Colistin Monotherapy versus Colistin plus Sitafloxacin for Therapy of Carbapenem-Resistant Acinetobacter baumannii Infections: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
Sample Size Calculation and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Antimicrobial Resistance Surveillance Center, Thailand (NARST). Antibiogram. 2020. Available online: http://narst.dmsc.moph.go.th/ (accessed on 26 August 2022).
- Almasaudi, S.B. Acinetobacter spp. As Nosocomial Pathogens: Epidemiology and Resistance Features. Saudi J. Biol. Sci. 2018, 25, 586–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergen, P.J.; Landersdorfer, C.B.; Lee, H.J.; Li, J.; Nation, R.L. ‘Old’ Antibiotics for Emerging Multidrug-Resistant Bacteria. Curr. Opin. Infect. Dis. 2012, 25, 626–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koomanachai, P.; Tiengrim, S.; Kiratisin, P.; Thamlikitkul, V. Efficacy and Safety of Colistin (Colistimethate Sodium) for Therapy of Infections Caused by Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii in Siriraj Hospital, Bangkok, Thailand. Int. J. Infect. Dis. 2007, 11, 402–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirijatuphat, R.; Limmahakhun, S.; Sirivatanauksorn, V.; Nation, R.L.; Li, J.; Thamlikitkul, V. Preliminary Clinical Study of the Effect of Ascorbic Acid on Colistin-Associated Nephrotoxicity. Antimicrob. Agents. Chemother. 2015, 59, 3224–3232. [Google Scholar] [CrossRef] [Green Version]
- Katip, W.; Uitrakul, S.; Oberdorfer, P. The effectiveness and nephrotoxicity of loading dose colistin combined with or without meropenem for the treatment of carbapenem-resistant A. baumannii. Int. J. Infect. Dis. 2020, 97, 391–395. [Google Scholar] [CrossRef]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin Alone Versus Colistin Plus Meropenem for Treatment of Severe Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria: An Open-Label, Randomised Controlled Trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and Rifampicin Compared with Colistin Alone for the Treatment of Serious Infections Due to Extensively Drug-Resistant Acinetobacter baumannii: A Multicenter, Randomized Clinical Trial. Clin. Infect. Dis. 2013, 57, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Sirijatuphat, R.; Thamlikitkul, V. Preliminary Study of Colistin Versus Colistin Plus Fosfomycin for Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrob. Agents. Chemother. 2014, 58, 5598–5601. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Hoshino, K.; Tanaka, M.; Hayakawa, I.; Osada, Y. Antimicrobial Activity of Du-6859, a New Potent Fluoroquinolone, against Clinical Isolates. Antimicrob. Agents. Chemother. 1992, 36, 1491–1498. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Hoshino, K.; Hohmura, M.; Ishida, H.; Kitamura, A.; Sato, K.; Hayakawa, I.; Nishino, T. Effect of Growth Conditions on Antimicrobial Activity of Du-6859a and Its Bactericidal Activity Determined by the Killing Curve Method. J. Antimicrob. Chemother. 1996, 37, 1091–1102. [Google Scholar] [CrossRef]
- Keating, G.M. Sitafloxacin: In bacterial infections. Drugs 2011, 71, 731–744. [Google Scholar] [CrossRef] [PubMed]
- Thamlikitkul, V.; Tiengrim, S. In Vitro Activity of Sitafloxacin against Carbapenem-Resistant Acinetobacter baumannii. Int. J. Antimicrob. Agents 2013, 42, 284–285. [Google Scholar] [CrossRef] [PubMed]
- Paiboonvong, T.; Nosoongnoen, W.; Sathirakul, K.; Tangsujaritvijit, V.; Kaemapairoj, J.; Tragulpiankit, P.; Montakantikul, P. Pharmacokinetics and Penetration of Sitafloxacin into Alveolar Epithelial Lining Fluid in Critically Ill Thai Patients with Pneumonia. Antimicrob. Agents. Chemother. 2019, 63, e00800-19. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.S.; Wang, J.T.; Sheng, W.H.; Chuang, Y.C.; Chang, S.C. Comparative in vitro activity of sitafloxacin against bacteremic isolates of carbapenem resistant Acinetobacter baumannii complex. J. Microbiol. Immunol. Infect. 2015, 48, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Tiengrim, S.; Mootsikapun, P.; Wonglakorn, L.; Changpradub, D.; Thunyaharn, S.; Tantisiriwat, W.; Santiwatanakul, S.; Malithong, A.; U-Thainual, N.; Kiratisin, P.; et al. Comparative in vitro activity of sitafloxacin against bacteria isolated from Thai patients with urinary tract infections and lower respiratory tract infections in 2016. J. Med. Assoc. Thai 2017, 100, 1061–1072. [Google Scholar]
- Xu, N.; Wang, G.; Leng, Y.; Dong, X.; Chen, F.; Xing, Q. Sulbactam enhances the in vitro activity of sitafloxacin against extensively-drug resistant Acinetobacter Baumannii. Exp. Ther. Med. 2018, 16, 3485–3491. [Google Scholar] [CrossRef] [Green Version]
- Thamlikitkul, V.; Tiengrim, S. In Vitro Susceptibility Test of Sitafloxacin against Resistant Gram-Negative Bacilli Isolated from Thai Patients by Disk Diffusion Method. J. Med. Assoc. Thai 2014, 97 (Suppl. S3), S7–S12. [Google Scholar]
- Dong, X.; Chen, F.; Zhang, Y.; Liu, H.; Liu, Y.; Ma, L. In Vitro Activities of Sitafloxacin Tested Alone and in Combination with Rifampin, Colistin, Sulbactam, and Tigecycline against Extensively Drug-Resistant Acinetobacter baumannii. Int. J. Clin. Exp. Med. 2015, 8, 8135–8140. [Google Scholar]
- Rodjun, V.; Houngsaitong, J.; Montakantikul, P.; Paiboonvong, T.; Khuntayaporn, P.; Yanyongchaikit, P.; Sriyant, P. In Vitro Activities of Colistin and Sitafloxacin Combinations against Multidrug-, Carbapenem-, and Colistin-Resistant Acinetobacter baumannii Using the Broth Microdilution Checkerboard and Time-Kill Methods. Antibiotics 2020, 9, 516. [Google Scholar] [CrossRef]
- Thamlikitkul, V.; Popum, S. Monitoring of Effectiveness and Safety of Colistin for Therapy in Resistant Gram-Negative Bacterial Infections in Hospitalized Patients at Siriraj Hospital. J. Med. Assoc. Thai 2016, 99, 301–307. [Google Scholar]
- Huang, C.; Chen, I.; Tang, T. Colistin Monotherapy versus Colistin plus Meropenem Combination Therapy for the Treatment of Multidrug-Resistant Acinetobacter baumannii Infection: A Meta-Analysis. J. Clin. Med. 2022, 11, 3239. [Google Scholar] [CrossRef] [PubMed]
- Makris, D.; Petinaki, E.; Tsolaki, V.; Manoulakas, E.; Mantzarlis, K.; Apostolopoulou, O.; Sfyras, D.; Zakynthinos, E. Colistin versus Colistin Combined with Ampicillin-Sulbactam for Multiresistant Acinetobacter baumannii Ventilator-associated Pneumonia Treatment: An Open-label Prospective Study. Indian. J. Crit. Care. Med. 2018, 22, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Katip, W.; Oberdorfer, P. Clinical Efficacy and Nephrotoxicity of Colistin Alone versus Colistin Plus Vancomycin in Critically Ill Patients Infected with Carbapenem-Resistant Acinetobacter baumannii: A Propensity Score-Matched Analysis. Pharmaceutics 2021, 13, 162. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, J.; Briggs, A.; Atarashi, S.; Kobayashi, H.; Smith, R.L.; Ward, J.; Ward, C.; Milatovic, D. Pharmacokinetics and Absolute Bioavailability of Sitafloxacin, a New Fluoroquinolone Antibiotic, in Healthy Male and Female Caucasian Subjects. Xenobiotica 2001, 31, 811–822. [Google Scholar] [CrossRef]
- Tanigawara, Y.; Kaku, M.; Totsuka, K.; Tsuge, H.; Saito, A. Population Pharmacokinetics and Pharmacodynamics of Sitafloxacin in Patients with Community-Acquired Respiratory Tract Infections. J. Infect. Chemother. 2013, 19, 858–866. [Google Scholar] [CrossRef] [Green Version]
- Aslan, A.T.; Akova, M. The Role of Colistin in the Era of New β-Lactam/β-Lactamase Inhibitor Combinations. Antibiotics 2022, 11, 277. [Google Scholar] [CrossRef]
- Teng, C.; Reveles, K.R.; Obodozie-Ofoegbu, O.O.; Frei, C.R. Clostridium difficile Infection Risk with Important Antibiotic Classes: An Analysis of the FDA Adverse Event Reporting System. Int. J. Med. Sci. 2019, 16, 630–635. [Google Scholar] [CrossRef]
Characteristics | Total | Colistin-Sitafloxacin | Colistin Monotherapy | p-Value |
---|---|---|---|---|
(n = 56) | (n = 28) | (n = 28) | ||
Female gender, n (%) | 22 (39.3%) | 10 (35.7%) | 12 (42.9%) | 0.584 |
Age (years); mean ± SD | 69.2 ± 12.2 | 69.3 ± 13.2 | 69.1 ± 11.4 | 0.957 |
Comorbidities, n (%) | ||||
- DM | 18 (32.1%) | 8 (28.6%) | 10 (35.7%) | 0.567 |
- HT | 29 (51.8%) | 17 (60.7%) | 12 (42.9%) | 0.181 |
- CKD | 11 (19.6%) | 2 (7.1%) | 9 (32.1%) | 0.019 |
- CAD | 9 (16.1%) | 4 (14.3%) | 5 (17.9%) | 1 |
- CVD | 11 (19.6%) | 5 (17.9%) | 6 (21.4%) | 0.737 |
- COPD | 5 (8.9%) | 3 (10.7%) | 2 (7.1%) | 1 |
- Cancer | 21 (37.5%) | 12 (42.9%) | 9 (32.1%) | 0.408 |
APACHE II score, mean ± SD | 18.1 ± 5.2 | 18.1 ± 5.6 | 18.0 ± 4.9 | 0.94 |
SOFA score, median (IQR) | 5.0 (4.0, 7.0) | 6.5 (4.0, 7.8) | 5.0 (3.3, 6.8) | 0.39 |
Mechanical ventilation, n (%) | 46 (82.1%) | 20 (71.4%) | 26 (92.9%) | 0.036 |
ICU admission, n (%) | 29 (51.8%) | 12 (42.9%) | 17 (60.7%) | 0.181 |
Type of infection, n (%) | ||||
- Pneumonia | 33 (58.9%) | 13 (46.4%) | 20 (71.4%) | 0.051 |
- Bloodstream infection | 12 (21.4%) | 6 (21.4%) | 6 (21.4%) | 1 |
- Urinary tract infection | 3 (5.4%) | 1 (3.6%) | 2 (7.1%) | 0.553 |
- Intra-abdominal infection | 2 (3.6%) | 2 (7.1%) | 0 (0.0%) | 0.15 |
- Soft tissue/skin infection | 1 (1.8%) | 1 (3.6%) | 0 (0.0%) | 0.313 |
- Other a | 5 (8.9%) | 5 (17.9%) | 0 (0.0%) | 0.019 |
Coinfection, n (%) | 16 (28.6%) | 8 (28.6%) | 8 (28.6%) | 1 |
- P. aeruginosa | 7 (12.5%) | 2 (7.1%) | 5 (17.9%) | 0.422 |
- S. maltophilia | 6 (10.7%) | 3 (10.7%) | 3 (10.7%) | 1 |
- Other b | 7 (12.5%) | 5 (17.9%) | 2 (7.1%) | 0.422 |
No coinfection; n (%) | 40 (71.4%) | 20 (71.4%) | 20 (71.4%) | 1 |
Concurrent antibiotics, n (%) | 20 (35.7%) | 8 (28.6%) | 12 (42.9%) | 0.265 |
- Carbapenems | 6 (10.7%) | 2 (7.1%) | 4 (14.3%) | 0.669 |
- Piperacillin/tazobactam | 5 (8.9%) | 0 (0.0%) | 5 (17.9%) | 0.051 |
- Vancomycin | 6 (10.7%) | 3 (10.7%) | 3 (10.7%) | 1 |
- Aminoglycosides | 1 (1.8%) | 1 (3.6%) | 0 (0.0%) | 0.313 |
- Other c | 6 (10.7%) | 5 (17.9%) | 1 (3.6%) | 0.193 |
Parameters | Total (n = 56) | Colistin-Sitafloxacin (n = 28) | Colistin Monotherapy (n = 28) | p-Value |
---|---|---|---|---|
Dose of colistin (mg/kg/d), mean ± SD | 4.2 ± 1.9 | 4.0 ± 1.7 | 4.3 ± 2.1 | 0.55 |
Duration of colistin (days), median (IQR) | 10.0 (7.0, 12.8) | 9.5 (7.0,14.0) | 10.0 (7.0, 12.0) | 0.987 |
Dose of sitafloxacin (mg/d), mean ± SD | 160.7 ± 49.7 | 160.7 ± 49.7 | - | - |
Duration of sitafloxacin (days), median (IQR) | 7.0 (5.0, 7.0) | 7.0 (5.0, 7.0) | - | - |
Parameters | Total (n = 56) | Colistin-Sitafloxacin (n = 28) | Colistin Monotherapy (n = 28) | p-Value |
---|---|---|---|---|
Clinical response, n (%) | ||||
First 72 h | ||||
- No response | 25 (44.6%) | 12 (42.9%) | 13 (46.4%) | 0.788 |
- Favorable response | 31 (55.4%) | 16 (57.1%) | 15 (53.6%) | |
End of treatment | ||||
- No response | 11 (20.4%) | 5 (18.5%) | 6 (22.2%) | 0.735 |
- Favorable response | 43 (79.6%) | 22 (81.5%) | 21 (77.8%) | |
Microbiological response, n (%) | ||||
First 72 h | ||||
- Persistence | 27 (49.1%) | 15 (55.6%) | 12 (42.9%) | 0.346 |
- Eradication | 28 (50.9%) | 12 (44.4%) | 16 (57.1%) | |
End of treatment | ||||
- Persistence | 14 (26.4%) | 7 (26.9%) | 7 (25.9%) | 0.934 |
- Eradication | 39 (73.6%) | 19 (73.1%) | 20 (74.1%) | |
Adverse events, n (%) | ||||
- AKI (RIFLE) d | 25 (50.0%) | 14 (53.8%) | 11 (45.8%) | 0.571 |
- Hepatitis | 1 (3.6%) | 1 (3.6%) | 0 (0.0%) | - |
- Rash | 1 (3.6%) | 1 (3.6%) | 0 (0.0%) | - |
28-day mortality, n (%) | 18 (32.1%) | 9 (32.1%) | 9 (32.1%) | 1 |
Length of hospital stay, median (IQR) | 46.0 (33.0, 70.0) | 44.5 (32.3, 71.5) | 48.0 (34.3, 65.3) | 0.787 |
Factors | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR | p-Value | Adjusted OR | p-Value | |
(95% CI) | (95% CI) | |||
Female gender | 1.37 | 0.587 | 1.59 | 0.63 |
(0.43–4.28) | (0.25–9.28) | |||
CVD | 5.4 | 0.018 | 28.2 | 0.002 |
(1.32–22.02) | (3.44–230.76) | |||
SOFA score | 1.23 | 0.038 | 1.62 | 0.007 |
(1.01–1.49) | (1.14–2.30) | |||
APACHE II score | 1.07 | 0.221 | 1.04 | 0.663 |
(0.95–1.20) | (0.86–1.26) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirijatuphat, R.; Thawornkaew, S.; Ruangkriengsin, D.; Thamlikitkul, V. Colistin Monotherapy versus Colistin plus Sitafloxacin for Therapy of Carbapenem-Resistant Acinetobacter baumannii Infections: A Preliminary Study. Antibiotics 2022, 11, 1707. https://doi.org/10.3390/antibiotics11121707
Sirijatuphat R, Thawornkaew S, Ruangkriengsin D, Thamlikitkul V. Colistin Monotherapy versus Colistin plus Sitafloxacin for Therapy of Carbapenem-Resistant Acinetobacter baumannii Infections: A Preliminary Study. Antibiotics. 2022; 11(12):1707. https://doi.org/10.3390/antibiotics11121707
Chicago/Turabian StyleSirijatuphat, Rujipas, Supawas Thawornkaew, Darat Ruangkriengsin, and Visanu Thamlikitkul. 2022. "Colistin Monotherapy versus Colistin plus Sitafloxacin for Therapy of Carbapenem-Resistant Acinetobacter baumannii Infections: A Preliminary Study" Antibiotics 11, no. 12: 1707. https://doi.org/10.3390/antibiotics11121707
APA StyleSirijatuphat, R., Thawornkaew, S., Ruangkriengsin, D., & Thamlikitkul, V. (2022). Colistin Monotherapy versus Colistin plus Sitafloxacin for Therapy of Carbapenem-Resistant Acinetobacter baumannii Infections: A Preliminary Study. Antibiotics, 11(12), 1707. https://doi.org/10.3390/antibiotics11121707