Repurposing Disulfiram as an Antimicrobial Agent in Topical Infections
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antibiotic Susceptibility Testing
2.2. Ex Vivo Skin Absorption Experiment
2.3. Quantification of Disulfiram in Skin
2.3.1. Quantification of D in SC Using the Tape-Stripping Technique
2.3.2. Disulfiram Concentration Retained in the Dermatomized Skin
2.4. In Vitro Cytotoxicity Evaluation
2.5. Functional Analysis of Expressed Genes
3. Materials and Methods
3.1. Materials
3.2. Antibiotic Susceptibility Testing
3.3. Production of Disulfiram Emulsion
3.4. Ex Vivo Skin Absorption Experiment
3.5. Quantification of Disulfiram in Skin after Permeation Experiments
3.5.1. Determination of Pig Skin Density
3.5.2. Tape-Stripping Study
3.5.3. Determination of the Concentration Retained in the Dermatomized Skin
3.6. In Vitro Cytotoxicity Evaluation
3.7. Microarrays and Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williamson, D.A.; Carter, G.P.; Howden, B.P. Current and emerging topical antibacterials and antiseptics: Agents, action, and resistance patterns. Clin. Microbiol. Rev. 2017, 30, 827–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandyopadhyay, D. Topical Antibacterials in Dermatology. Indian J. Dermatol. 2021, 66, 117. [Google Scholar] [CrossRef] [PubMed]
- Bessa, G.R.; Machado, D.C.; Weber, M.B.; D’Azevedo, P.A.; Quinto, V.P.; Lipnharski, C.; Bonamigo, R.R. Staphylococcus aureus resistance to topical antimicrobials in atopic dermatitis. An. Bras. Dermatol. 2016, 91, 604–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonamonte, D.; De Marco, A.; Giuffrida, R.; Conforti, C.; Barlusconi, C.; Foti, C.; Romita, P. Topical antibiotics in the dermatological clinical practice: Indications, efficacy, and adverse effects. Dermatol. Ther. 2020, 33. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.P.; Schultz, M.B.; Baines, S.L.; Heffernan, H.; Tiong, A.; Pham, P.H.; Monk, I.R.; Stinear, T.P.; Howden, B.P.; Williamson, D.A. Topical Antibiotic Use Coselects for the Carriage of Mobile Antimicrobials in Staphylococcus aureus. Antimicrob. Agents Chemother. 2018, 62, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hirose, Y.; Yamaguchi, M.; Sumitomo, T.; Nakata, M.; Hanada, T.; Okuzaki, D.; Motooka, D.; Mori, Y.; Kawasaki, H.; Coady, A.; et al. Streptococcus pyogenes upregulates arginine catabolism to exert its pathogenesis on the skin surface. Cell Rep. 2021, 34, 108924. [Google Scholar] [CrossRef]
- Muhaj, F.F.; George, S.J.; Tyring, S.K. Bacterial antimicrobial resistance and dermatological ramifications*. Br. J. Dermatol. 2022, 187, 12–20. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 1–18. [Google Scholar] [CrossRef]
- Thakare, R.; Shukla, M.; Kaul, G.; Dasgupta, A.; Chopra, S. Repurposing disulfiram for treatment of Staphylococcus aureus infections. Int. J. Antimicrob. Agents 2019, 53, 709–715. [Google Scholar] [CrossRef]
- Lu, C.; Li, X.; Ren, Y.; Zhang, X. Disulfiram: A novel repurposed drug for cancer therapy. Cancer Chemother. Pharmacol. 2021, 87, 159–172. [Google Scholar] [CrossRef]
- Karamanakos, P.N.; Pappas, P.; Boumba, V.A.; Thomas, C.; Malamas, M.; Vougiouklakis, T.; Marselos, M.; Weiner, H. Pharmaceutical Agents Known to Produce Disulfiram-Like Reaction: Effects on Hepatic Ethanol Metabolism and Brain Monoamines. Int. J. Toxicol. 2007, 26, 423–432. [Google Scholar] [CrossRef]
- Landegren, J.; Borglund, E.; Storgards, K. Treatment of scabies with disulfiram and benzyl benzoate emulsion: A controlled study. Acta Derm. Venereol. 1979, 59, 274–276. [Google Scholar] [PubMed]
- Meneguello, J.E.; Murase, L.S.; de Souza, J.V.P.; de Oliveira, C.G.; Ghiraldi-Lopes, L.D.; Teixeira, J.J.V.; de Lima Scodro, R.B.; Ferracioli, K.R.C.; Siqueira, V.L.D.; Campanerut-Sá, P.A.Z.; et al. Systematic review of disulfiram as an antibacterial agent: What is the evidence? Int. J. Antimicrob. Agents 2022, 59, 106578. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Wu, C.; Wang, L.; Chen, Z.S.; Cui, W. The combination of disulfiram and copper for cancer treatment. Drug Discov. Today 2020, 25, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Garg, T.; Chopra, S.; Dasgupta, A. Repurposing disulfiram to target infections caused by non-tuberculous mycobacteria. J. Antimicrob. Chemother. 2019, 74, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Sauna, Z.E.; Shukla, S.; Ambudkar, S.V. Disulfiram, an old drug with new potential therapeutic uses for human cancers and fungal infections. Mol. BioSyst. 2005, 1, 127. [Google Scholar] [CrossRef]
- Long, T.E. Repurposing thiram and disulfiram as antibacterial agents for multidrug-resistant staphylococcus aureus infections. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Frazier, K.R.; Moore, J.A.; Long, T.E. Antibacterial activity of disulfiram and its metabolites. J. Appl. Microbiol. 2019, 126, 79–86. [Google Scholar] [CrossRef]
- Weinstein, M.P.; Patel, J.B.; Bobenchik, A.M.; Campeau, S.; Cullen, S.K.; Galas, M.F.; Gold, H.; Humphries, R.M.; Kirn, T.J.; Lewis Ii, J.S.; et al. M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI supplement for global application. Performance Standards for Antimicrobial Susceptibility Testing Performance Standards for Antimicrobial Susceptibility Testing. 2020. Available online: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf (accessed on 25 January 2022).
- Daniels, R.; Mellroth, P.; Bernsel, A.; Neiers, F.; Normark, S.; Von Heijne, G.; Henriques-Normark, B. Disulfide bond formation and cysteine exclusion in gram-positive bacteria. J. Biol. Chem. 2010, 285, 3300–3309. [Google Scholar] [CrossRef] [Green Version]
- Argüello, J.M.; Raimunda, D.; Padilla-Benavides, T. Mechanisms of copper homeostasis in bacteria. Front. Cell. Infect. Microbiol. 2013, 4, 73. [Google Scholar] [CrossRef]
- Cathcart, G.R.A.; Quinn, D.; Greer, B.; Harriott, P.; Lynas, J.F.; Gilmore, B.F.; Walker, B. Novel inhibitors of the Pseudomonas aeruginosa virulence factor LasB: A potential therapeutic approach for the attenuation of virulence mechanisms in pseudomonal infection. Antimicrob. Agents Chemother. 2011, 55, 2670–2678. [Google Scholar] [CrossRef] [Green Version]
- Neupane, R.; Boddu, S.H.S.; Renukuntla, J.; Babu, R.J.; Tiwari, A.K. Alternatives to Biological Skin in Permeation Studies: Current Trends and Possibilities. Pharmaceutics 2020, 12, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lajarin-reinares, M.; Martinez-esteve, E.; Pena-rodr, E.; Cañellas-santos, M.; Fernandez-campos, F. The Efficacy and Biopharmaceutical Properties of a Fixed-Dose Combination of Disulfiram and Benzyl Benzoate. Int. J. Mol. Sci. 2022, 23, 10969. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Cantrell, F.L. Disulfiram. Encycl. Toxicol. Third Ed. 2014, 208–209. [Google Scholar] [CrossRef]
- Touitou, E.; Meidan, V.M.; Horwitz, E. Methods for quantitative determination of drug localized in the skin. J. Control. Release 1998, 56, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Niles, A.L.; Moravec, R.A.; Riss, T.L. In Vitro Viability and Cytotoxicity Testing and Same-Well Multi-Parametric Combinations for High Throughput Screening. Curr. Chem. Genomics 2009, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, L.; Mitjans, M.; Infante, M.R.; Vinardell, M.P. Assessment of the Potential Skin Irritation of Lysine-Derivative Anionic Surfactants Using Mouse Fibroblasts and Human Keratinocytes as an Alternative to Animal Testing. Pharm. Res. 2004, 1, 1637–1641. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K.; Kim, D.B.; Kim, J.I.; Kim, P.Y. In vitro cytotoxicity tests on cultured human skin fibroblasts to predict skin irritation potential of surfactants. Toxicol. Vitr. 2000, 14, 345–349. [Google Scholar] [CrossRef]
- Zha, J.; Chen, F.; Dong, H.; Shi, P.; Yao, Y.; Zhang, Y.; Li, R.; Wang, S.; Li, P.; Wang, W.; et al. Disulfiram targeting lymphoid malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibition. J. Transl. Med. 2014, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Weyermann, J.; Lochmann, D.; Zimmer, A. A practical note on the use of cytotoxicity assays. Int. J. Pharm. 2005, 288, 369–376. [Google Scholar] [CrossRef]
- Pena-Rodríguez, E.; Mata-Ventosa, A.; Garcia-Vega, L.; Pérez-Torras, S.; Fernández-Campos, F. The physicochemical, biopharmaceutical, and in vitro efficacy properties of freeze-dried dexamethasone-loaded lipomers. Pharmaceutics 2021, 13, 1322. [Google Scholar] [CrossRef]
- Garle, M.J.; Fentem, J.H.; Fry, J.R. In vitro cytotoxicity tests for the prediction of acute toxicity in vivo. Toxicol. Vitr. 1994, 8, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information Disulfiram: Chemical and physical properties. PubChem Compound Summary. CID 3117. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Disulfiram. (accessed on 24 July 2022).
- Thum, T.; Galuppo, P.; Wolf, C.; Fiedler, J.; Kneitz, S.; Van Laake, L.W.; Doevendans, P.A.; Mummery, C.L.; Borlak, J.; Haverich, A.; et al. MicroRNAs in the human heart: A clue to fetal gene reprogramming in heart failure. Circulation 2007, 116, 258–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzi, F.; Coletta, M.; Bettuzzi, S. Chapter 2-Clusterin (CLU): From One Gene and Two Transcripts to Many Proteins. Clusterin 2009, 104, 9–23. [Google Scholar] [CrossRef]
- Jackson, A.C.; Liu, J.; Vallanat, B.; Jones, C.; Nelms, M.D.; Patlewicz, G.; Corton, J.C. Identification of novel activators of the metal responsive transcription factor (MTF-1) using a gene expression biomarker in a microarray compendium. Metallomics 2020, 12, 1400–1415. [Google Scholar] [CrossRef] [PubMed]
- Allensworth, J.L.; Evans, M.K.; Bertucci, F.; Aldrich, A.J.; Festa, R.A.; Finetti, P.; Ueno, N.T.; Safi, R.; Mcdonnell, D.P.; Thiele, D.J.; et al. Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer. Mol. Oncol. 2015, 9, 1155–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Du, C.; Kang, J.; Wang, J. Cu2+ is required for pyrrolidine dithiocarbamate to inhibit histone acetylation and induce human leukemia cell apoptosis. Chem. Biol. Interact. 2008, 171, 26–36. [Google Scholar] [CrossRef]
- Guo, X.; Xu, B.; Pandey, S.; Goessl, E.; Brown, J.; Armesilla, A.L.; Darling, J.L.; Wang, W. Disulfiram/copper complex inhibiting NFκB activity and potentiating cytotoxic effect of gemcitabine on colon and breast cancer cell lines. Cancer Lett. 2010, 290, 104–113. [Google Scholar] [CrossRef]
- Wiggins, H.L.; Wymant, J.M.; Solfa, F.; Hiscox, S.E.; Taylor, K.M.; Westwell, A.D.; Jones, A.T. Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells. Biochem. Pharmacol. 2015, 93, 332. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Peng, F.; Cui, Q.C.; Daniel, K.G.; Orlu, S.; Liu, J.; Dou, Q.P. Inhibition of prostate cancer cellular proteasome activity by a pyrrolidine dithiocarbamate-copper complex is associated with suppression of proliferation and induction of apoptosis. Front. Biosci. 2005, 10, 2932–2939. [Google Scholar] [CrossRef]
- Wickström, M.; Danielsson, K.; Rickardson, L.; Gullbo, J.; Nygren, P.; Isaksson, A.; Larsson, R.; Lövborg, H. Pharmacological profiling of disulfiram using human tumor cell lines and human tumor cells from patients. Biochem. Pharmacol. 2007, 73, 25–33. [Google Scholar] [CrossRef]
- Abraham, N.M.; Lamlertthon, S.; Fowler, V.G.; Jefferson, K.K. Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: Role for clumping factor B. J. Med. Microbiol. 2012, 61, 1062. [Google Scholar] [CrossRef] [PubMed]
Species | MIC | |||||
---|---|---|---|---|---|---|
Disulfiram | Clindamycin | Gentamicin | ||||
(µg/mL) | (µM) | (µg/mL) | (µM) | (µg/mL) | (µM) | |
Streptococcus pyogenes | 32 | 108 | 0.125 | 1 | -- | -- |
Staphylococcus aureus | 8 | 27 | -- | -- | 0.125 | 0.262 |
Pseudomonas aeruginosa | >64 | >216 | -- | -- | 0.250 | 0.523 |
Strip | Mean (mg) | SD |
---|---|---|
1 | 0.43 | 0.26 |
2 | 0.39 | 0.20 |
3–7 | 0.68 | 0.18 |
8–12 | 0.39 | 0.16 |
13–17 | 0.23 | 0.06 |
18–20 | 0.07 | 0.00 |
Gen Symbol | Gen Description | (D) Raw | (Control) Raw | Ratio |
---|---|---|---|---|
CLU|MIR6843 | clusterin|microRNA6843 | 312.08 | 106.16 | 3.08 |
CCDC138 | Coiled-coil domain-containing protein 138 | 82.23 | 48.90 | 1.75 |
MT1F | Metallothionein-1F | 3379.27 | 2011.00 | 1.75 |
DNAH14 | Dynein axonemal heavy chain 14 | 60.23 | 35.91 | 1.69 |
ZNF483 | Zinc finger protein 483 | 77.93 | 46.19 | 1.69 |
WDR78 | Dynein axonemal intermediate chain 4 | 80.69 | 53.16 | 1.71 |
BVES-AS1 | BVESantisenseRNA1 | 59.32 | 35.94 | 1.66 |
ALG6 | Dolichyl pyrophosphate Man9GlcNAc2 alpha-1,3-glucosyltransferase | 85.31 | 49.07 | 1.65 |
RASSF6 | Ras association domain-containing protein 6 | 52.74 | 33.33 | 1.64 |
DOCK11 | Dedicator of cytokinesis protein 11 | 161.39 | 107.55 | 1.64 |
MNS1 | Meiosis-specific nuclear structural protein 1 | 129.81 | 88.17 | 1.61 |
PAIP2|CTB-43P18.1 | Poly(A)bindingproteininteractingprotein2 | 128.98 | 84.64 | 1.57 |
CNTRL | Centriolin | 78.00 | 48.35 | 1.59 |
SGOL2 | Shugoshin 2 | 186.99 | 117.74 | 1.59 |
NUP133 | Nuclear pore complex protein Nup133 | 161.03 | 99.01 | 1.57 |
ZNF780A | Zinc finger protein 780A | 105.86 | 67.45 | 1.57 |
CCDC66 | Coiled-coil domain-containing protein 66 | 91.98 | 57.60 | 1.59 |
GLMN | Glomulin | 36.51 | 22.98 | 1.58 |
KDM4D | Lysine-specific demethylase 4D | 49.39 | 32.68 | 1.53 |
SNX25 | Sorting nexin-25 | 127.76 | 89.91 | 1.57 |
ARHGEF26 | Rho guanine nucleotide exchange factor 26 | 47.67 | 35.02 | 1.57 |
CMC1 | COX assembly mitochondrial protein homolog | 97.74 | 62.22 | 1.53 |
FASTKD1 | FAST kinase domain-containing protein 1 | 259.25 | 172.60 | 1.52 |
DNAJC21 | DnaJ homolog subfamily C member 21 | 497.80 | 327.50 | 1.52 |
DDX5 | ATP-dependent RNA helicase DDX5 | 142.99 | 101.83 | 1.56 |
CEP83 | Coiled-coil domain-containing protein 41 | 86.58 | 56.97 | 1.52 |
BUD31 | Protein BUD31 homolog | 29.50 | 19.38 | 1.51 |
KIN | DNA/RNA-binding protein KIN17 | 131.16 | 84.77 | 1.50 |
Gen Symbol | Gen Description | (D) Raw | (Control) Raw | Ratio |
---|---|---|---|---|
ANKRD36 | Ankyrin repeat domain-containing protein 36A | 38.41 | 67.57 | 2.28 |
YWHAG | 14-3-3 protein gam | 25.03 | 46.32 | 1.87 |
EXT1|hunera | Jeck2013ALT | 88.64 | 147.16 | 1.98 |
QRICH2 | Glutamine-rich protein 2 | 33.80 | 65.17 | 1.82 |
YBX1 | Nuclease-sensitive element-binding protein 1 | 47.70 | 69.96 | 1.68 |
DGCR8 | Microprocessor complex subunit DGCR8 | 74.69 | 118.81 | 1.60 |
C1orf198 | Chromosome1openreadingframe198 | 43.49 | 66.29 | 1.64 |
FHAD1 | Forkhead-associated domain-containing protein 1 | 46.94 | 71.21 | 1.60 |
PLXNB3 | Plexin-B3 | 56.35 | 83.87 | 1.56 |
CYGB | Cytoglobin | 62.20 | 98.36 | 1.58 |
CCDC84 | Coiled-coil domain-containing protein 84 | 167.37 | 242.60 | 1.60 |
F10 | Coagulation factor X | 70.55 | 101.19 | 1.56 |
PRR21 | Proline rich 21 | 19.56 | 28.10 | 1.57 |
GALNT14 | Polypeptide N-acetylgalactosaminyltransferase 14 | 29.99 | 44.42 | 1.55 |
ADCY2 | Adenylate cyclase type 2 | 31.16 | 46.58 | 1.55 |
KIRREL2 | Kin of IRRE-like protein 2 | 27.16 | 39.19 | 1.54 |
RPS6KA1 | Ribosomal protein S6 kinase alpha-1 | 34.27 | 48.01 | 1.52 |
AP1M1 | AP-1 complex subunit mu-1 | 142.99 | 204.18 | 1.53 |
PRR26 | Proline-rich protein 26 | 40.47 | 60.82 | 1.50 |
CRYM | Thiomorpholine-carboxylate dehydrogenase | 34.46 | 52.06 | 1.51 |
WNT8B | Wingless-type mmtv integration site family | 20.00 | 26.53 | 1.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lajarin-Reinares, M.; Pena-Rodríguez, E.; Cañellas-Santos, M.; Rosell-Vives, E.; Cortés, P.; Casas, M.L.; Calvo, M.À.; Fernandez-Campos, F. Repurposing Disulfiram as an Antimicrobial Agent in Topical Infections. Antibiotics 2022, 11, 1752. https://doi.org/10.3390/antibiotics11121752
Lajarin-Reinares M, Pena-Rodríguez E, Cañellas-Santos M, Rosell-Vives E, Cortés P, Casas ML, Calvo MÀ, Fernandez-Campos F. Repurposing Disulfiram as an Antimicrobial Agent in Topical Infections. Antibiotics. 2022; 11(12):1752. https://doi.org/10.3390/antibiotics11121752
Chicago/Turabian StyleLajarin-Reinares, Maria, Eloy Pena-Rodríguez, Mariona Cañellas-Santos, Elisabet Rosell-Vives, Pilar Cortés, Montserrat Llagostera Casas, Maria Àngels Calvo, and Francisco Fernandez-Campos. 2022. "Repurposing Disulfiram as an Antimicrobial Agent in Topical Infections" Antibiotics 11, no. 12: 1752. https://doi.org/10.3390/antibiotics11121752
APA StyleLajarin-Reinares, M., Pena-Rodríguez, E., Cañellas-Santos, M., Rosell-Vives, E., Cortés, P., Casas, M. L., Calvo, M. À., & Fernandez-Campos, F. (2022). Repurposing Disulfiram as an Antimicrobial Agent in Topical Infections. Antibiotics, 11(12), 1752. https://doi.org/10.3390/antibiotics11121752