Emergence of Fosfomycin Resistance by Plasmid-Mediated fos Genes in Uropathogenic ESBL-Producing E. coli Isolates in Mexico
Abstract
:1. Introduction
2. Results
2.1. Fosfomycin Resistance, blaCTX-M, and ST131-O25b Prevalence
2.2. Fosfomycin Resistance Mechanisms
2.3. Conjugation Experiments
3. Discussion
3.1. Fosfomycin Resistance Prevalence
3.2. Fosfomycin Resistance Mechanisms
3.3. Fosfomycin Transport Deficiencies
3.4. Plasmid-Mediated Fosfomycin Resistance
3.5. CTX-M Prevalence
3.6. ST131-O25b Clone
3.7. Conclusions
4. Materials and Methods
4.1. Bacterial Strains
4.2. Antimicrobial Susceptibility
4.3. Utilization of Carbohydrates
4.4. PCR Amplification
4.5. Conjugation Experiments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, K.; Sahm, D.F.; Mayfield, D.; Stamm, W.E. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in women: A nationwide analysis. Clin. Infect. Dis. 2001, 33, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto-Estrada, G.; Moreno-Altamirano, L.; Pahua Díaz, D. Panorama epidemiológico de México, principales causas de morbilidad y mortalidad. Rev. Fac. Med. Univ. Nac. Auton. Mex. 2016, 59, 8–22. [Google Scholar]
- Peirano, G.; Pitout, J.D.D. Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: The worldwide emergence of clone ST131 O25:H4. Int. J. Antimicrob. Agents 2010, 35, 316–321. [Google Scholar] [CrossRef]
- Nicolas-Chanoine, M.H.; Bertrand, X.; Madec, J.Y. Escherichia coli ST131, an intriguing clonal group. Clin. Microbiol. Rev. 2014, 27, 543–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lacet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Brown, E.D.; Vivas, E.I.; Walsh, C.T.; Kolter, R. MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J. Bacteriol. 1995, 177, 4194–4197. [Google Scholar] [CrossRef] [Green Version]
- Benzerara, Y.; Gallah, S.; Hommeril, B.; Genel, N.; Decré, D.; Rottman, M. Emergence of Plasmid-Mediated Fosfomycin-Resistance Genes among Escherichia coli Isolates, France. Emerg. Infect. Dis. 2017, 23, 1564–1567. [Google Scholar] [CrossRef] [Green Version]
- Mueller, L.; Cimen, C.; Poirel, L.; Descombes, M.C.; Nordmann, P. Prevalence of fosfomycin resistance among ESBL-producing Escherichia coli isolates in the community, Switzerland. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Oteo, J.; Orden, B.; Bautista, V.; Cuevas, O.; Arroyo, M.; Martínez-Ruiz, R.; Pérez-Vázquez, M.; Alcaraz, M.; García-Cobos, S.; Campos, J. CTX-M-15-producing urinary Escherichia coli O25b-ST131-phylogroup B2 has acquired resistance to fosfomycin. J. Antimicrob. Chemother. 2009, 64, 712–717. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.L.; Shen, H.; Xu, Y.Y.; Xu, X.J.; Zhang, Z.F.; Cheng, L.; Chen, J.H.; Arakawa, Y. High prevalence of fosfomycin resistance gene fosA3 in bla CTX-M-harbouring Escherichia coli from urine in a Chinese tertiary hospital during 2010–2014. Epidemiol. Infect. 2017, 145, 818–824. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-García, A.; Blázquez, J.; Rodríguez-Rojas, A. Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics 2013, 2, 217–236. [Google Scholar] [CrossRef] [PubMed]
- Loras, C.; González-Prieto, A.; Pérez-Vázquez, M.; Bautista, V.; Ávila, A.; Sola-Campoy, P.; Oteo-Iglesias, J.; Alós, J.-I. Prevalence, detection and characterisation of fosfomycin-resistant Escherichia coli strains carrying fosA genes in Community of Madrid, Spain. J. Glob. Antimicrob. Resist. 2021, 25, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Bartoloni, A.; Sennati, S.; Di Maggio, T.; Mantella, A.; Riccobono, E.; Strohmeyer, M.; Revollo, C.; Villagran, A.L.; Pallecchi, L.; Rossolini, G.M. Antimicrobial susceptibility and emerging resistance determinants (blaCTX-M, rmtB, fosA3) in clinical isolates from urinary tract infections in the Bolivian Chaco. Int. J. Infect. Dis. 2016, 43, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alrowais, H.; McElheny, C.L.; Spychala, C.N.; Sastry, S.; Guo, Q.; Butt, L.; Doi, Y. Fosfomycin Resistance in Escherichia coli, Pennsylvania, USA. Emerg. Infect. Dis. 2015, 21, 2045–2047. [Google Scholar] [CrossRef] [Green Version]
- Galindo-Méndez, M. Molecular characterization and antimicrobial susceptibility pattern of extended-spectrum β-lactamase-producing Escherichia coli as cause of community acquired urinary tract infection. Rev. Chilena Infectol. 2018, 35, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Robles-Torres, J.I.; Ocaña-Munguía, M.A.; Madero-Morales, P.A. Antimicrobial resistance and extended spectrum beta-lactamases in urinary tract infections: A serious problem in Northern Mexico. Rev. Mex. Urol. 2020, 80, 1–12. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. M100 Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Clinical and Laboratory Standards Institute: Pennsylvania, PA, USA, 2022. [Google Scholar]
- Nilsson, A.I.; Berg, O.G.; Aspevall, O.; Kahlmeter, G.; Andersson, D.I. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob. Agents Chemother. 2003, 47, 2850–2858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, W.; Li, B.; Song, J.; Hong, Y.; Zhang, X.; Liu, H.; Zhou, T.; Cao, J. Antimicrobial susceptibility and mechanisms of fosfomycin resistance in extended-spectrum β-lactamase-producing Escherichia coli strains from urinary tract infections in Wenzhou, China. Int. J. Antimicrob. Agents 2017, 50, 29–34. [Google Scholar] [CrossRef]
- Laguna-Rangel, F.A. Antimicrobial susceptibility profiles of bacteria causing urinary tract infections in Mexico. J. Glob. Antimicrob. Resist. 2018, 14, 90–94. [Google Scholar] [CrossRef]
- Zavala-Cerna, M.G.; Segura-Cobos, M.; González, R.; Zavala-Trujillo, I.G.; Navarro-Pérez, S.F.; Rueda-Cruz, J.A.; Satoscoy-Tovar, F.A. The Clinical Significance of High Antimicrobial Resistance in Community-Acquired Urinary Tract Infections. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 2967260. [Google Scholar] [CrossRef]
- Tutone, M.; Bjerklund Johansen, B.E.; Cai, T.; Mushtaq, S.; Livermore, D.M. Susceptibility and Resistance to Fosfomycin and other antimicrobial agents among pathogens causing lower urinary tract infections: Findings of the SURF study. Int. J. Antimicrob. Agents 2022, 59, 106574. [Google Scholar] [CrossRef] [PubMed]
- Cattoir, V.; Pourbaix, A.; Magnan, M.; Chau, F.; de Lastours, V.; Felden, B.; Fantin, B.; Guérin, F. Novel Chromosomal Mutations Responsible for Fosfomycin Resistance in Escherichia coli. Antimicrob. Agents Chemother. 2020, 11, 575031. [Google Scholar] [CrossRef] [PubMed]
- Arca, P.; Reguera, G.; Hardisson, C. Plasmid-encoded fosfomycin resistance in bacteria isolated from the urinary tract in a multicentre survey. J. Antimicrob. Chemother. 1997, 40, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Karageorgopoulos, D.E.; Wang, R.; Yu, X.H.; Falagas, M.E. Fosfomycin: Evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J. Antimicrob. Chemother. 2012, 67, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Zurfluh, K.; Treier, A.; Schmitt, K.; Stephan, R. Mobile fosfomycin resistance genes in Enterobacteriaceae—An increasing threat. MicrobiologyOpen 2020, 9, e1135. [Google Scholar] [CrossRef]
- Wachino, J.; Yamane, K.; Suzuki, S.; Kimura, K.; Arakawa, Y. Prevalence of fosfomycin resistance among CTX-M-producing Escherichia coli clinical isolates in Japan and identification of novel plasmid-mediated fosfomycin-modifying enzymes. Antimicrob. Agents Chemother. 2010, 54, 3061–3064. [Google Scholar] [CrossRef] [Green Version]
- Terán, F.J.; Suárez, J.E.; Hardisson, C.; Mendoza, M.C. Molecular epidemiology of plasmid mediated resistance to fosfomycin among bacteria isolated from different environments. FEMS Microbiol. Rev. 1988, 55, 213–216. [Google Scholar] [CrossRef] [Green Version]
- Ito, R.; Pacey, M.P.; Mettus, R.T.; Sluis-Cremer, N.; Doi, Y. Origin of the plasmid-mediated fosfomycin resistance gene fosA3. J. Antimicrob. Chemother. 2018, 73, 373–376. [Google Scholar] [CrossRef]
- Neil, K.; Allard, N.; Rodriguez, S. Molecular Mechanisms Influencing Bacterial Conjugation in the Intestinal Microbiota. Front. Microbiol. 2021, 12, 673260. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, Y.; Yu, J.K.; Jung, S.; Kim, Y.; Jeong, S.H.; Arakawa, Y. Prevalence of acquired fosfomycin resistance among extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Korea and IS26-composite transposon surrounding fosA3. J. Antimicrob. Chemother. 2010, 67, 2843–2847. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Yang, X.; Zeng, Z.; Lv, L.; Tang, T.; Lind, D.; Liu, J.-H. Detection of the plasmid-encoded fosfomycin resistance gene fosA3 in Escherichia coli of food-animal origin. J. Antimicrob. Chemother. 2013, 68, 766–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, N.; Kawamura, K.; Nakane, K.; Wachino, J.I.; Arakawa, Y. First detection of fosfomycin resistance gene fosA3 in CTX-M-producing Escherichia coli isolates from healthy individuals in Japan. Microb. Drug Resist. 2013, 19, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Tseng, S.P.; Wang, S.F.; Kuo, C.Y.; Huang, J.W.; Hung, W.C.; Ke, G.M. Characterization of Fosfomycin Resistant Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Human and Pig in Taiwan. PLoS ONE 2015, 10, e0135864. [Google Scholar] [CrossRef] [PubMed]
- Jian, W.; Men, S.; Kong, L.; Ma, S.; Yang, Y.; Wang, Y.; Yuan, Q.; Cheng, G.; Zou, W.; Wang, H. Prevalence of Plasmid-Mediated Fosfomycin Resistance Gene fosA3 Among CTX-M-Producing Escherichia coli Isolates from Chickens in China. Foodborne Pathog. Dis. 2017, 14, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Cattoir, V.; Guérin, F. How is fosfomycin resistance developed in Escherichia coli? Future Microbiol. 2018, 13, 1693–1696. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, G.; Wachino, J.I.; Sato, N.; Kimura, K.; Yamada, K.; Jin, W.; Shibayama, K.; Yagi, T.; Kawamura, K.; Arakawa, Y. Practical agar-based disk potentiation test for detection of fosfomycin-nonsusceptible Escherichia coli clinical isolates producing glutathione S-transferases. J. Clin. Microbiol. 2014, 52, 3175–3179. [Google Scholar] [CrossRef] [Green Version]
- Clermont, O.; Dhanji, H.; Upton, M.; Gibreel, T.; Fox, A.; Boyd, D.; Mulvey, M.R.; Nordmann, P.; Ruppe, E.; Sarthou, J.L.; et al. Rapid detection of the O25b-ST131 clone of Escherichia coli encompassing the CTX-M-15-producing strains. J. Antimicrob. Chemother. 2009, 64, 274–277. [Google Scholar] [CrossRef] [Green Version]
- Edelstein, M.; Pimkin, M.; Palagin, I.; Edelstein, I.; Stratchounsky, L. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob. Agents Chemother. 2003, 47, 3724–3732. [Google Scholar] [CrossRef]
Strain | Mechanism of Resistance | MIC (ug/mL) Parental Strain |
---|---|---|
24 1249 1268 1292 1430 308 1048 1256 1327 1463 326 1360 1097 1316 335 | fos mediated resistance alone | 2048 2048 2048 2048 2048 1024 1024 1024 1024 1024 512 512 256 256 128 |
1075 283 964 | Impaired fosfomycin transport alone | 2048 128 128 |
149 1295 1309 1432 118 85 871 733 | Impaired fosfomycin transport + fos-mediated resistance | 2048 2048 2048 2048 512 256 128 256 |
141 455 532 866 1163 418 1312 143 201 157 1315 248 | No mechanism identified | 2048 2048 2048 2048 2048 1024 1024 512 512 256 256 128 |
Mechanism of Resistance | Number of Isolates |
---|---|
fos genes fos genes alone | 23/38 15/38 |
Impaired fosfomycin transport Impaired transport alone Impaired fosfomycin transport + fos genes No mechanism identified | 11/38 3/38 8/38 12/38 |
Amplified Gene | Primers | Reference |
---|---|---|
fosA1 |
F 5′-ATC TGT GGG TCT GCC TGT CGT-3′ R 5′-ATG CCC GCA TAG GGC TTC T-3′ | [12] |
fosA3 |
F 5′-CCTGGCATTTTATCAGCAGT-3′ R 5′-CGGTTATCTTTCCATACCTCAG-3′ | [12] |
fosA4 |
F 5′-CTG GCG TTT TAT CAG CGGTT-3′ R 5′-CTTCGCTGCGGTTGTCTTT-3′ | [12] |
fosA5 |
F 5′-TATTAGCGAAGCCGATTTTGC T-3′ R 5′-CCC CTT ATA CGG CTG CTC G-3′ | [12] |
fosA6 |
F 5′-CGAGCGTGGCGTTTTATCAG-3′ R 5′-GGCGAAGCTAGCAAAATCGG-3′ | [12] |
fosC2 |
F 5′-TGG AGG CTA CTT GGA TTT G-3′ R 5′-AGG CTA CCG CTA TGG ATT T-3′ | [12] |
pabB | F 5′-TCCAGCAGGTGCTGGATCGT-3′ R 5′-GCGAAATTTTTCGCCGTACTGT-3′ | [38] |
blaCTX-M | F 5’-TTTGCGATGTGCAGTACCAGTA-3′ R 5’-CGATATCGTTGGTGGTGCCATA-3′ | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galindo-Méndez, M.; Navarrete-Salazar, H.; Baltazar-Jiménez, F.; Muñoz-de la Paz, E.; Sánchez-Mawcinitt, M.F.; Gómez-Pardo, A.; Garza-González, E.; Ponce-de-León-Garduño, L.A.; Franco-Cendejas, R.; Morfín-Otero, R.; et al. Emergence of Fosfomycin Resistance by Plasmid-Mediated fos Genes in Uropathogenic ESBL-Producing E. coli Isolates in Mexico. Antibiotics 2022, 11, 1383. https://doi.org/10.3390/antibiotics11101383
Galindo-Méndez M, Navarrete-Salazar H, Baltazar-Jiménez F, Muñoz-de la Paz E, Sánchez-Mawcinitt MF, Gómez-Pardo A, Garza-González E, Ponce-de-León-Garduño LA, Franco-Cendejas R, Morfín-Otero R, et al. Emergence of Fosfomycin Resistance by Plasmid-Mediated fos Genes in Uropathogenic ESBL-Producing E. coli Isolates in Mexico. Antibiotics. 2022; 11(10):1383. https://doi.org/10.3390/antibiotics11101383
Chicago/Turabian StyleGalindo-Méndez, Mario, Humberto Navarrete-Salazar, Francisco Baltazar-Jiménez, Eduardo Muñoz-de la Paz, María Fernanda Sánchez-Mawcinitt, Alexis Gómez-Pardo, Elvira Garza-González, Luis Alfredo Ponce-de-León-Garduño, Rafael Franco-Cendejas, Rayo Morfín-Otero, and et al. 2022. "Emergence of Fosfomycin Resistance by Plasmid-Mediated fos Genes in Uropathogenic ESBL-Producing E. coli Isolates in Mexico" Antibiotics 11, no. 10: 1383. https://doi.org/10.3390/antibiotics11101383
APA StyleGalindo-Méndez, M., Navarrete-Salazar, H., Baltazar-Jiménez, F., Muñoz-de la Paz, E., Sánchez-Mawcinitt, M. F., Gómez-Pardo, A., Garza-González, E., Ponce-de-León-Garduño, L. A., Franco-Cendejas, R., Morfín-Otero, R., Rojas-Larios, F., Mena-Ramírez, J. P., Morales-de-la-Peña, C. T., García-Mendoza, L., Choy-Chang, E. V., Avilés-Benítez, L. K., López-Gutiérrez, E., Canizales-Oviedo, J. L., Barlandas-Rendón, N. E., ... Ostos-Cantú, H. L. (2022). Emergence of Fosfomycin Resistance by Plasmid-Mediated fos Genes in Uropathogenic ESBL-Producing E. coli Isolates in Mexico. Antibiotics, 11(10), 1383. https://doi.org/10.3390/antibiotics11101383