Highly Sensitive Determination of Antibiotic Residues in Aquatic Products by High-Performance Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mass Spectrometry Conditions
2.2. HPLC Conditions
2.2.1. Chromatographic Columns
2.2.2. Mobile Phase
2.3. Method Validation
2.3.1. Linearity, Sensitivity, and Matrix Effect of the Proposed Method
2.3.2. Accuracy, Repeatability, and Feasibility of the Proposed Method by Spiked Assays
2.4. Detection in Real Aquatic Samples
3. Materials and Methods
3.1. Materials and Instrument
3.2. Samples
3.3. Sample Pretreatment
3.4. LC–MS/MS Conditions
3.5. Method Validation
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.L.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science 2019, 365, 1944. [Google Scholar] [CrossRef] [Green Version]
- Graziani, C.; Busani, L.; Dionisi, A.M.; Lucarelli, C.; Owczarek, S.; Ricci, A.; Mancin, M.; Caprioli, A.; Luzzi, I. Antimicrobial resistance in Salmonella enterica serovar Typhimurium from human and animal sources in Italy. Vet. Microbiol. 2008, 128, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Fedeniuk, R.W.; Mizuno, M.; Neiser, C.; O’Byrne, C. Development of LC–MS/MS methodology for the detection/determination and confirmation of chloramphenicol, chloramphenicol 3-O-β-d-glucuronide, florfenicol, florfenicol amine and thiamphenicol residues in bovine, equine and porcine liver. J. Chromatogr. B 2015, 991, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, B.; Pang, M.D.; Zhao, X.; Xie, K.Z.; Zhang, Y.Y.; Wang, Y.J.; Guo, Y.W.; Liu, C.J.; Bu, X.N.; et al. Quantitative analysis of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in eggs via liquid chromatography-electrospray ionization tandem mass spectrometry. Food Chem. 2018, 269, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Cerutti, J.P.; Aiassa, V.; Fern andez, M.A.; Longhi, M.R.; Quevedo, M.A.; Zoppi, A. Structural, physicochemical and biological characterization of chloramphenicol multi-component complexes. J. Mol. Liq. 2021, 331, 115761. [Google Scholar] [CrossRef]
- Ma, P.; Guo, H.; Duan, N.; Ma, X.; Wang, Z. Label free structure-switching fluorescence polarization detection of chloramphenicol with truncated aptamer. Talanta 2021, 230, 122349. [Google Scholar] [CrossRef] [PubMed]
- Guidi, L.R.; Tette, P.A.S.; Gloria, M.B.A.; Fernandes, C. A simple and rapid LC-MS/MS method for the determination of amphenicols in Nile tilapia. Food Chem. 2018, 262, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.T.; Wang, B.; Zhao, X.; Xie, X.; Xie, K.Z.; Wang, X.T.; Zhang, G.X.; Zhang, T.; Liu, X.Z.; Dai, G.J. Determination of thiamphenicol, florfenicol and florfenicol amine residues in poultry meat and pork via ASE-UPLC-FLD. J. Food Compos. Anal. 2019, 81, 19–27. [Google Scholar] [CrossRef]
- Wrzesinski, C.L.; Crouch, L.S.; Endris, R. Determination of florfenicol amine in channel catfish muscle by liquid chromatography. J. AOAC Int. 2003, 86, 515–520. [Google Scholar] [PubMed]
- Anadón, A.; Martínez, M.A.; Martínez, M.; Ríos, A.; Caballero, V.; Ares, I.; Martínez-Larrañaga, M.R. Plasma and tissue depletion of florfenicol and florfenicol-amine in chickens. J. Agric. Food Chem. 2008, 56, 11049–11056. [Google Scholar] [CrossRef]
- Xiong, J.C.; He, S.; Wang, Z.L.; Xu, Y.L.; Zhang, L.; Zhang, H.X.; Jiang, H.Y. Dual-readout fluorescence quenching immunochromatographic test strips for highly sensitive simultaneous detection of chloramphenicol and amantadine based on gold nanoparticle-triggered photoluminescent nanoswitch control. J. Hazard. Mater. 2022, 429, 128316. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.S.; Mohsenzadeh, M.; Abnous, K.; Taghdisi, S.M.; Ramezani, M. Development and characterization of DNA aptamers against florfenicol: Fabrication of a sensitive fluorescent aptasensor for specific detection of florfenicol in milk. Talanta 2018, 182, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Borse, S.; Murthy, Z.V.P.; Park, T.J.; Kailasa, S.K. Pepsin mediated synthesis of blue fluorescent copper nanoclusters for sensing of flutamide and chloramphenicol drugs. Microchem. J. 2021, 164, 105947. [Google Scholar] [CrossRef]
- Ma, X.; Li, H.; Qiao, S.; Huang, C.; Liu, Q.; Shen, X.; Geng, Y.; Xu, W.; Sun, C. A simple and rapid sensing strategy based on structure-switching signaling aptamers for the sensitive detection of chloramphenicol. Food Chem. 2020, 302, 125359. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.S.; Traynor, I.M.; Fodey, T.L.; Faulkner, D.V.; Crooks, S.R.H. Screening method for the detection of residues of amphenicol antibiotics in bovine, ovine and porcine kidney by optical biosensor. Talanta 2017, 172, 120–125. [Google Scholar] [CrossRef]
- Pakapongpan, S.; Poo-arporn, Y.; Tuantranont, A.; Poo-arporn, R.P. A facile one-pot synthesis of magnetic iron oxide nanoparticles embed N-doped graphene modified magnetic screen printed electrode for electrochemical sensing of chloramphenicol and diethylstilbestrol. Talanta 2022, 241, 123184. [Google Scholar] [CrossRef]
- Sadeghi, A.S.; Ansari, N.; Ramezani, M.; Abnous, K.; Mohsenzadeh, M.; Taghdisi, S.M.; Alibolandid, M. Optical and electrochemical aptasensors for the detection of amphenicols. Biosens. Bioelectron. 2018, 118, 137–152. [Google Scholar] [CrossRef]
- Li, S.H.; Ma, X.H.; Pang, C.H.; Wang, M.Y.; Yin, G.H.; Xu, Z.; Li, J.P.; Luo, J.H. Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification. Biosens. Bioelectron. 2021, 176, 112944. [Google Scholar] [CrossRef] [PubMed]
- Ou, P.P.; Wu, J.W.; Lin, Y.; Tan, X.C.; Wu, Y.Y.; Chen, Z.F.; Wei, F.C.; Huang, K.J. Flexible photoelectrochemical sensor for highly sensitive chloramphenicol detection based on M-TiO2-CdTe QDs/CdS QDs composite. Anal. Bioanal. Chem. 2022, 414, 2065–2078. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, F.; Li, J.; Cheng, L.; Shen, J. Simultaneous determination of florfenicol and florfenicol amine in fish, shrimp, and swine muscle by gas chromatography with a microcell electron capture detector. J. AOAC Int. 2006, 89, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
- Yikilmaz, Y.; Filazi, A. Detection of florfenicol residues in salmon trout via GC-MS. Food Anal. Methods 2014, 8, 1027–1033. [Google Scholar] [CrossRef]
- Liu, W.L.; Lee, R.J.; Lee, M.R. Supercritical fluid extraction in situ derivatization for simultaneous determination of chloramphenicol, florfenicol and thiamphenicol in shrimp. Food Chem. 2010, 121, 797–802. [Google Scholar] [CrossRef]
- Mehl, A.; Schmidt, L.J.; Schmidt, L.; Morlock, G.E. High-throughput planar solid-phase extraction coupled to orbitrap high-resolution mass spectrometry via the auto TLC-MS interface for screening of 66 multi-class antibiotic residues in food of animal origin. Food Chem. 2021, 351, 129211. [Google Scholar] [CrossRef]
- Bortolotte, A.R.; Daniel, D.; Reyes, F.G.R. Occurrence of antimicrobial residues in tilapia (Oreochromis niloticus) fillets produced in Brazil and available at the retail market. Food Res. Int. 2021, 140, 109865. [Google Scholar] [CrossRef]
- Wang, J.M.; Xu, J.; Ji, X.F.; Wu, H.Z.; Yang, H.; Zhang, H.; Zhang, X.M.; Li, Z.G.; Ni, X.L.; Qian, M.R. Determination of veterinary drug/pesticide residues in livestock and poultry excrement using selective accelerated solvent extraction and magnetic material purification combined with ultra-high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2020, 1617, 460808. [Google Scholar] [CrossRef]
- Pastor-Belda, M.; Campillo, N.; Arroyo-Manzanares, N.; Hernández-Córdoba, M.; Viñas, P. Determination of amphenicol antibiotics and their glucuronide metabolites in urine samples using liquid chromatography with quadrupole time-offlight mass spectrometry. J. Chromatogr. B 2020, 1146, 122122. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Xu, X.; Xu, X.; Han, M.; Qiu, S. Application of a multiclass screening method for veterinary drugs and pesticides using HPLC-QTOF-MS in egg samples. Food Chem. 2020, 309, 125746. [Google Scholar] [CrossRef] [PubMed]
- Song, N.E.; Lee, J.Y.; Mansur, A.R.; Jang, H.W.; Lim, M.C.; Lee, Y.; Yoo, M.; Nam, T.G. Determination of 60 pesticides in hen eggs using the QuEChERS procedure followed by LC-MS/MS and GC-MS/ MS. Food Chem. 2019, 298, 125050. [Google Scholar] [CrossRef]
- Jia, W.; Liu, Y.Y.; Xu, X.; Zhang, Y.X.; Shi, L. Comprehensive multiplexed analysis of risky drugs in eggs based on magnetic zeolitic imidazolate frameworks and UHPLC Q-Orbitrap HRMS. J. Food Drug Anal. 2021, 29, 490–501. [Google Scholar] [CrossRef]
- Wang, B.; Pang, M.; Zhao, X.; Xie, K.Z.; Zhang, P.Y.; Zhang, G.X.; Zhang, T.; Liu, X.Z.; Dai, G.J. Development and comparison of liquid–liquid extraction and accelerated solvent extraction methods for quantitative analysis of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry eggs. J. Mass Spectrom. 2019, 54, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, Z.; Guo, X.; Cheng, L.; Wang, Z.; Shen, J. Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2008, 875, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.L.; Wai, H.K.F.; Wu, P.; Lai, S.W.; Chan, O.S.K.; Tun, H.M. A Universal LC-MS/MS Method for Simultaneous Detection of Antibiotic Residues in Animal and Environmental Samples. Antibiotics 2022, 11, 845. [Google Scholar] [CrossRef] [PubMed]
- Bacanlı, M.; Bas¸aran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Habib, F.E.; Majeed, S.; Tawab, A.; Rauf, W.; Rahman, M.; Umer, M.; Iqbal, M. LC-MS/MS-based determination of chloramphenicol, thiamphenicol, florfenicoland florfenicol amine in poultry meat from the Punjab-Pakistan. Food Addit. Contam. A 2018, 35, 1530–1542. [Google Scholar] [CrossRef]
- Gao, L.H.; Shi, Y.L.; Li, W.H.; Liu, J.M.; Cai, Y.Q. Occurrence, distribution and bioaccumulation of antibiotics in the Haihe River in China. J. Environ. Monit. 2012, 14, 1248. [Google Scholar] [CrossRef]
- Alechaga, E.; Moyano, E.; Galceran, M.T. Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family. J. Mass Spectrom. 2013, 48, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Zhang, M.; Yuan, J.H.; Du, J.; Ma, A.D.; Pan, J.L. A simple, versatile, and automated pulse-diffusion-focusing strategy for sensitive milliliter-level-injection HILIC-MS/MS analysis of hydrophilic toxins. J. Hazard. Mater. 2020, 392, 122318. [Google Scholar] [CrossRef]
- Barreto, F.; Ribeiro, C.; Hoff, R.B.; Costa, D.T. Determination of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in poultry, swine, bovine and fish by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2016, 1449, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.N.; Park, D.H.; Choi, Y.J.; Kang, S.H.; Cho, H.J.; Choi, J.M.; Shim, J.H.; Zaky, A.A.; Abd El-Aty, A.M.; Shin, H.C. Simultaneous quantification of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in animal and aquaculture products using liquid chromatography-tandem mass spectrometry. Front. Nutr. 2022, 8, 812803. [Google Scholar] [CrossRef] [PubMed]
- Gosetti, F.; Mazzucco, E.; Zampieri, D.; Gennaro, M.C. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 3929–3937. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Xia, S.D.; Han, X.Q.; Fu, Z.R. Simultaneous determination of malachite green, chloramphenicols, sulfonamides, and fluoroquinolones residues in fish by liquid chromatography-mass spectrometry. J. Anal. Methods Chem. 2020, 2020, 3725618. [Google Scholar] [CrossRef] [PubMed]
- Susakate, S.; Poapolathep, S.; Chokejaroenrat, C.; Tanhan, P.; Hajslova, J.; Giorgi, M.; Saimek, K.; Zhang, Z.W.; Poapolathep, A. Multiclass analysis of antimicrobial drugs in shrimp muscle by ultra high performance liquid chromatography-tandem mass spectrometry. J. Food Drug Anal. 2019, 27, 118–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.D.; Wu, P.G.; Jiang, W.; Ma, B.J. Determination of chloramphenicol, thiamphenicol, and florfenicol in fish muscle by matrix solidphase dispersion extraction (MSPD) and ultra-high pressure liquid chromatography tandem mass spectrometry. Food Control 2015, 52, 34–38. [Google Scholar] [CrossRef]
- Rey, V.; Botana, A.M.; Antelo, A.; Alvarez, M.; Botana, L.M. Rapid analysis of paralytic shellfish toxins and tetrodotoxins by liquid chromatography-tandem mass spectrometry using a porous graphitic carbon column. Food Chem. 2018, 269, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.M.; Li, X.L.; Zhang, D.P.; Wang, K.; Zhao, W.W.; Zhao, Q.; Wang, R.Z.; Yuan, J.; Xin, S.J.; Wang, S.H. Detection of okadaic acid (OA) and tetrodotoxin (TTX) simultaneously in seafood samples using colloidal gold immunoassay. Toxicon 2019, 165, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Chu, X.; Ling, Y.; Huang, J.; Chang, J. High-throughput screening of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. J. Chromatogr. A 2014, 1347, 122–128. [Google Scholar] [CrossRef] [PubMed]
Matrix | Targets | Linear Range (μg/L) | R2 | LOD (µg/kg) | LOQ (µg/kg) | ME (%) |
---|---|---|---|---|---|---|
H2O | CAP | 0.01–5.00 | 0.99311 | - | - | - |
TAP | 0.99449 | - | ||||
FF | 0.99579 | - | ||||
FFA | 0.99613 | - | ||||
Carassius auratus | CAP | 0.01–5.00 | 0.99475 | 0.01 | 0.02 | 20 |
TAP | 0.99554 | 8.04 | ||||
FF | 0.99592 | <−20 | ||||
FFA | 0.99642 | <−20 | ||||
Litopenaeus Vannamei | CAP | 0.01–5.00 | 0.9959 | 0.01 | 0.02 | 6.04 |
TAP | 0.99353 | −11.3 | ||||
FF | 0.99362 | <−20 | ||||
FFA | 0.99675 | 17.9 | ||||
Eriocheir sinensis | CAP | 0.01–5.00 | 0.99568 | 0.01 | 0.02 | <−20 |
TAP | 0.99592 | <−20 | ||||
FF | 0.99785 | <−20 | ||||
FFA | 0.9967 | <−20 | ||||
Sinonovacula constricta | CAP | 0.01–5.00 | 0.99886 | 0.01 | 0.02 | <−20 |
TAP | 0.99696 | <−20 | ||||
FF | 0.99442 | <−20 | ||||
FFA | 0.99275 | <−20 |
Analytes | Columns | Mobile Phases | Linear Range | LOD (µg/kg) | Matrix | Ref. |
---|---|---|---|---|---|---|
CAP, FF | C18 | 2 mM ammonium acetate and acetonitrile, both with 0.1% formic acid | 0.5–20 µg/kg | 0.15 | Fish | [41] |
FF | C18 | 0.1% formic acid in water and acetonitrile | 5–50 µg/kg | 5.0 | shrimp muscle | [42] |
CAP, TAP, FF, FFA | C18 | Water and acetonitrile, both with 2 mM of ammonium acetate | − | CAP:0.13, TAP:5.45, FF:2.86, FFA:248.20 | Fish | [38] |
CAP, TAP, FF, FFA | C18 | Double-distilled water and 0.1% acetic acid in acetonitrile | – | CAP:0.01 (shrimp and flatfish); TAP:0.09 (shrimp), 0.05 (flatfish); FF: 0.01 (shrimp), 0.005 (flatfish); FFA: 1.3 (shrimp), 1 (flatfish); | shrimp and flatfish | [39] |
CAP, TAP, FF | C18 | Water and methanol | CAP: 0.3–50, TAP: 1.5–100, FF: 0.5–20 | CAP: 0.02, TAP: 0.06, FF: 0.02 | fish muscles | [43] |
CAP, TAP, FF, | C18 | Water and methanol, both with 0.1% formic acid | 0.1–500 µg/L | CAP: 0.4, TAP: 1.0, FF: 0.2 | feces (pig, chicken, and duck) | [25] |
CAP, TAP, FF, FFA | F5 | 1 mM ammonium acetate and methanol | 0.01–5.0 µg/L | 0.01 | Fish, shrimp, crab, and shellfish | This work |
Matrix | Analytes | Spiked Levels (μg/kg) | Measured Levels (μg/kg) | Accuracy and Repeatability | ||
---|---|---|---|---|---|---|
R (%, n = 3) | Intra-RSD (%, n = 3) | Inter-RSD (%, n = 3) | ||||
Carassius auratus | CAP | 0.20 | 0.193 ± 0.071 | 96.5 | 13.7 | 5.69 |
0.50 | 0.480 ± 0.055 | 96.1 | 10.8 | 1.74 | ||
2.00 | 1.88 ± 0.017 | 93.9 | 2.82 | 1.28 | ||
TAP | 0.20 | 0.180 ± 0.068 | 90.0 | 12.4 | 10.0 | |
0.50 | 0.489 ± 0.031 | 97.8 | 3.70 | 3.31 | ||
2.00 | 1.87 ± 0.025 | 93.4 | 6.06 | 1.13 | ||
FF | 0.20 | 0.168 ± 0.078 | 84.0 | 3.31 | 13.3 | |
0.50 | 0.455 ± 0.049 | 91.1 | 3.75 | 3.70 | ||
2.00 | 1.88 ± 0.035 | 93.9 | 5.53 | 3.23 | ||
FFA | 0.20 | 0.192 ± 0.048 | 96.0 | 7.01 | 2.88 | |
0.50 | 0.461 ± 0.033 | 92.3 | 4.38 | 2.15 | ||
2.00 | 1.88 ± 0.025 | 94.0 | 0.769 | 3.29 | ||
Litopenaeus vannamei | CAP | 0.20 | 0.185 ± 0.053 | 92.5 | 5.16 | 4.22 |
0.50 | 0.454 ± 0.049 | 90.9 | 8.83 | 4.75 | ||
2.00 | 1.92 ± 0.038 | 96.0 | 8.68 | 1.96 | ||
TAP | 0.20 | 0.178 ± 0.080 | 89.0 | 12.0 | 8.25 | |
0.50 | 0.476 ± 0.041 | 95.1 | 6.40 | 5.27 | ||
2.00 | 2.02 ± 0.021 | 101 | 3.46 | 0.939 | ||
FF | 0.20 | 0.207 ± 0.021 | 104 | 2.43 | 1.37 | |
0.50 | 0.476 ± 0.030 | 95.3 | 5.90 | 0.778 | ||
2.00 | 1.90 ± 0.018 | 94.9 | 2.26 | 1.41 | ||
FFA | 0.20 | 0.210 ± 0.068 | 105 | 12.1 | 8.68 | |
0.50 | 0.490 ± 0.022 | 98.0 | 3.82 | 1.55 | ||
2.00 | 1.96 ± 0.027 | 98.2 | 2.35 | 1.24 | ||
Eriocheir sinensis | CAP | 0.20 | 0.185 ± 0.046 | 92.3 | 4.54 | 4.34 |
0.50 | 0.458 ± 0.034 | 91.5 | 6.50 | 1.53 | ||
2.00 | 1.95 ± 0.017 | 97.7 | 2.51 | 1.02 | ||
TAP | 0.20 | 0.199 ± 0.030 | 99.7 | 2.76 | 2.94 | |
0.50 | 0.446 ± 0.041 | 89.2 | 6.61 | 3.23 | ||
2.00 | 1.99 ± 0.024 | 99.4 | 4.46 | 0.582 | ||
FF | 0.20 | 0.192 ± 0.025 | 96.0 | 2.76 | 1.40 | |
0.50 | 0.475 ± 0.025 | 95.0 | 2.55 | 3.68 | ||
2.00 | 2.00 ± 0.028 | 100 | 5.29 | 3.54 | ||
FFA | 0.20 | 0.201 ± 0.025 | 101 | 2.99 | 1.61 | |
0.50 | 0.487 ± 0.018 | 97.3 | 1.86 | 0.590 | ||
2.00 | 1.93 ± 0.021 | 96.6 | 1.43 | 1.49 | ||
Sinonovacula constricta | CAP | 0.20 | 0.182 ± 0.049 | 91.2 | 8.40 | 3.35 |
0.50 | 0.493 ± 0.033 | 98.7 | 1.22 | 3.15 | ||
2.00 | 2.00 ± 0.018 | 99.8 | 2.86 | 1.89 | ||
TAP | 0.20 | 0.190 ± 0.029 | 94.8 | 1.69 | 2.83 | |
0.50 | 0.484 ± 0.026 | 96.9 | 3.84 | 3.09 | ||
2.00 | 1.97 ± 0.020 | 98.3 | 1.47 | 1.47 | ||
FF | 0.20 | 0.192 ± 0.026 | 96.2 | 3.65 | 1.20 | |
0.50 | 0.494 ± 0.016 | 98.9 | 1.96 | 0.911 | ||
2.00 | 1.98 ± 0.018 | 99.2 | 2.03 | 1.13 | ||
FFA | 0.20 | 1.85 ± 0.061 | 92.5 | 9.22 | 4.69 | |
0.50 | 0.449 ± 0.042 | 89.7 | 2.87 | 3.20 | ||
2.00 | 1.99 ± 0.016 | 99.5 | 2.19 | 1.15 |
Time/min | Mobile Phase A/% | Mobile Phase B/% |
---|---|---|
0 | 98 | 2 |
0.5 | 98 | 8 |
2.0 | 20 | 80 |
3.0 | 20 | 80 |
3.5 | 98 | 2 |
6.0 | 98 | 2 |
Compounds | Q1 Mass (m/z) | Q3 Mass (m/z) | DP (V) | CE (V) |
---|---|---|---|---|
CAP | 321.0 | 152.1 * | −106 | −21 |
256.9 | −138 | −15 | ||
TAP | 353.9 | 184.9 * | −80 | −28 |
289.9 | −80 | −18 | ||
FF | 356.0 | 336.0 * | −80 | 25 |
184.9 | −80 | −27 | ||
FFA | 248.3 | 230.2 * | 80 | 18 |
130.2 | 80 | 33 | ||
CAP-D5 | 326.0 | 157.0 | −80 | −24 |
TAP-D3 | 357.0 | 188.1 | −80 | −30 |
FF-D3 | 359.0 | 188.1 | −80 | −27 |
FFA-D3 | 251.3 | 233.2 | 80 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Li, S.; Xi, Y.; Shi, Y.; Shang, X.; Huang, D. Highly Sensitive Determination of Antibiotic Residues in Aquatic Products by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Antibiotics 2022, 11, 1427. https://doi.org/10.3390/antibiotics11101427
Ye H, Li S, Xi Y, Shi Y, Shang X, Huang D. Highly Sensitive Determination of Antibiotic Residues in Aquatic Products by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Antibiotics. 2022; 11(10):1427. https://doi.org/10.3390/antibiotics11101427
Chicago/Turabian StyleYe, Hongli, Siman Li, Yinfeng Xi, Yongfu Shi, Xiaorui Shang, and Dongmei Huang. 2022. "Highly Sensitive Determination of Antibiotic Residues in Aquatic Products by High-Performance Liquid Chromatography–Tandem Mass Spectrometry" Antibiotics 11, no. 10: 1427. https://doi.org/10.3390/antibiotics11101427
APA StyleYe, H., Li, S., Xi, Y., Shi, Y., Shang, X., & Huang, D. (2022). Highly Sensitive Determination of Antibiotic Residues in Aquatic Products by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Antibiotics, 11(10), 1427. https://doi.org/10.3390/antibiotics11101427