Potent Anti-Inflammatory Effects of a Helix-to-Helix Peptide against Pseudomonas aeruginosa Endotoxin-Mediated Sepsis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design and Synthesis of α-Helical Peptides
2.2. Characterization, Antimicrobial Activity, and Cytotoxicity of XIW Peptides
2.3. Secondary Structure of XIW Peptides in Aqueous Solutions
2.4. Interaction of XIW Peptides with LPS
2.5. Inhibition of LPS Binding to RAW 264.7 Cells
2.6. Inhibition of Nitric Oxide and Cytokine Production
2.7. In Vivo Anti-Inflammatory Effects of Peptides
3. Materials and Methods
3.1. Materials
3.2. Peptide Preparation
3.3. Antibacterial and Cytotoxic Assay In Vitro
3.4. CD Analysis
3.5. ROS Measurement
3.6. Inhibition of LPS Binding to RAW 264.7 Cells
3.7. Nitric Oxide and TNF-α Production in LPS-Stimulated RAW 264.7 Cells
3.8. Cytokine mRNA Production from RAW 264.7 Stimulated by LPS
3.9. In Vivo Anti-Inflammatory Experiments
3.10. Statistical Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Triantafilou, M.; Triantafilou, K. Sepsis: Molecular mechanisms underlying lipopolysaccharide recognition. Expert Rev. Mol. Med. 2004, 6, 1–18. [Google Scholar] [CrossRef]
- Periti, P.; Mazzei, T. New criteria for selecting the proper antimicrobial chemotherapy for severe sepsis and septic shock. Int. J. Antimicrob. Agents 1999, 12, 97–105. [Google Scholar] [CrossRef]
- Minasyan, H. Sepsis and septic shock: Pathogenesis and treatment perspectives. J. Crit. Care 2017, 40, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C.; Rietschel, E. T. Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 2001, 7, 167–202. [Google Scholar]
- King, J.D.; Kocíncová, D.; Westman, E.L.; Lam, J.S. Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun. 2009, 15, 261–312. [Google Scholar] [CrossRef]
- Dziarski, R.; Gupta, D. Role of MD-2 in TLR2- and TLR4-mediated recognition of Gram-negative and Gram-positive bacteria and activation of chemokine genes. J. Endotoxin Res. 2000, 6, 401–405. [Google Scholar] [CrossRef]
- Freudenberg, M.A.; Galanos, C. Bacterial lipopolysaccharides: Structure, metabolism and mechanisms of action. Int. Rev. Immunol. 1990, 6, 207–221. [Google Scholar] [CrossRef]
- Berger, M. Inflammatory mediators in cystic fibrosis lung disease. Allergy Asthma Proc. 2002, 23, 19–25. [Google Scholar]
- Gabarin, R.S.; Li, M.; Zimmel, P.A.; Marshall, J.C.; Li, Y.; Zhang, H. Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis: Avenues for Novel Therapeutic Strategies. J. Innate Immun. 2021, 13, 323–332. [Google Scholar] [CrossRef]
- Cavaillon, J.M. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon 2018, 149, 45–53. [Google Scholar] [CrossRef]
- Wang, R.; Maksymowych, W.P. Targeting the Interleukin-23/Interleukin-17 Inflammatory Pathway: Successes and Failures in the Treatment of Axial Spondyloarthritis. Front. Immunol. 2021, 12, 715510. [Google Scholar] [CrossRef] [PubMed]
- Park, S.C.; Park, Y.; Hahm, K.S. The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int. J. Mol. Sci. 2011, 12, 5971–5992. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics 2022, 11, 349. [Google Scholar] [CrossRef] [PubMed]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Song, Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int. J. Mol. Sci. 2021, 22, 11401. [Google Scholar] [CrossRef]
- Drayton, M.; Deisinger, J.P.; Ludwig, K.C.; Raheem, N.; Müller, A.; Schneider, T.; Straus, S.K. Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action. Int. J. Mol. Sci. 2021, 22, 11172. [Google Scholar] [CrossRef]
- Nagaoka, I.; Tamura, H.; Reich, J. Therapeutic Potential of Cathelicidin Peptide LL-37, an Antimicrobial Agent, in a Murine Sepsis Model. Int. J. Mol. Sci. 2020, 21, 5973. [Google Scholar] [CrossRef]
- Scott, M.G.; Hancock, R.E. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol. 2000, 20, 407–431. [Google Scholar] [CrossRef]
- Brandenburg, K.; Heinbockel, L.; Correa, W.; Lohner, K. Peptides with dual mode of action: Killing bacteria and preventing endotoxin-induced sepsis. Biochim. Biophys. Acta 2016, 1858, 971–979. [Google Scholar] [CrossRef]
- Holdbrook, D.A.; Huber, R.G.; Marzinek, J.K.; Stubbusch, A.; Schmidtchen, A.; Bond, P.J. Multiscale modeling of innate immune receptors: Endotoxin recognition and regulation by host defense peptides. Pharmacol. Res. 2019, 147, 104372. [Google Scholar] [CrossRef]
- Gautier, R.; Douguet, D.; Antonny, B.; Drin, G. HELIQUEST: A web server to screen sequences with specific alpha-helical properties. Bioinformatics 2008, 24, 2101–2112. [Google Scholar] [CrossRef] [Green Version]
- Sohlenkamp, C.; Geiger, O. Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiol. Rev. 2016, 40, 133–159. [Google Scholar] [CrossRef]
- Kobayashi, T.; Menon, A.K. Transbilayer lipid asymmetry. Curr. Biol. 2018, 28, R386–R391. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother. 2007, 51, 1398–1406. [Google Scholar] [CrossRef] [Green Version]
- Eisenburg, D.; Weiss, R.M.; Terwilliger, T.C. The helical hydrophobic moment: A measure of the amphiphilicity of a helix. Nature 1982, 299, 371–374. [Google Scholar] [CrossRef]
- Sönnichsen, F.D.; Van Eyk, J.E.; Hodges, R.S.; Sykes, B.D. Effect of trifluoroethanol on protein secondary structure: An NMR and CD study using a synthetic actin peptide. Biochemistry 1992, 31, 8790–8798. [Google Scholar] [CrossRef]
- Najbar, L.V.; Craik, D.J.; Wade, J.D.; Salvatore, D.; McLeish, M.J. Conformational analysis of LYS(11-36), a peptide derived from the beta-sheet region of T4 lysozyme, in TFE and SDS. Biochemistry 1997, 36, 11525–11533. [Google Scholar] [CrossRef]
- Johar, R.; Sharma, R.; Kaur, A.; Mukherjee, T.K. Role of Reactive Oxygen Species in Estrogen Dependant Breast Cancer Complication. Anti-Cancer Agents Med. Chem. 2015, 16, 190–199. [Google Scholar] [CrossRef]
- Qi, S.; Feng, Z.; Li, Q.; Qi, Z.; Zhang, Y. Myricitrin Modulates NADPH Oxidase-Dependent ROS Production to Inhibit Endotoxin-Mediated Inflammation by Blocking the JAK/STAT1 and NOX2/p47phoxPathways. Oxid. Med. Cell. Longev. 2017, 2017, 9738745. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Gao, H.; Hou, Y.; Yu, J.; Sun, W.; Wang, Y.; Chen, X.; Feng, Y.; Xu, Q.-M.; Chen, X. Dihydronortanshinone, a natural product, alleviates LPS-induced inflammatory response through NF-κB, mitochondrial ROS, and MAPK pathways. Toxicol. Appl. Pharmacol. 2018, 355, 1–8. [Google Scholar] [CrossRef]
- Park, S.C.; Lee, M.Y.; Kim, J.Y.; Kim, H.; Jung, M.; Shin, M.K.; Lee, W.K.; Cheong, G.W.; Lee, J.R.; Jang, M.K. Anti-Biofilm Effects of Synthetic Antimicrobial Peptides Against Drug-Resistant Pseudomonas aeruginosa and Staphylococcus aureus Planktonic Cells and Biofilm. Molecules 2019, 24, 4560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgensen, J.H. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard: NCCLS M7-A3. In National Committee for Clinical Laboratory Standards Antimicrobial Susceptibility Testing; NCCLS: Villanova, PA, USA, 1993. [Google Scholar]
- Park, S.C.; Kim, M.H.; Hossain, M.A.; Shin, S.Y.; Kim, Y.; Stella, L.; Wade, J.D.; Park, Y.; Hahm, K.S. Amphipathic alpha-helical peptide, HP (2-20), and its analogues derived from Helicobacter pylori: Pore formation mechanism in various lipid compositions. Biochim. Biophys. Acta 2008, 1778, 229–241. [Google Scholar] [CrossRef] [PubMed]
Name | Sequence | Ha | µHb | Net Charge | GM (µM) c | Cytotoxicity (%) d |
---|---|---|---|---|---|---|
KIW-10 | KKIIKKIWKW-NH2 | 0.495 | 0.822 | +6 | 11 ± 1 | 0 ± 0 |
KWI-10 | KKIWKKWIKI-NH2 | 0.495 | 0.880 | +6 | 10.5 ± 1.2 | 0 ± 0 |
WIK-10 | WIKKIWKKIK-NH2 | 0.495 | 0.902 | +6 | 6.5 ± 0.8 | 0 ± 0 |
RIW-10 | RRIIRRIWRW-NH2 | 0.485 | 0.829 | +6 | 8.5 ± 0.8 | 0 ± 0 |
RWI-10 | RRIWRRWIRI-NH2 | 0.485 | 0.887 | +6 | 7 ± 1.2 | 0 ± 0 |
WIR-10 | WIRRIWRRIR-NH2 | 0.485 | 0.907 | +6 | 3 ± 0.2 | 0.8 ± 0.2 |
KIW-14 | KKIIKKIIKKIWKW-NH2 | 0.469 | 0.782 | +8 | 2.6 ± 1.2 | 3.2 ± 0.8 |
KWI-14 | KKIWKKWIKKIIKI-NH2 | 0.469 | 0.827 | +8 | 2.6 ± 0.8 | 1.2 ± 0.4 |
WIK-14 | WIKKIWKKIIKKIK-NH2 | 0.469 | 0.816 | +8 | 2.1 ± 0.4 | 7.8 ± 1.2 |
WIKE-14 | WIKKIWKKIIKEIK-NH2 | 0.494 | 0.823 | +6 | 8 ± 0.8 | 0.3 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, H.; Park, S.-C.; Kim, Y.-M.; Lee, J.-K.; Park, S.; Guk, T.; Yoon, A.-M.; Lim, H.S.; Jang, M.-K.; Lee, J.R. Potent Anti-Inflammatory Effects of a Helix-to-Helix Peptide against Pseudomonas aeruginosa Endotoxin-Mediated Sepsis. Antibiotics 2022, 11, 1675. https://doi.org/10.3390/antibiotics11111675
Son H, Park S-C, Kim Y-M, Lee J-K, Park S, Guk T, Yoon A-M, Lim HS, Jang M-K, Lee JR. Potent Anti-Inflammatory Effects of a Helix-to-Helix Peptide against Pseudomonas aeruginosa Endotoxin-Mediated Sepsis. Antibiotics. 2022; 11(11):1675. https://doi.org/10.3390/antibiotics11111675
Chicago/Turabian StyleSon, Hyosuk, Seong-Cheol Park, Young-Min Kim, Jong-Kook Lee, Soyoung Park, Taeuk Guk, A-Mi Yoon, Hye Song Lim, Mi-Kyeong Jang, and Jung Ro Lee. 2022. "Potent Anti-Inflammatory Effects of a Helix-to-Helix Peptide against Pseudomonas aeruginosa Endotoxin-Mediated Sepsis" Antibiotics 11, no. 11: 1675. https://doi.org/10.3390/antibiotics11111675
APA StyleSon, H., Park, S.-C., Kim, Y.-M., Lee, J.-K., Park, S., Guk, T., Yoon, A.-M., Lim, H. S., Jang, M.-K., & Lee, J. R. (2022). Potent Anti-Inflammatory Effects of a Helix-to-Helix Peptide against Pseudomonas aeruginosa Endotoxin-Mediated Sepsis. Antibiotics, 11(11), 1675. https://doi.org/10.3390/antibiotics11111675