10-mer and 9-mer WALK Peptides with Both Antibacterial and Anti-Inflammatory Activities
Abstract
:1. Introduction
2. Results
2.1. WALK Peptide Design and Conformational Validation
2.2. Evaluation of Antibacterial and Hemolytic Activities
2.3. Screening for Immunomodulatory Potentials
2.4. Validation of Anti-Inflammatory Activities of Selected WALK Peptides
3. Discussion
4. Materials and Methods
4.1. Materials and Peptide Preparation
4.2. Circular Dichroism (CD) Spectroscopy
4.3. Antimicrobial Assay
4.4. Hemolytic Assay
4.5. Cell Viability Test
4.6. Estimation of Nitric Oxide (NO) Production
4.7. Immunoblot Analysis
4.8. Quantitative Real-Time PCR
4.9. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABAI | antibacterial and anti-inflammatory |
AMP | antimicrobial peptide |
CD | circular dichroism |
CL | enhanced chemiluminescence |
GM | geometric mean of minimal inhibitory concentrations |
HDP | host defense peptide |
LPS | lipopolysaccharides |
MHC | minimal hemolytic concentration |
MIC | minimal inhibitory concentration |
MTT | 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazoliumbromide |
PB | phosphate buffer |
SDS | sodium dodecyl sulfate |
STAT | signal transducer and activator of transcription |
TBK | kinase TANK binding kinase |
TFE | trifluoroethanol |
TI’ | pseudo-therapeutic index |
WALK | tryptophan-containing amphipathic-helical leucine/lysine |
References
- Zainal Baharin, N.H.; Khairil Mokhtar, N.F.; Mohd Desa, M.N.; Gopalsamy, B.; Mohd Zaki, N.N.; Yuswan, M.H.; Muthanna, A.; Dzaraly, N.D.; Abbasiliasi, S.; Mohd Hashim, A.; et al. The characteristics and roles of antimicrobial peptides as potential treatment for antibiotic-resistant pathogens: A review. PeerJ 2021, 9, e12193. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, J.; Tong, Z.; Jia, Y.; Yang, B.; Wang, Z. The revitalization of antimicrobial peptides in the resistance era. Pharmacol. Res. 2021, 163, 105276. [Google Scholar] [CrossRef] [PubMed]
- Browne, K.; Chakraborty, S.; Chen, R.; Willcox, M.D.; Black, D.S.; Walsh, W.R.; Kumar, N. A new era of antibiotics: The clinical potential of antimicrobial peptides. Int. J. Mol. Sci. 2020, 21, 7047. [Google Scholar] [CrossRef] [PubMed]
- Zaiou, M. Multifunctional antimicrobial peptides: Therapeutic targets in several human diseases. J. Mol. Med. 2007, 85, 317–329. [Google Scholar] [CrossRef]
- Gallo, R.L.; Nizet, V. Endogenous production of antimicrobial peptides in innate immunity and human disease. Curr. Allergy Asthma Rep. 2003, 3, 402–409. [Google Scholar] [CrossRef]
- Mabrouk, D.M. Antimicrobial peptides: Features, applications and the potential use against COVID-19. Mol. Biol. Rep. 2022, 49, 10039–10050. [Google Scholar] [CrossRef]
- Annunziato, G.; Costantino, G. Antimicrobial peptides (AMPs): A patent review (2015–2020). Expert Opin. Ther. Pat. 2020, 30, 931–947. [Google Scholar] [CrossRef]
- Chen, C.H.; Lu, T.K. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 2020, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef]
- Tornesello, A.L.; Borrelli, A.; Buonaguro, L.; Buonaguro, F.M.; Tornesello, M.L. Antimicrobial peptides as anticancer agents: Functional properties and biological activities. Molecules 2020, 25, 2850. [Google Scholar] [CrossRef]
- Conlon, J.M.; Mechkarska, M.; Lukic, M.L.; Flatt, P.R. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 2014, 57, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Gallo, R.L. Antimicrobial peptides: Old molecules with new ideas. J. Investig. Dermatol. 2011, 132, 887–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov. 2012, 11, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Drayton, M.; Deisinger, J.P.; Ludwig, K.C.; Raheem, N.; Müller, A.; Schneider, T.; Straus, S.K. Host defense peptides: Dual antimicrobial and immunomodulatory action. Int. J. Mol. Sci. 2021, 22, 11172. [Google Scholar] [CrossRef]
- Hilchie, A.L.; Wuerth, K.; Hancock, R.E.W. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat. Chem. Biol. 2013, 9, 761–768. [Google Scholar] [CrossRef]
- Steinstraesser, L.; Kraneburg, U.; Jacobsen, F.; Al-Benna, S. Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology 2011, 216, 322–333. [Google Scholar] [CrossRef]
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell. Infect. Microbiol. 2021, 11, 668632. [Google Scholar] [CrossRef]
- Baltzer, S.A.; Brown, M.H. Antimicrobial peptides–promising alternatives to conventional antibiotics. J. Mol. Microbiol. Biotechnol. 2011, 20, 228–235. [Google Scholar] [CrossRef]
- Boparai, J.K.; Sharma, P.K. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept. Lett. 2020, 27, 4–16. [Google Scholar] [CrossRef]
- Niemeyer-van der Kolk, T.; Assil, S.; Buters, T.P.; Rijsbergen, M.; Klaassen, E.S.; Feiss, G.; Florencia, E.; Prens, E.P.; Burggraaf, J.; van Doorn, M.B.A.; et al. Omiganan enhances imiquimod-induced inflammatory responses in skin of healthy volunteers. Clin. Transl. Sci. 2020, 13, 573–579. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updates 2016, 26, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Brogden, N.K.; Brogden, K.A. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int. J. Antimicrob. Agents 2011, 38, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Kim, J.S.; Lee, Y.S.; Sim, D.W.; Lee, S.H.; Bahk, Y.Y.; Lee, K.H.; Kim, E.H.; Park, S.J.; Lee, B.J.; et al. Structural characterization of de novo designed L5K5W model peptide isomers with potent antimicrobial and varied hemolytic activities. Molecules 2013, 18, 859–876. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Kim, S.J.; Lee, Y.S.; Song, M.D.; Kim, I.H.; Won, H.S. De novo generation of short antimicrobial peptides with simple amino acid composition. Regul. Pept. 2011, 166, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.J.; Won, H.S.; Choi, W.S.; Lee, B.J. De novo generation of antimicrobial LK peptides with a single tryptophan at the critical amphipathic interface. J. Pept. Sci. 2009, 15, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Aaghaz, S.; Shenmar, K.; Jain, R. Short antimicrobial peptides. Recent Pat. Antiinfect. Drug Discov. 2018, 13, 12–52. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, J.; Chen, Y. Alpha-helical cationic antimicrobial peptides: Relationships of structure and function. Protein Cell 2010, 1, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Tossi, A.; Sandri, L.; Giangaspero, A. Amphipathic, α-helical antimicrobial peptides. Biopolymers 2000, 55, 4–30. [Google Scholar] [CrossRef]
- Shim, D.W.; Heo, K.H.; Kim, Y.K.; Sim, E.J.; Kang, T.B.; Choi, J.W.; Sim, D.W.; Cheong, S.H.; Lee, S.H.; Bang, J.K.; et al. Anti-inflammatory action of an antimicrobial model peptide that suppresses the TRIF-dependent signaling pathway via inhibition of toll-like receptor 4 endocytosis in lipopolysaccharide-stimulated macrophages. PLoS ONE 2015, 10, e0126871. [Google Scholar] [CrossRef] [Green Version]
- Klubthawee, N.; Adisakwattana, P.; Hanpithakpong, W.; Somsri, S.; Aunpad, R. A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa. Sci. Rep. 2020, 10, 9117. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, C.; Zhang, M.Z.; Zhang, S. Beta-defensin derived cationic antimicrobial peptides with potent killing activity against gram negative and gram positive bacteria. BMC Microbiol. 2018, 18, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelezetsky, I.; Tossi, A. Alpha-helical antimicrobial peptides–using a sequence template to guide structure-activity relationship studies. Biochim. Biophys. Acta 2006, 1758, 1436–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Won, H.S.; Park, S.H.; Kim, H.E.; Hyun, B.; Kim, M.; Lee, B.J.; Lee, B.J. Effects of a tryptophanyl substitution on the structure and antimicrobial activity of C-terminally truncated gaegurin 4. Eur. J. Biochem. 2002, 269, 4367–4374. [Google Scholar] [CrossRef]
- Won, H.S.; Jung, S.J.; Kim, H.E.; Seo, M.D.; Lee, B.J. Systematic peptide engineering and structural characterization to search for the shortest antimicrobial peptide analogue of gaegurin 5. J. Biol. Chem. 2004, 279, 14784–14791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Won, H.S.; Seo, M.D.; Jung, S.J.; Lee, S.J.; Kang, S.J.; Son, W.S.; Kim, H.J.; Park, T.K.; Park, S.J.; Lee, B.J. Structural determinants for the membrane interaction of novel bioactive undecapeptides derived from gaegurin 5. J. Med. Chem. 2006, 49, 4886–4895. [Google Scholar] [CrossRef]
- Tabas, I.; Glass, C.K. Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science 2013, 339, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Beutler, B.; Rietschel, E.T. Innate immune sensing and its roots: The story of endotoxin. Nat. Rev. Immunol. 2003, 3, 169–176. [Google Scholar] [CrossRef]
- Pulido, D.; Nogués, M.V.; Boix, E.; Torrent, M. Lipopolysaccharide neutralization by antimicrobial peptides: A gambit in the innate host defense strategy. J. Innate Immun. 2012, 4, 327–336. [Google Scholar] [CrossRef] [PubMed]
WALK Serial Number | MIC 1 (μg/mL) | MHC 3 (μg/mL) | ||||
---|---|---|---|---|---|---|
Gram-Positive Bacteria | Gram-Negative Bacteria | GM 2 (μg/mL) | ||||
B. subtilis | S. aureus | E. coli | S. dysentariae | |||
244.01 | ≤1 | 2 | 2 | 2 | ≤1.7 | 16 |
244.02 | 2 | 2 | 2 | 8 | 2.8 | 32 |
244.03 | 8 | 8 | 8 | 32 | 11.3 | 64 |
244.04 | 4 | 4 | 4 | 8 | 4.8 | 64 |
244.05 | 2 | 2 | 2 | 4 | 2.4 | 32 |
244.06 | 2 | 3 | 16 | 16 | 6.3 | 32 |
244.07 | 2 | 2 | 2 | 8 | 2.8 | 32 |
244.08 | 2 | ≤1 | 2 | 4 | ≤2.0 | 8 |
244.09 | ≤1 | 2 | 2 | 2 | ≤1.7 | 8 |
244.10 | 2 | 2 | 8 | 8 | 4.0 | 32 |
243.01 | 4 | 4 | 4 | 8 | 4.8 | 32 |
243.02 | 4 | 4 | 4 | 16 | 5.7 | 64 |
243.03 | 4 | 4 | 8 | 16 | 6.7 | 32 |
243.04 | 4 | 4 | 4 | 4 | 4.0 | 64 |
243.05 | 2 | 2 | 2 | 16 | 3.4 | 64 |
243.06 | 2 | 2 | 2 | 8 | 2.8 | 32 |
243.07 | 2 | 2 | 2 | 4 | 2.4 | 16 |
243.08 | 2 | 2 | 2 | 2 | 2.0 | 8 |
243.09 | 4 | 4 | 8 | 16 | 6.7 | 64 |
Ampicillin | ≤1 | ≤1 | ≤1 | ≤1 | ≤1 | - |
Kanamycin | 4 | 4 | 4 | 8 | 4.8 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-J.; Kang, T.-B.; Kim, D.-H.; Keum, M.; Lee, S.-H.; Kim, J.-H.; Lee, S.-H.; Kim, J.; Kweon, H.-J.; Park, J.-W.; et al. 10-mer and 9-mer WALK Peptides with Both Antibacterial and Anti-Inflammatory Activities. Antibiotics 2022, 11, 1588. https://doi.org/10.3390/antibiotics11111588
Kim S-J, Kang T-B, Kim D-H, Keum M, Lee S-H, Kim J-H, Lee S-H, Kim J, Kweon H-J, Park J-W, et al. 10-mer and 9-mer WALK Peptides with Both Antibacterial and Anti-Inflammatory Activities. Antibiotics. 2022; 11(11):1588. https://doi.org/10.3390/antibiotics11111588
Chicago/Turabian StyleKim, Su-Jin, Tae-Bong Kang, Dong-Hyuk Kim, Minho Keum, Sung-Hee Lee, Ji-Hun Kim, Sang-Hyuck Lee, Jihoon Kim, Hyuk-Jung Kweon, Jae-Won Park, and et al. 2022. "10-mer and 9-mer WALK Peptides with Both Antibacterial and Anti-Inflammatory Activities" Antibiotics 11, no. 11: 1588. https://doi.org/10.3390/antibiotics11111588
APA StyleKim, S.-J., Kang, T.-B., Kim, D.-H., Keum, M., Lee, S.-H., Kim, J.-H., Lee, S.-H., Kim, J., Kweon, H.-J., Park, J.-W., Kim, B.-J., & Won, H.-S. (2022). 10-mer and 9-mer WALK Peptides with Both Antibacterial and Anti-Inflammatory Activities. Antibiotics, 11(11), 1588. https://doi.org/10.3390/antibiotics11111588