Antibacterial Activity of Solanum torvum Leaf Extract and Its Synergistic Effect with Oxacillin against Methicillin-Resistant Staphyloccoci Isolated from Dogs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Preparation and Extraction
2.2. Bacterial Strains and Identification
2.3. Disk Diffusion Tests
2.4. Microdilution Broth Susceptibility Assay
2.5. Synergistic Interaction Analysis
2.6. Statistical Analyses
3. Results and Discussion
3.1. Resistance Profiles of Bacterial Strains
3.2. Phytochemical Components of Leaf Extract
3.3. Minimum Inhibitory Concentration (MIC) and Synergistic Interaction Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Argemi, X.; Hansmann, Y.; Prola, K.; Prévost, G. Coagulase-Negative Staphylococci Pathogenomics. Int. J. Mol. Sci. 2019, 20, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kmieciak, W.; Szewczyk, E.M. Are zoonotic Staphylococcus pseudintermedius strains a growing threat for humans? Folia Microbiol. 2018, 63, 743–747. [Google Scholar] [CrossRef] [Green Version]
- Feßler, A.T.; Schuenemann, R.; Kadlec, K.; Hensel, V.; Brombach, J.; Murugaiyan, J.; Oechtering, G.; Burgener, I.A.; Schwarz, S. Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) among employees and in the environment of a small animal hospital. Vet. Microbiol. 2018, 221, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Díez, G.; López, R.; Sánchez-Díaz, A.M.; Turrientes, M.C.; Baquero, M.R.; Luque, R.; Maroto, A.; Fernández, C.; Ayllón, T. Epidemiology of the colonization and acquisition of methicillin-resistant staphylococci and vancomycin-resistant enterococci in dogs hospitalized in a clinic veterinary hospital in Spain. Comp. Immunol. Microbiol. Infect. Dis. 2020, 72, 101501. [Google Scholar] [CrossRef] [PubMed]
- Loncaric, I.; Tichy, A.; Handler, S.; Szostak, M.P.; Tickert, M.; Diab-Elschahawi, M.; Spergser, J.; Künzel, F. Prevalence of methicillin-resistant Staphylococcus sp. (MRS) in different companion animals and determination of risk factors for colonization with MRS. Antibiotics 2019, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Gold, R.M.; Cohen, N.D.; Lawhon, S.D. Amikacin resistance in Staphylococcus pseudintermedius isolated from dogs. J. Clin. Microbiol. 2014, 52, 3641–3646. [Google Scholar] [CrossRef] [Green Version]
- Kizerwetter-Świda, M.; Chrobak-Chmiel, D.; Rzewuska, M. High-level mupirocin resistance in methicillin-resistant staphylococci isolated from dogs and cats. BMC Vet. Res. 2019, 15, 238. [Google Scholar] [CrossRef]
- Moodley, A.; Damborg, P.; Nielsen, S.S. Antimicrobial resistance in methicillin susceptible and methicillin resistant Staphylococcus pseudintermedius of canine origin: Literature review from 1980 to 2013. Vet. Microbiol. 2014, 171, 337–341. [Google Scholar] [CrossRef]
- Gandhi, G.R.; Ignacimuthu, S.; Paulraj, M.G. Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats. Food Chem. Toxicol. 2011, 49, 2725–2733. [Google Scholar] [CrossRef]
- Chah, K.F.; Muko, K.N.; Oboegbulem, S.I. Antimicrobial activity of methanolic extract of Solanum torvum fruit. Fitoterapia 2000, 71, 187–189. [Google Scholar] [CrossRef]
- Bari, M.; Islam, W.; Khan, A.; Mandal, A. Antibacterial and antifungal activity of Solanum torvum (Solanaceae). Int. J. Agric. Biol. 2010, 12, 386–390. [Google Scholar]
- Naimon, N.; Pongchairerk, U.; Suebkhampet, A. Phytochemical analysis and antibacterial activity of ethanolic leaf extract of solanum torvum Sw. against pathogenic bacteria. Kasetsart J. (Natl. Sci.) 2015, 49, 516–523. [Google Scholar]
- Arai, R.; Tominaga, K.; Wu, M.; Okura, M.; Ito, K.; Okamura, N.; Onishi, H.; Osaki, M.; Sugimura, Y.; Yoshiyama, M.; et al. Diversity of Melissococcus plutonius from honeybee larvae in Japan and experimental reproduction of European foulbrood with cultured atypical isolates. PLoS ONE 2012, 7, e33708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Murakami, K.; Minamide, W.; Wada, K.; Nakamura, E.; Teraoka, H.; Watanabe, S. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J. Clin. Microbiol. 1991, 29, 2240–2244. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; ISBN 978-1-68440-067-6. [Google Scholar]
- Omokhua, A.G.; Ondua, M.; Van Staden, J.; McGaw, L.J. Synergistic activity of extracts of three South African alien invasive weeds combined with conventional antibiotics against selected opportunistic pathogens. S. Afr. J. Bot. 2019, 124, 251–257. [Google Scholar] [CrossRef]
- Mun, S.H.; Joung, D.K.; Kim, Y.S.; Kang, O.H.; Kim, S.B.; Seo, Y.S.; Kim, Y.C.; Lee, D.S.; Shin, D.W.; Kweon, K.T.; et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 2013, 20, 714–718. [Google Scholar] [CrossRef]
- May, E.R.; Hnilica, K.A.; Frank, L.A.; Jones, R.D.; Bemis, D.A. Isolation of Staphylococcus schleiferi from healthy dogs and dogs with otitis, pyoderma, or both. J. Am. Vet. Med. Assoc. 2005, 227, 928–931. [Google Scholar] [CrossRef]
- McManus, B.A.; Coleman, D.C.; Deasy, E.C.; Brennan, G.I.; O’Connell, B.; Monecke, S.; Ehricht, R.; Leggett, B.; Leonard, N.; Shore, A.C. Comparative Genotypes, Staphylococcal Cassette Chromosome mec (SCCmec) Genes and Antimicrobial Resistance amongst Staphylococcus epidermidis and Staphylococcus haemolyticus Isolates from Infections in Humans and Companion Animals. PLoS ONE 2015, 10, e0138079. [Google Scholar]
- Wang, N.; Neilan, A.M.; Klompas, M. Staphylococcus intermedius infections: Case report and literature review. Infect. Dis. Rep. 2013, 5, e3. [Google Scholar] [CrossRef] [Green Version]
- Bhooshan, S.; Negi, V.; Khatri, P.K. Staphylococcus pseudintermedius: An undocumented, emerging pathogen in humans. GMS Hyg. Infect. Control 2020, 15, Doc32. [Google Scholar] [PubMed]
- Rafailidis, P.I.; Kofteridis, D. Proposed amendments regarding the definitions of multidrug-resistant and extensively drug-resistant bacteria. Expert Rev. Anti-Infect. Ther. 2021, 14, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Han, J.I.; Yang, C.H.; Park, H.M. Prevalence and risk factors of Staphylococcus spp. carriage among dogs and their owners: A cross-sectional study. Vet. J. 2016, 212, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Jaabir, M.S.M.; Vigneshwaran, R.; Ehtisham Ul Hassan, T.M.; Kumar, S.S. Study on the antimicrobial activity of ethanolic extract of the fruits of Solanum torvum and its phytochemical analysis by GC-MS. Biomed. Pharmacol. J. 2010, 3, 117–121. [Google Scholar]
- Joshua, P.E.; Anosike, C.J.; Asomadu, R.O.; Ekpo, D.E.; Uhuo, E.N.; Nwodo, O.F.C. Bioassay-guided fractionation, phospholipase A2-inhibitory activity and structure elucidation of compounds from leaves of Schumanniophyton magnificum. Pharm. Biol. 2020, 58, 1069–1076. [Google Scholar] [CrossRef]
- Fernandes, C.P.; Corrêa, A.L.; Lobo, J.F.; Caramel, O.P.; de Almeida, F.B.; Castro, E.S.; Souza, K.F.; Burth, P.; Amorim, L.M.; Santos, M.G.; et al. Triterpene esters and biological activities from edible fruits of Manilkara subsericea (Mart.) Dubard, Sapotaceae. BioMed Res. Int. 2013, 2013, 280810. [Google Scholar] [CrossRef] [Green Version]
- Musa, A.M.; Ibrahim, M.A.; Aliyu, A.B.; Abdullahi, M.S.; Tajuddeen, N.; Ibrahim, H.; Oyewale, A.O. Chemical composition and antimicrobial activity of hexane leaf extract of Anisopus mannii (Asclepiadaceae). J. Intercult. Ethnopharmacol. 2015, 4, 129–133. [Google Scholar] [CrossRef]
- Hussain, A.; Rather, M.A.; Shah, A.M.; Bhat, Z.S.; Shah, A.; Ahmad, Z.; Parvaiz Hassan, Q. Antituberculotic activity of actinobacteria isolated from the rare habitats. Lett. Appl. Microbiol. 2017, 65, 256–264. [Google Scholar] [CrossRef]
- Girija, S.; Duraipandiyan, V.; Kuppusamy, P.S.; Gajendran, H.; Rajagopal, R. Chromatographic Characterization and GC-MS Evaluation of the Bioactive Constituents with Antimicrobial Potential from the Pigmented Ink of Loligo duvauceli. Int. Sch. Res. Not. 2014, 2014, 820745. [Google Scholar] [CrossRef]
- Sunita, A.; Kumar, G.; Meena, S. Gas chromatography-mass spectroscopy analysis of root of an economically important plant, Cenchrus ciliaris L. from Thar desert, Rajasthan (India). Asian J. Pharm. Clin. Res. 2017, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Jalalvand, A.R.; Zhaleh, M.; Goorani, S.; Zangeneh, M.M.; Seydi, N.; Zangeneh, A.; Moradi, R. Chemical characterization and antioxidant, cytotoxic, antibacterial, and antifungal properties of ethanolic extract of Allium saralicum R.M. Fritsch leaves rich in linolenic acid, methyl ester. J. Photochem. Photobiol. B 2019, 192, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.B.; Alimova, Y.; Myers, T.M.; Ebersole, J.L. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch. Oral Biol. 2011, 56, 650–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaji, M.; Dhanapal, T.; Vinayagam, S.; Balakumar, B. Anticancer, antioxidant activity and GC-MS analysis of selected micro algal members of chlorophyceae. Int. J. Pharm. Sci. Res. 2017, 8, 3302–3314. [Google Scholar]
- Krishnaveni, M.; Dhanalakshmi, R.; Nandhini, N. GC-MS Analysis of phytchemicals,Fatty acid Profile, Antimicrobial Activity of Gossypium Seeds. Int. J. Pharm. Sci. Rev. Res. 2014, 27, 273–276. [Google Scholar]
- Dubey, P.; Jayant, S.; Srivastava, N. Preliminary phytochemical screening, FTIR and GC-MS analyses of aqueous, ethanolic and methanolic extracts of stem of Tinospora cordifolia (Willd.) Miers for search of antidiabetic compounds. Ann. Phytomed. 2016, 8, 2020–2024. [Google Scholar] [CrossRef]
- Mannaa, M.; Kim, K.D. Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens Against Aspergillus and Penicillium spp. Predominant in Stored Rice Grains: Study II. Mycobiology 2018, 46, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Mariastuti, H.D.; Listiyowati, S.R.I.; Wahyudi, A.T. Antifungal activity of soybean rhizosphere actinomycetes producing bioactive compounds against Fusarium oxysporum. Biodiversitas 2018, 19, 2127–2133. [Google Scholar] [CrossRef]
- Abhishek, R.U.; Thippeswamy, S.; Manjunath, K.; Mohana, D.C. Antifungal and antimycotoxigenic potency of Solanum torvum Swartz. leaf extract: Isolation and identification of compound active against mycotoxigenic strains of Aspergillus flavus and Fusarium verticillioides. J. Appl. Microbiol. 2015, 119, 1624–1636. [Google Scholar] [CrossRef] [Green Version]
- Nguta, J.M.; Appiah-Opong, R.; Nyarko, A.K.; Yeboah-Manu, D.; Addo, P.G.; Otchere, I.; Kissi-Twum, A. Antimycobacterial and cytotoxic activity of selected medicinal plant extracts. J. Ethnopharmacol. 2016, 182, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.M.; Nguyen, N.Y.T.; Chau, N.T.N.; Nguyen, A.B.T.; Tran, V.K.T.; Hoang, V.; Le, T.M.; Wang, H.-C.; Yen, C.-H. Bioassay-Guided Discovery of Potential Partial Extracts with Cytotoxic Effects on Liver Cancer Cells from Vietnamese Medicinal Herbs. Processes 2021, 9, 1956. [Google Scholar] [CrossRef]
- Yousaf, Z.; Wang, Y.; Baydoun, E. Phytochemistry and pharmacological studies on Solanum torvum Swartz. J. App. Pharm. Sci. 2013, 3, 152–160. [Google Scholar]
- Chakraborty, S.; Afaq, N.; Singh, N.; Majumdar, S. Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus. J. Integr. Med. 2018, 16, 350–357. [Google Scholar] [CrossRef]
- Kuok, C.F.; Hoi, S.O.; Hoi, C.F.; Chan, C.H.; Fong, I.H.; Ngok, C.K.; Meng, L.R.; Fong, P. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Exp. Biol. Med. 2017, 242, 731–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiatkowski, P.; Łopusiewicz, Ł.; Pruss, A.; Kostek, M.; Sienkiewicz, M.; Bonikowski, R.; Wojciechowska-Koszko, I.; Dołęgowska, B. Antibacterial activity of selected essential oil compounds alone and in combination with β-lactam antibiotics against MRSA strains. Int. J. Mol. Sci. 2020, 21, 7106. [Google Scholar] [CrossRef] [PubMed]
Isolate | Bacterial Species Identified by 16s rDNA Sequencing | Similarity (%)/ Completeness (%) | Source | Resistant Profiles |
---|---|---|---|---|
DN 2 | Staphylococcus schleiferi subsp. schleiferi | 99.86/100 | Head | CIP, TE, OX |
DN 10 1 | Staphylococcus epidermidis | 100/100 | Head | DA, E, TE, OX |
DN 11 1 | Staphylococcus intermedius | 99.93/100 | Mouth | CIP, DA, E, SXT, TE, OX |
DN 18 | Staphylococcus epidermidis | 100/100 | Nasal cavities | DA, E, TE, OX |
DN 40 | Staphylococcus intermedius | 99.93/100 | Mouth | CIP, DA, E, SXT, TE, OX |
DN 41 | Staphylococcus intermedius | 99.93/100 | Nasal cavities | CIP, DA, E, SXT, TE, OX |
DN 73 | Staphylococcus pseudintermedius | 100/99.5 | Mouth | CIP, DA, E, SXT, TE, OX |
QC strain | Staphylococcus aureus ATCC25923 | - | - | - |
Peak No. | Chemical Compound | Formula | Retention Time (min) | Area (%) | Biological Activity |
---|---|---|---|---|---|
1 | Tetradecane | C14H30 | 26.28 | 0.90 | Antimicrobial [30] |
2 | Octadecane | C18H38 | 38.25 | 1.58 | Antimicrobial [30] |
3 | Heptadecane, 8-methyl- | C18H38 | 49.45 | 1.87 | Anticancer, pest repellent, sex pheromone [31] |
4 | Neophytadiene | C20H38 | 51.30 | 4.58 | Antioxidant, antibacterial, antifungal [32] |
5 | Hexadecanoic acid | C16H32O2 | 59.13 | 8.63 | Antibacterial, anti-inflammatory, antioxidant [33,34] |
6 | Hexadecanoic acid, ethyl ester | C18H36O2 | 59.44 | 11.13 | Antibacterial, anti-inflammatory [26] |
7 | Linoleic acid ethyl ester | C20H36O2 | 67.15 | 6.07 | Antibacterial, antifungal [35] |
8 | 9, 12, 15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)- | C20H34O2 | 67.40 | 7.47 | Anti-inflammatory, antimicrobial, antioxidant [28] |
9 | Heptadecanoic acid, 15-methyl-, ethyl ester | C20H40O2 | 68.82 | 4.52 | Antidiabetic, antioxidant [36] |
10 | Neophytadiene | C20H38 | 69.66 | 1.85 | Antioxidant, antibacterial, antifungal [32] |
11 | 5-Methyl-2-phenyl-1H-Indole | C15H13N | 83.62 | 5.05 | Antimicrobial, antifungal [37] |
12 | 1,1-Dicyano-2-methyl-4-(p-cyanophenyl) propene | C13H9N3 | 84.65 | 6.47 | Antifungal, insecticidal [38] |
Isolate | Bacterial Strains | MBC | MIC Alone | MIC Combination | FIC Index | Interpretation | |||
---|---|---|---|---|---|---|---|---|---|
Oxacillin (mg/L) | Extract (mg/mL) | Oxacillin (mg/L) | Extract (mg/mL) | Oxacillin (mg/L) | Extract (mg/mL) | ||||
DN 2 | S. schleiferi subsp. schleiferi | 8 | 64 | 2 | 16 | 0.5 | 8 | 0.75 | Partial synergy |
DN 10 1 | S. epidermidis | 64 | 32 | 64 | 4 | 64 | 2 | 1.5 | Indifference |
DN 11 1 | S. intermedius | 256 | 8 | 256 | 4 | 128 | 1 | 0.75 | Partial synergy |
DN 18 | S. epidermidis | 128 | 32 | 64 | 8 | 2 | 2 | 0.28 | Synergistic |
DN 40 | S. intermedius | 512 | 16 | 512 | 2 | 128 | 2 | 1.25 | Indifference |
DN 41 | S. intermedius | 512 | 16 | 256 | 4 | 128 | 2 | 1 | Additive |
DN 73 | S. pseudintermedius | 2 | 32 | 2 | 4 | 0.5 | 1 | 0.5 | Synergy |
Control | S. aureus ATCC25923 | 1 | 16 | 0.5 | 16 | 0.5 | 8 | 1.5 | Indifference |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khunbutsri, D.; Naimon, N.; Satchasataporn, K.; Inthong, N.; Kaewmongkol, S.; Sutjarit, S.; Setthawongsin, C.; Meekhanon, N. Antibacterial Activity of Solanum torvum Leaf Extract and Its Synergistic Effect with Oxacillin against Methicillin-Resistant Staphyloccoci Isolated from Dogs. Antibiotics 2022, 11, 302. https://doi.org/10.3390/antibiotics11030302
Khunbutsri D, Naimon N, Satchasataporn K, Inthong N, Kaewmongkol S, Sutjarit S, Setthawongsin C, Meekhanon N. Antibacterial Activity of Solanum torvum Leaf Extract and Its Synergistic Effect with Oxacillin against Methicillin-Resistant Staphyloccoci Isolated from Dogs. Antibiotics. 2022; 11(3):302. https://doi.org/10.3390/antibiotics11030302
Chicago/Turabian StyleKhunbutsri, Duangdaow, Nattakarn Naimon, Khomson Satchasataporn, Natnaree Inthong, Sarawan Kaewmongkol, Samak Sutjarit, Chanokchon Setthawongsin, and Nattakan Meekhanon. 2022. "Antibacterial Activity of Solanum torvum Leaf Extract and Its Synergistic Effect with Oxacillin against Methicillin-Resistant Staphyloccoci Isolated from Dogs" Antibiotics 11, no. 3: 302. https://doi.org/10.3390/antibiotics11030302
APA StyleKhunbutsri, D., Naimon, N., Satchasataporn, K., Inthong, N., Kaewmongkol, S., Sutjarit, S., Setthawongsin, C., & Meekhanon, N. (2022). Antibacterial Activity of Solanum torvum Leaf Extract and Its Synergistic Effect with Oxacillin against Methicillin-Resistant Staphyloccoci Isolated from Dogs. Antibiotics, 11(3), 302. https://doi.org/10.3390/antibiotics11030302