Henriques, I.; Jaeger, T.; et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 2019, 5, eaau9124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buelow, E.; Ploy, M.-C.; Dagot, C. Role of pollution on the selection of antibiotic resistance and bacterial pathogens in the environment. Curr. Opin. Microbiol. 2021, 64, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Dandachi, I.; Chaddad, A.; Hanna, J.; Matta, J.; Daoud, Z. Understanding the Epidemiology of Multi-Drug Resistant Gram-Negative Bacilli in the Middle East Using a One Health Approach. Front. Microbiol. 2019, 10, 1941. [Google Scholar] [CrossRef] [Green Version]
- Jammoul, A.; El Darra, N. Evaluation of Antibiotics Residues in Chicken Meat Samples in Lebanon. Antibiotics 2019, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Vaz-Moreira, I.; Ferreira, C.; Nunes, O.C.; Manaia, C.M. Sources of Antibiotic Resistance: Zoonotic, Human, Environment. Antibiot. Drug Resist. 2019, 10, 211–238. [Google Scholar]
- Lundborg, C.S.; Tamhankar, A.J. Antibiotic residues in the environment of South East Asia. BMJ 2017, 358, j2440. [Google Scholar] [CrossRef] [Green Version]
- Triggiano, F.; Calia, C.; Diella, G.; Montagna, M.T.; De Giglio, O.; Caggiano, G. The Role of Urban Wastewater in the Environmental Transmission of Antimicrobial Resistance: The Current Situation in Italy (2010–2019). Microorganisms 2020, 8, 1567. [Google Scholar] [CrossRef]
- Cacace, D.; Fatta-Kassinos, D.; Manaia, C.M.; Cytryn, E.; Kreuzinger, N.; Rizzo, L.; Karaolia, P.; Schwartz, T.; Alexander, J.; Merlin, C.; et al. Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings. Water Res. 2019, 162, 320–330. [Google Scholar] [CrossRef]
- Huijbers, P.M.; Flach, C.-F.; Larsson, D.J. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int. 2019, 130, 104880. [Google Scholar] [CrossRef] [PubMed]
- An, X.-L.; Wang, J.-Y.; Pu, Q.; Li, H.; Pan, T.; Li, H.-Q.; Pan, F.-X.; Su, J.-Q. High-throughput diagnosis of human pathogens and fecal contamination in marine recreational water. Environ. Res. 2020, 190, 109982. [Google Scholar] [CrossRef] [PubMed]
- Karkman, A.; Pärnänen, K.; Larsson, D.G.J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. 2019, 10, 80. [Google Scholar] [CrossRef]
- Guo, X.; Feng, C.; Gu, E.; Tian, C.; Shen, Z. Spatial distribution, source apportionment and risk assessment of antibiotics in the surface water and sediments of the Yangtze Estuary. Sci. Total Environ. 2019, 671, 548–557. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, A.; Dai, T.; Li, F.; Xie, H.; Chen, L.; Wen, D. Cell-free DNA: A Neglected Source for Antibiotic Resistance Genes Spreading from WWTPs. Environ. Sci. Technol. 2017, 52, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-P.; Liu, X.; Niu, Z.-S.; Lu, D.-P.; Zhao, S.; Sun, X.-L.; Wu, J.-Y.; Chen, Y.-R.; Tou, F.-Y.; Hou, L.; et al. Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China. Environ. Pollut. 2018, 242, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lau, H.K.; Lee, T.; Lau, D.K.; Payne, J. In Silico Serotyping Based on Whole-Genome Sequencing Improves the Accuracy of Shigella Identification. Appl. Environ. Microbiol. 2019, 85, e00165-19. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Su, Y.; Xi, H.; Chen, X.; Xie, B. Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res. 2019, 158, 11–21. [Google Scholar] [CrossRef]
- Wang, S.; Xue, N.; Li, W.; Zhang, D.; Pan, X.; Luo, Y. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters. Sci. Total Environ. 2020, 708, 134594. [Google Scholar] [CrossRef]
- Kazour, M.; Jemaa, S.; Issa, C.; Khalaf, G.; Amara, R. Microplastics pollution along the Lebanese coast (Eastern Mediterranean Basin): Occurrence in surface water, sediments and biota samples. Sci. Total Environ. 2019, 696, 133933. [Google Scholar] [CrossRef]
- Plaza, J.J.G.; Blau, K.; Milaković, M.; Jurina, T.; Smalla, K.; Udiković-Kolić, N. Antibiotic-manufacturing sites are hot-spots for the release and spread of antibiotic resistance genes and mobile genetic elements in receiving aquatic environments. Environ. Int. 2019, 130, 104735. [Google Scholar] [CrossRef] [PubMed]
- Dagher, L.A.; Hassan, J.; Kharroubi, S.; Jaafar, H.; Kassem, I.I. Nationwide Assessment of Water Quality in Rivers across Lebanon by Quantifying Fecal Indicators Densities and Profiling Antibiotic Resistance of Escherichia coli. Antibiotics 2021, 10, 883. [Google Scholar] [CrossRef] [PubMed]
- Verner, D.; Ashwill, M.; Christensen, J.; McDonnell, R.; Redwood, J.; Jomaa, I.; Saade, M.; Massad, R.; Chehade, A.; Bitar, A.; et al. Droughts and Agriculture in Lebanon; World Bank: Washington, DC, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Council for Development & Reconstruction. National Physical Master Plan of the Lebanese Territory; Council for Development & Reconstruction: Beirut, Lebanon, 2005.
- Merhabi, F.; Gomez, E.; Amine, H.; Rosain, D.; Halwani, J.; Fenet, H. Occurrence, distribution, and ecological risk assessment of emerging and legacy contaminants in the Kadicha river in Lebanon. Environ. Sci. Pollut. Res. 2021, 28, 62499–62518. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.; Abukhalaf, M.; del Lungo, A. Assessment of Treated Wastewater for Agriculture in Lebanon; FAO: Rome, Italy, 2016. [Google Scholar]
- WHO. Lebanon Water Quality Survey; WHO/UNICEF: Geneva, Switzerland, 2019. [Google Scholar]
- Yassin, N. 101Facts & Figures, Issam Fares Institute for Public Policy and International Affairs; American University of Beirut: Beirut, Lebanon, 2018. [Google Scholar]
- Fayad, A. Evaluation of the Snow Water Resources in Mount Lebanon Using Observations and Modelling; Université Paul Sabatier-Toulouse III: Toulouse, France, 2017. [Google Scholar]
- Aujoulat, F.; Ragot, R.; Toubiana, M.; Bancon-Montigny, C.; Monfort, P.; Salles, C.; Masnou, A.; Delpoux, S.; Rio, M.; Tournoud, M.; et al. Environmental antimicrobial resistance in a small urban Mediterranean river: A focus on endemic beta-lactamases in clinically relevant bacteria. Water 2021, 13, 2010. [Google Scholar] [CrossRef]
- Blanco-Picazo, P.; Roscales, G.; Toribio-Avedillo, D.; Gómez-Gómez, C.; Avila, C.; Ballesté, E.; Muniesa, M.; Rodríguez-Rubio, L. Antibiotic resistance genes in phage particles from antarctic and mediterranean seawater ecosystems. Microorganisms 2020, 8, 1293. [Google Scholar] [CrossRef]
- Zhang, B.; Qin, S.; Guan, X.; Jiang, K.; Jiang, M.; Liu, F. Distribution of Antibiotic Resistance Genes in Karst River and Its Ecological Risk. Water Res. 2021, 203, 117507. [Google Scholar] [CrossRef]
- Che, Y.; Yang, Y.; Xu, X.; Břinda, K.; Polz, M.F.; Hanage, W.P.; Zhang, T. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc. Natl. Acad. Sci. USA 2021, 118, e2008731118. [Google Scholar] [CrossRef]
- Yoo, K.; Lee, G. Investigation of the Prevalence of Antibiotic Resistance Genes According to the Wastewater Treatment Scale Using Metagenomic Analysis. Antibiotics 2021, 10, 188. [Google Scholar] [CrossRef]
- Sciencedirect. Tetracycline. 2021. Available online: https://www.sciencedirect.com/topics/chemistry/tetracycline (accessed on 19 February 2022).
- Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in food and feeding stuffs: From regulation to analytical methods, bacterial resistance, and environmental and health implications. J. Anal. Methods Chem. 2017, 2017, 1315497. [Google Scholar] [CrossRef]
- Nadimpalli, M.; Delarocque-Astagneau, E.; Love, D.C.; Price, L.B.; Huynh, B.-T.; Collard, J.-M.; Lay, K.S.; Borand, L.; Ndir, A.; Walsh, T.; et al. Combating Global Antibiotic Resistance: Emerging One Health Concerns in Lower- and Middle-Income Countries. Clin. Infect. Dis. 2018, 66, 963–969. [Google Scholar] [CrossRef]
- McInnes, R.S.; Uz-Zaman, H.; Alam, I.T.; Ho, S.F.S.; Moran, R.A.; Clemens, J.D.; Islam, S.; van Schaik, W. Metagenome-Wide Analysis of Rural and Urban Surface Waters and Sediments in Bangladesh Identifies Human Waste as a Driver of Antibiotic Resistance. mSystems 2021, 6, e0013721. [Google Scholar] [CrossRef] [PubMed]
- Moritz, C.F.; Snyder, R.E.; Riley, L.W.; Immke, D.W.; Greenfield, B.K. Antimicrobial Drug-Resistant Gram-Negative Saprophytic Bacteria Isolated from Ambient, Near-Shore Sediments of an Urbanized Estuary: Absence of β-Lactamase Drug-Resistance Genes. Antibiotics 2020, 9, 400. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.; Cerceo, E. Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting. Antibiotics 2020, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.; Caniça, M.; Capelo, J.L.; Igrejas, G.; Poeta, P. Diversity and genetic lineages of environmental staphylococci: A surface water overview. FEMS Microbiol. Ecol. 2020, 96, fiaa191. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-C.; Tao, C.-W.; Hsu, B.-M.; Yang, Y.-Y.; Tseng, Y.-C.; Huang, T.-Y.; Huang, S.-W.; Kuo, Y.-J.; Chen, J.-S. Multidrug-resistance in methicillin-resistant Staphylococcus aureus (MRSA) isolated from a subtropical river contaminated by nearby livestock industries. Ecotoxicol. Environ. Saf. 2020, 200, 110724. [Google Scholar] [CrossRef]
- Ramessar, K.; Olaniran, A.O. Antibiogram and molecular characterization of methicillin-resistant Staphylococcus aureus recovered from treated wastewater effluent and receiving surface water in Durban, South Africa. World J. Microbiol. Biotechnol. 2019, 35, 142. [Google Scholar] [CrossRef]
- Hammer-Dedet, F.; Jumas-Bilak, E.; Licznar-Fajardo, P. The Hydric Environment: A Hub for Clinically Relevant Carbapenemase Encoding Genes. Antibiotics 2020, 9, 699. [Google Scholar] [CrossRef]
- Singh, R.; Singh, A.P.; Kumar, S.; Giri, B.S.; Kim, K.-H. Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies. J. Clean. Prod. 2019, 234, 1484–1505. [Google Scholar] [CrossRef]
- Andraos, C.; Najem, W. Multi-model Approach for Reducing Uncertainties in Rainfall-Runoff Models. In Advances in Hydroinformatics; Springer: Singapore, 2020; pp. 545–557. [Google Scholar] [CrossRef]
- Baalbaki, R.; Nassar, J.; Salloum, S.; Shihadeh, A.L.; Lakkis, I.; Saliba, N.A. Comparison of atmospheric polycyclic aromatic hydrocarbon levels in three urban areas in Lebanon. Atmospheric Environ. 2018, 179, 260–267. [Google Scholar] [CrossRef]
- Shaban, A. Water Resources of Lebanon; Springer Science Publisher: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Buelow, E.; Bayjanov, J.R.; Majoor, E.; Willems, R.; Bonten, M.J.M.; Schmitt, H.; van Schaik, W. Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system. FEMS Microbiol. Ecol. 2018, 94. [Google Scholar] [CrossRef]
River | Enterobacterales | Pseudomonas spp. | MRSA | ||
---|---|---|---|---|---|
Species in Spring (CFU/mL) | Species in Winter (CFU/mL) | Species in Spring (CFU/mL) | Species in Winter (CFU/mL) | In Spring (CFU/mL) | |
Janoubi | Escherichia coli (7) | Pseudomonas aeruginosa (10) Pseudomonas putida (10) Pseudomonas fluorescens (5) | |||
Aarqa | Enterobacter cloacae (1) Klebsiella pneumoniae (5) Hafnia alvei (2) Serratia marcescens (1) Serratia liquefaciens (2) Salmonella choleraesuis (1) Providencia rettgeri (1) Serratia rubidaea (1) Klebsiella oxytoca (1) Pantoea spp. (16) | Klebsiella pneumoniae (50) | Pseudomonas luteola (14) Pseudomonas fluorescens (1) Pseudomonas putida (1) | (11) | |
Damour | Escherichia coli (2) | Pseudomonas luteola (1) | |||
Ostuene | Enterobacter cloacae (2) Hafnia alvei (2) | Pseudomonas luteola (7) Pseudomonas putida (1) | (1) | ||
Zahrani | Serratia liquefaciens (3) | ||||
Kaleb | Pseudomonas luteola (2) Pseudomonas horizihabitans (1) | ||||
Bared | Pseudomons putida (3) Pseudomonas fluorescens (1) | ||||
Beirut | Enterobacter cancerogenus (2) Serratia marcescens (1) Klebsiella oxytoca (1) | Hafnia alvei (104) | Pseudomonas luteola (104) | Pseudomonas aeruginosa (1) | |
Qadicha | Serratia marcescens (2) Hafnia alvei (1) Cedecea lepagei (1) | Pseudomonas luteola (1) | |||
Awali | Enterobacter amnigenus (5) Escherichia coli (2) | Pseudomonas fluorescens (3) Pseudomonas aeruginosa (10) | (12) |
Enterobacterales | Pseudomonas | |||
---|---|---|---|---|
Spring | Winter | Spring | Winter | |
Cefepime | 16/27 (59%) | 6/6 (100%) | 6/31 (19%) | 5/8 (63%) |
Imipenem | 2/27 (7%) | 0/6 (0) | 3/31 (10%) | 0/8 (0) |
Ceftazidime | 17/27 (63%) | 5/6 (83%) | 6/31 (19%) | 5/8 (63%) |
Piperacillin–tazobactam | 6/27 (22%) | 4/6 (67%) | 3/31 (10%) | 4/8 (50%) |
Gentamicin | 5/27 (19%) | 67 (17%) | 0/31 (0) | 1/8 (13%) |
Amikacin | 2/27 (7%) | 1/6 (17%) | 2/31 (6%) | 1/8 (13%) |
Aztreonam | 21/27 (78%) | 6/6 (100%) | 27/31 (87%) | 8/8 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hobeika, W.; Gaschet, M.; Ploy, M.-C.; Buelow, E.; Sarkis, D.K.; Dagot, C. Resistome Diversity and Dissemination of WHO Priority Antibiotic Resistant Pathogens in Lebanese Estuaries. Antibiotics 2022, 11, 306. https://doi.org/10.3390/antibiotics11030306
Hobeika W, Gaschet M, Ploy M-C, Buelow E, Sarkis DK, Dagot C. Resistome Diversity and Dissemination of WHO Priority Antibiotic Resistant Pathogens in Lebanese Estuaries. Antibiotics. 2022; 11(3):306. https://doi.org/10.3390/antibiotics11030306
Chicago/Turabian StyleHobeika, Wadad, Margaux Gaschet, Marie-Cécile Ploy, Elena Buelow, Dolla Karam Sarkis, and Christophe Dagot. 2022. "Resistome Diversity and Dissemination of WHO Priority Antibiotic Resistant Pathogens in Lebanese Estuaries" Antibiotics 11, no. 3: 306. https://doi.org/10.3390/antibiotics11030306
APA StyleHobeika, W., Gaschet, M., Ploy, M. -C., Buelow, E., Sarkis, D. K., & Dagot, C. (2022). Resistome Diversity and Dissemination of WHO Priority Antibiotic Resistant Pathogens in Lebanese Estuaries. Antibiotics, 11(3), 306. https://doi.org/10.3390/antibiotics11030306