Furaquinocins K and L: Novel Naphthoquinone-Based Meroterpenoids from Streptomyces sp. Je 1-369
Abstract
:1. Introduction
2. Results
2.1. Identification and Structure Elucidation of Furaquinocins K and L
2.2. Identification of the Furaquinocin Biosynthetic Gene Cluster
2.3. Biological Activity of Novel Furaquinocin Analogues
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Secondary Metabolite Extraction and Analysis
4.3. Secondary Metabolite Purification
4.4. Nuclear Magnetic Resonance (NRM) Spectroscopy and Optical Rotation (OD)
4.5. Antimicrobial Susceptibility Test and Cytotoxicity Assay
4.6. Genome Sequencing and Bioinformatics Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- De Simeis, D.; Serra, S. Actinomycetes: A Never-Ending Source of Bioactive Compounds-An Overview on Antibiotics Production. Antibiotics 2021, 10, 483. [Google Scholar] [CrossRef] [PubMed]
- Bentley, S.D.; Chater, K.F.; Cerdeño-Tárraga, A.M.; Challis, G.L.; Thomson, N.R.; James, K.D.; Harris, D.E.; Quail, M.A.; Kieser, H.; Harper, D.; et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002, 417, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Hopwood, D.A. Streptomyces in Nature and Medicine: The Antibiotic Makers; Oxford University Press: New York, NY, USA, 2007; p. 250. [Google Scholar]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazir, M.; Saleem, M.; Tousif, M.I.; Anwar, M.A.; Surup, F.; Ali, I.; Wang, D.; Mamadalieva, N.Z.; Alshammari, E.; Ashour, M.L.; et al. Meroterpenoids: A Comprehensive Update Insight on Structural Diversity and Biology. Biomolecules 2021, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wang, X.; Huang, T.; Deng, Z.; Lin, S. Naphthoquinone-Based Meroterpenoids from Marine-Derived Streptomyces sp. B9173. Biomolecules 2020, 10, 1187. [Google Scholar] [CrossRef]
- Murray, L.A.M.; Mc Kinnie, S.M.K.; Moore, B.S.; George, J.H. Meroterpenoid natural products from Streptomyces bacteria—The evolution of chemoenzymatic syntheses. Nat. Prod. Rep. 2020, 37, 1334–1366. [Google Scholar] [CrossRef]
- Heide, L. Prenyl transfer to aromatic substrates: Genetics and enzymology. Curr. Opin. Chem. Biol. 2009, 13, 171–179. [Google Scholar] [CrossRef]
- Gozari, M.; Alborz, M.; El-Seedi, H.R.; Jassbi, A.R. Chemistry, Biosynthesis and Biological Activity of Terpenoids and Meroterpenoids in Bacteria and Fungi Isolated from Different Marine Habitats. Eur. J. Med. Chem. 2021, 210, 112957. [Google Scholar] [CrossRef]
- Paulus, C.; Gromyko, O.; Luzhetskyy, A. New Kendomycin Derivative Isolated from Streptomyces sp. Cl 58-27. Molecules 2021, 26, 6834. [Google Scholar] [CrossRef]
- Raju, R.; Gromyko, O.; Fedorenko, V.; Luzketskyy, A.; Müller, R. Albaflavenol B, a new sesquiterpene isolated from the terrestrial actinomycete, Streptomyces sp. J. Antibiot. 2015, 68, 286–288. [Google Scholar] [CrossRef]
- Raju, R.; Gromyko, O.; Fedorenko, V.; Luzketskyy, A.; Plaza, A.; Müller, R. Juniperolide A: A New Polyketide Isolated from a Terrestrial Actinomycete, Streptomyces sp. Org. Lett. 2012, 14, 5860–5863. [Google Scholar] [CrossRef] [PubMed]
- Raju, R.; Gromyko, O.; Fedorenko, V.; Luzketskyy, A.; Müller, R. Leopolic acid A, isolated from a terrestrial actinomycete, Streptomyces sp. Tetrahedron Lett. 2012, 53, 6300–6301. [Google Scholar] [CrossRef]
- Buckingham, J. Dictionary of Natural Products on CD-ROM; Version 13:2; Chapman & Hall: London, UK, 2005; ISBN 9780412491504. [Google Scholar]
- Komiyama, K.; Funayama, S.; Anraku, Y.; Ishibashi, M.; Takahashi, Y.; Omura, S. Novel antibioitcs, furaquinocins A and B: Taxonomy, fermentation, isolation and physico-chemical and biological characteristics. J. Antibiot. 1990, 43, 247–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishibashi, M.; Funayama, S.; Anraku, Y.; Komiyama, K.; Omura, S. Novel antibiotics, furaquinocins C, D, E, F, G and H. J. Antibiot. 1991, 44, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Panthee, S.; Takahashi, S.; Takagi, H.; Nogawa, T.; Oowada, E.; Uramoto, M.; Osada, H. Furaquinocins I and J: Novel polyketide isoprenoid hybrid compounds from Streptomyces reveromyceticus SN-593. J. Antibiot. 2011, 64, 509–513. [Google Scholar] [CrossRef]
- Dormer, P.G.; Smith, A.B.; Funayama, S.; Omura, S. Furaquinocins A-G: Relative and absolute stereochemistry. Tetrahedron Lett. 1992, 33, 1717–1720. [Google Scholar] [CrossRef]
- Smith, A.B.; Sestelo, J.P.; Dormer, P.G. Total Synthesis of (-)-Furaquinocin C. J. Am. Chem. Soc. 1995, 117, 10755–10756. [Google Scholar] [CrossRef]
- Elyashberg, M.; Williams, A.J.; Blinov, K. Structural revisions of natural products by Computer-Assisted Structure Elucidation (CASE) systems. Nat. Prod. Rep. 2010, 27, 1296–1328. [Google Scholar] [CrossRef]
- Huang, X.S.; Liu, X.; Constantine, K.L.; Leet, J.E.; Roongta, V. Observation of O-H...N scalar coupling across a hydrogen bond in nocathiacin I. Magn. Reason. Chem. 2007, 45, 447–450. [Google Scholar] [CrossRef]
- Haagen, Y.; Glück, K.; Fay, K.; Kammerer, B.; Gust, B.; Heide, L. A Gene Cluster for Prenylated Naphthoquinone and Prenylated Phenazine Biosynthesis in Streptomyces cinnamonensis DSM 1042. ChemBioChem 2006, 7, 2016–2027. [Google Scholar] [CrossRef]
- WHO. Antimicrobial resistance. 2021. Available online: https://www.who.int/newsroom/fact-sheets/detail/antimicrobial-resistance (accessed on 23 February 2021).
- Pham, J.V.; Yilma, M.A.; Feliz, A.; Majid, M.T.; Maffetone, N.; Walker, J.R.; Kim, E.; Cho, H.J.; Reynolds, J.M.; Song, M.C.; et al. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Front. Microbiol. 2019, 10, 1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedmera, P.; Pospíšil, S.; Novák, J. New Furanonaphthoquinone from Streptomyces cinnamonensis. J. Nat. Prod. 1991, 54, 870–872. [Google Scholar] [CrossRef]
- Kagamizono, T.; Kawashima, A.; Kishimura, Y.; Yamagishi, M.; Tsuchida, Y.; Kondo, H.; Hanada, K. PI-220, a New Platelet Aggregation Inhibitor. Biosci. Biotechnol. Biochem. 1993, 57, 766–769. [Google Scholar] [CrossRef]
- Kawahara, T.; Nagai, A.; Takagi, M.; Shin-ya, K. A new furaquinocin derivative, JBIR-136, from Streptomyces sp. 4963H2. J. Antibiot. 2012, 65, 579–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, L.M.; Sperry, J. Natural Products Containing a Nitrogen–Nitrogen Bond. J. Nat. Prod. 2013, 76, 794–812. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.L.; Candra, H.; Pang, L.M.; Xiong, J.; Ding, Y.; Tran, H.T.; Low, Z.J.; Ye, H.; Liu, M.; Zheng, J.; et al. Biosynthesis of Tasikamides via Pathway Coupling and Diazonium-Mediated Hydrazone Formation. J. Am. Chem. Soc. 2022, 144, 1622–1633. [Google Scholar] [CrossRef]
- Kawasaki, T.; Hayashi, Y.; Kuzuyama, T.; Furihata, K.; Itoh, N.; Seto, H.; Dairi, T. Biosynthesis of a natural polyketide-isoprenoid hybrid compound, furaquinocin A: Identification and heterologous expression of the gene cluster. J Bacteriol. 2006, 188, 1236–1244. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Yang, J.; Li, L.; Ruan, L.; Wei, W.; Zheng, G.; Zhao, W.; Chen, J.; Jiang, W.; Ge, M.; et al. The complete genome sequence of a high pristinamycin-producing strain Streptomyces pristinaespiralis HCCB10218. J Biotechnol. 2015, 214, 45–46. [Google Scholar] [CrossRef]
- Kieser, B.; Buttner, M.; Charter, K.; Hopwood, B. Practical Streptomyces Genetics; John Innes Foundation: Norwich, UK, 2000; p. 613. [Google Scholar]
- Meyer, F. GenDB-an open source genome annotation system for Prokaryote genomes. Nucleic Acids Res. 2003, 31, 2187–2195. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinform 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [Green Version]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Weezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Position | a δC, Type | b δH, Mult. (J in Hz) | COSY | c HMBC |
---|---|---|---|---|
2 | 87.72, CH | 4.84, q (6.6) | 16 | 3, 3a, 9b, 10, 2-Me, 3-Me |
2-Me | 15.32, CH3 | 1.46, d (6.6) | 2 | 2, 3 |
3 | 47.12, C | - | - | - |
3-Me | 19.79, CH3 | 1.22, s | - | 2, 3, 3a, 10 |
3a | 128.99, C | - | - | - |
4 | 159.77, C | - | - | - |
4-OMe | 55.81, CH3 | 3.95, s | - | 4, 5 |
5 | 103.30, CH | 7.21, s | - | 3, 3a, 4, 5a, 6,9, 9a |
5a | 133.58, C | - | - | - |
6 | 180.98, C | - | - | - |
7 | 156.80, C | - | - | - |
7-OMe | 60.70, CH3 | 4.00, s | - | 7 |
8 | 133.31, C | - | - | - |
8-Me | 9.26, CH3 | 2.06, s | - | 6, 7, 8, 9, 7-OMe |
9 | 184.10, C | - | - | - |
9a | 110.20, C | - | - | - |
9b | 160.23, C | - | - | - |
10 | 37.61, CH2 | 1.93, m 1.59, dd (8.0, 11.9) | 11 | 2, 3, 3a, 11, 12, 3-Me |
11 | 23.71, CH2 | 1.94, m 1.77, m | 10, 12 | 3, 10, 12, 13 |
12 | 123.82, CH | 5.06, m | 11, 14, 15 | 10, 11, 14, 15 |
13 | 131.90, C | - | - | - |
14 | 25.65, CH3 | 1.66, bs | 12, 15 | 12, 13, 15 |
15 | 17.49, CH3 | 1.53, bs | 12, 14 | 12, 13, 14 |
Position | a δC, Type | b δH, Mult. (J in Hz) | COSY | c HMBC |
---|---|---|---|---|
2 | 91.43, CH | 4.99, q (6.5) | 2-Me | 3-Me, 10, 9b |
2-Me | 15.83, CH3 | 1.5, d (6.7) | 2 | 2, 3 |
3 | 46.41, C | - | - | - |
3-Me | 19.21, CH3 | 1.32, s | - | 2, 3, 3a, 10 |
3a | 118.74, C | - | - | - |
4 | 179.22, C | - | - | - |
5 | 139.94, C | - | - | - |
5-N | d 301.9, N | - | - | - |
5a | 109.99, C | - | - | - |
6 | 147.79, C | - | - | - |
6-OH | - | 12.89, s | - | 5a, 6, 7, d 5-N |
7 | 153.15, C | - | - | - |
7-OMe | 60.77, CH | 3.99, s | - | 7 |
8 | 123.08, C | - | - | - |
8-Me | 9.10, CH3 | 2.22, s | - | 8, 7, 9 |
9 | 149.00, C | - | - | - |
9-OH | - | 8.10, s | - | 7, 8, 9, 9a |
9a | 101.44, C | - | - | - |
9b | 169.10, C | - | - | - |
10 | 37.91, CH2 | 1.72, m 1.94, m | 11 | 3, 11 |
11 | 23.55, CH2 | 1.87, m 2.01, m | 10, 12 | 11, 14, 15 |
12 | 123.49, CH | 5.09, t (7.37) | 11, 14, 15 | 10, 12 |
13 | 132.20, C | - | - | - |
14 | 25.66, CH3 | 1.66, s | 12, 15 | 12, 15 |
15 | 17.70, CH3 | 1.56, s | 12, 14 | 12, 14 |
16 | 167.03, CO | - | - | - |
16-NH | d 171.7, NH | 14.90, s | 5, 16 | |
17 | 22.12, CH3 | 2.25, s | - | 16, d 16-NH |
Gene in Je 1-369 | ORFs * from fur Gene Cluster | Putative Product and Their Accession Number (% Identity) ** | |
---|---|---|---|
Gene | % Identity/Coverage | ||
Orf1 | fur1 | 81/99 | type III polyketide synthase of Streptomyces sp. SID10115 (98.0%), A0A6B2SFW1 |
Orf2 | fur2 | 81/88 | cupin-domain-containing protein of Streptomyces sp. SID10115 (93.8%), A0A6B2SAS0 |
Orf3 | fur3 | 81/93 | aminotransferase of Streptomyces sp. SID10115 (93.8%), WP_150181863 |
Orf4 | fur4 | 74/88 | methyltransferase of Streptomyces sp. SID10115 (86.8%), A0A6B2SP85 |
Orf5 | NAD(P)H:quinone oxidoreductase of Streptomyces sp. SID10115 (96.0%), A0A6B2SAG1 | ||
Orf6 | enoyl-CoA hydratase/isomerase of Frankia sp. EUN1f (32.5%), D3CRF9 | ||
Orf7 | fur5 | 73/98 | acyl-CoA ligase of Streptomyces sp. SID10115 (95.3%), A0A6B2SZ49 |
Orf8 | S-adenosylmethionine synthase of Streptomyces sp. SID10115 (97.5%), A0A6B2SM86 | ||
Orf9 | carbohydrate kinase of Streptomyces sp. SID10115 (92.0%), A0A6B2SJJ8 | ||
Orf10 | methionine synthase of Streptomyces sp. SID10115 (92.5%), A0A6B2SFQ1 | ||
Orf11 | methylenetetrahydrofolate reductase of Streptomyces sp. SID10115 (93.4%), A0A6B2ST43 | ||
Orf12 | adenosylhomocysteinase of Streptomyces sp. SID10115 (94.9%), A0A6B2SGN4 | ||
Orf13 | surface protein of Streptomyces sp. SID10115 (68%), A0A6B2SEN8 | ||
Orf14 | TetR_C_16-domain-containing protein of Streptomyces sp. SID10115 (92.3%), A0A6B2SJP1 | ||
Orf15 | MFS transporter of Streptomyces sp. SID10115 (96.1%), A0A6B2SIA2 | ||
Orf16 | fur9 | 68/93 | mevalonate kinase of Streptomyces sp. SID10115 (75.0%), A0A6B2SSL0 |
Orf17 | uncharacterized protein of Streptomyces sp. SID10115 (52.2%), A0A6B2SMM5 | ||
Orf18 | fur16 | 72/92 | FAD-binding protein of Streptomyces sp. Ru71 (72.2%), A0A2S4YSV4 |
Ofr19 | fur17 | 75/92 | 3-carboxy-cis, cis-muconate cycloisomerase of Streptomyces sp. Ru71 (77.8%), A0A2S4YT60 |
Orf20 | helix–turn–helix-domain-containing protein of Streptomyces sp. SID10116 (100%), A0A6B2SPW8 | ||
Orf21 | fur18 | 54/99 | uncharacterized protein of Streptomyces sp. SID10115 (94.7%) A0A6B2ST33 |
Orf22 | fur19 | 71/98 | polyprenyl synthetase family protein of Streptomyces sp. SID10115 (95.5%), A0A6B2SPK4 |
Orf23 | FAD-binding protein of Streptomyces sp. SID10115 (90.5%), A0A6B2STJ0 | ||
Orf24 | pyridine nucleotide-disulfide oxidoreductase of Streptomyces sp. MZ04 (45.5%), A0A4R9EYD3 | ||
Orf25 | cytochrome bc1 complex cytochrome b subunit of Streptomyces sp. SID10115 (94.3%), A0A6B2SYI1 | ||
Orf26 | fur7 | 66/98 | prenyltransferase of Streptomyces sp. SID10115 (92.7%), A0A6B2SAL2 |
Orf27 | fur21 | 61/99 | Methyltransferase-domain-containing protein of Streptomyces sp. SID10115 (96.8%), A0A6B2SFQ2 |
Test Strain/Cell Line | Furaquinocin K (MIC, μg/mL) | Furaquinocin L (MIC, μg/mL) |
---|---|---|
Bacillus subtilis DSM 10 | >64 | 64 |
Staphylococcus aureus Newman | >64 | 2 |
Mycobacterium smegmatis mc2155 | >64 | >64 |
Escherichia coli BW25113 (wt) | >64 | >64 |
E. coli JW0451-2 (ΔacrB) | >64 | >64 |
Pseudomonas aeruginosa PA14 | >64 | >64 |
Acinetobacter baumannii DSM 30008 | >64 | >64 |
Citrobacter freundii DSM 30039 | >64 | >64 |
Candida albicans DSM 1665 | >64 | >64 |
Cryptococcus neoformans DSM 11959 | >64 | >64 |
Pichia anomala DSM 6766 | >64 | >64 |
Mucor hiemalis DSM 2656 | >64 | >64 |
HepG2 | 12.6 | >37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tistechok, S.; Stierhof, M.; Myronovskyi, M.; Zapp, J.; Gromyko, O.; Luzhetskyy, A. Furaquinocins K and L: Novel Naphthoquinone-Based Meroterpenoids from Streptomyces sp. Je 1-369. Antibiotics 2022, 11, 1587. https://doi.org/10.3390/antibiotics11111587
Tistechok S, Stierhof M, Myronovskyi M, Zapp J, Gromyko O, Luzhetskyy A. Furaquinocins K and L: Novel Naphthoquinone-Based Meroterpenoids from Streptomyces sp. Je 1-369. Antibiotics. 2022; 11(11):1587. https://doi.org/10.3390/antibiotics11111587
Chicago/Turabian StyleTistechok, Stepan, Marc Stierhof, Maksym Myronovskyi, Josef Zapp, Oleksandr Gromyko, and Andriy Luzhetskyy. 2022. "Furaquinocins K and L: Novel Naphthoquinone-Based Meroterpenoids from Streptomyces sp. Je 1-369" Antibiotics 11, no. 11: 1587. https://doi.org/10.3390/antibiotics11111587
APA StyleTistechok, S., Stierhof, M., Myronovskyi, M., Zapp, J., Gromyko, O., & Luzhetskyy, A. (2022). Furaquinocins K and L: Novel Naphthoquinone-Based Meroterpenoids from Streptomyces sp. Je 1-369. Antibiotics, 11(11), 1587. https://doi.org/10.3390/antibiotics11111587