The In Vivo and In Vitro Assessment of Pyocins in Treating Pseudomonas aeruginosa Infections
Abstract
1. General Characteristics of Pseudomonas aeruginosa
2. P. aeruginosa Virulence Factors
2.1. Cell-Associated Virulence Factors
2.2. Extracellular Virulence Factors
2.3. Pseuodomonas aeuroginosa Pyocins
2.4. The R-Pyocins
2.5. The F-Pyocins
2.6. The S-Pyocins
2.7. R-, F-, and S-Pyocins Differ in Their Structure and Mode of Action
2.8. The Antibiofilm Effect of P. aeruginosa Pyocins
2.9. Assessing the Therapuetic Potential of P. aeruoginosa Pycocins Using Different In Vivo Models
3. Engineered Pyocins with Broad Antimicrobial Activity
4. Advantage of Pyocins in Treating P. aeruginosa Infections
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Li, X. Klebsiella pneumoniae and Pseudomonas aeruginosa. In Molecular Medical Microbiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1547–1564. [Google Scholar]
- Michel-Briand, Y.; Baysse, C. The pyocins of Pseudomonas aeruginosa. Biochimie 2002, 84, 499–510. [Google Scholar] [CrossRef]
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef]
- Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.L.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Veesenmeyer, J.L.; Hauser, A.R.; Lisboa, T.; Rello, J. Pseudomonas aeruginosa virulence and therapy: Evolving translational strategies. Crit. Care Med. 2009, 37, 1777–1786. [Google Scholar] [CrossRef] [PubMed]
- Kipnis, E.; Sawa, T.; Wiener-Kronish, J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Médecine Mal. Infect. 2006, 36, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Colmer-Hamood, J.A.; Dzvova, N.; Kruczek, C.; Hamood, A.N. In Vitro Analysis of Pseudomonas aeruginosa Virulence Using Conditions That Mimic the Environment at Specific Infection Sites. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 151–191. [Google Scholar]
- Wall, D.; Kaiser, D. Type IV pili and cell motility. Mol. Microbiol. 1999, 32, 1–10. [Google Scholar] [CrossRef]
- Adamo, R.; Sokol, S.; Soong, G.; Gomez, M.I.; Prince, A. Pseudomonas aeruginosaFlagella Activate Airway Epithelial Cells through asialoGM1 and Toll-Like Receptor 2 as well as Toll-Like Receptor 5. Am. J. Respir. Cell Mol. Biol. 2004, 30, 627–634. [Google Scholar] [CrossRef]
- King, J.D.; Kocíncová, D.; Westman, E.L.; Lam, J.S. Review: Lipopolysaccharide biosynthesis inPseudomonas aeruginosa. Innate Immun. 2009, 15, 261–312. [Google Scholar] [CrossRef]
- Wieland, C.W.; Siegmund, B.; Senaldi, G.; Vasil, M.L.; Dinarello, C.A.; Fantuzzi, G. Pulmonary Inflammation Induced by Pseudomonas aeruginosa Lipopolysaccharide, Phospholipase C, and Exotoxin A: Role of Interferon Regulatory Factor 1. Infect. Immun. 2002, 70, 1352–1358. [Google Scholar] [CrossRef]
- Huszczynski, S.M.; Lam, J.S.; Khursigara, C.M. The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens 2019, 9, 6. [Google Scholar] [CrossRef]
- Pier, G.B. Pseudomonas aeruginosa lipopolysaccharide: A major virulence factor, initiator of inflammation and target for effective immunity. Int. J. Med. Microbiol. 2007, 297, 277–295. [Google Scholar] [CrossRef] [PubMed]
- Boyd, A.; Chakrabarty, A.M. Pseudomonas aeruginosa biofilms: Role of the alginate exopolysaccharide. J. Ind. Microbiol. 1995, 15, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Mathee, K.; Ciofu, O.; Sternberg, C.; Lindum, P.W.; Campbell, J.I.A.; Jensen, P.; Johnsen, A.H.; Givskov, M.; Ohman, D.E.; Søren, M.; et al. Mucoid conversion of Pseudomonas aeruginos by hydrogen peroxide: A mechanism for virulence activation in the cystic fibrosis lung. Microbiology 1999, 145, 1349–1357. [Google Scholar] [CrossRef]
- Newman, J.W.; Floyd, R.V.; Fothergill, J.L. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol. Lett. 2017, 364, fnx124. [Google Scholar] [CrossRef] [PubMed]
- Pavlovskis, O.R.; Iglewski, B.H.; Pollack, M. Mechanism of action of Pseudomonas aeruginosa exotoxin A in experimental mouse infections: Adenosine diphosphate ribosylation of elongation factor 2. Infect. Immun. 1978, 19, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Wolf, P.; Elsässer-Beile, U. Pseudomonas exotoxin A: From virulence factor to anti-cancer agent. Int. J. Med. Microbiol. 2009, 299, 161–176. [Google Scholar] [CrossRef]
- Hauser, A.R. The type III secretion system of Pseudomonas aeruginosa: Infection by injection. Nat. Rev. Microbiol. 2009, 7, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, G.R.; Van Gijsegem, F. Assembly and Function of Type III Secretory Systems. Annu. Rev. Microbiol. 2000, 54, 735–774. [Google Scholar] [CrossRef]
- Lee, V.T.; Smith, R.S.; Tümmler, B.; Lory, S. Activities of Pseudomonas aeruginosa effectors secreted by the Type III secretion system in vitro and during infection. Infect. Immun. 2005, 73, 1695–1705. [Google Scholar] [CrossRef]
- Yahr, T.L.; Vallis, A.J.; Hancock, M.K.; Barbieri, J.T.; Frank, D.W. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc. Natl. Acad. Sci. USA 1998, 95, 13899–13904. [Google Scholar] [CrossRef] [PubMed]
- Toder, D.S.; Ferrell, S.J.; Nezezon, J.L.; Rust, L.; Iglewski, B.H. lasA and lasB genes of Pseudomonas aeruginosa: Analysis of transcription and gene product activity. Infect. Immun. 1994, 62, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- de Kievit, T.R.; Iglewski, B.H. Bacterial Quorum Sensing in Pathogenic Relationships. Infect. Immun. 2000, 68, 4839–4849. [Google Scholar] [CrossRef] [PubMed]
- Pesci, E.C.; Milbank, J.B.J.; Pearson, J.P.; McKnight, S.; Kende, A.S.; Greenberg, E.P.; Iglewski, B.H. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 1999, 96, 11229–11234. [Google Scholar] [CrossRef] [PubMed]
- Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef]
- Malloy, J.L.; Veldhuizen, R.A.W.; Thibodeaux, B.A.; O’Callaghan, R.J.; Wright, J.R. Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005, 288, L409–L418. [Google Scholar] [CrossRef]
- Lau, G.W.; Ran, H.; Kong, F.; Hassett, D.J.; Mavrodi, D. Pseudomonas aeruginosa Pyocyanin Is Critical for Lung Infection in Mice. Infect. Immun. 2004, 72, 4275–4278. [Google Scholar] [CrossRef]
- Cornelis, P.; Dingemans, J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front. Cell. Infect. Microbiol. 2013, 3, 75. [Google Scholar] [CrossRef]
- Visca, P.; Imperi, F.; Lamont, I.L. Pyoverdine siderophores: From biogenesis to biosignificance. Trends Microbiol. 2007, 15, 22–30. [Google Scholar] [CrossRef]
- Ghequire, M.G.K.; De Mot, R. Ribosomally encoded antibacterial proteins and peptides fromPseudomonas. FEMS Microbiol. Rev. 2014, 38, 523–568. [Google Scholar] [CrossRef]
- Nakayama, K.; Takashima, K.; Ishihara, H.; Shinomiya, T.; Kageyama, M.; Kanaya, S.; Ohnishi, M.; Murata, T.; Mori, H.; Hayashi, T. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol. Microbiol. 2000, 38, 213–231. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.R.; Gebhart, D.; Martin, D.W.; Scholl, D. Retargeting R-Type Pyocins To Generate Novel Bactericidal Protein Complexes. Appl. Environ. Microbiol. 2008, 74, 3868–3876. [Google Scholar] [CrossRef] [PubMed]
- Takeya, K.; Mlnamishima, Y.; Amako, K.; Ohnishi, Y. A small rod-shaped pyocin. Virology 1967, 31, 166–168. [Google Scholar] [CrossRef]
- Kuroda, K.; Kageyama, M. Comparative Study on F-Type Pyocins of Pseudomonas aeruginosa. J. Biochem. 1981, 89, 1721–1736. [Google Scholar] [CrossRef] [PubMed]
- Sano, Y.; Matsui, H.; Kobayashi, M.; Kageyama, M. Molecular structures and functions of pyocins S1 and S2 in Pseudomonas aeruginosa. J. Bacteriol. 1993, 175, 2907–2916. [Google Scholar] [CrossRef] [PubMed]
- Meadow, P.M.; Wells, P.L. Receptor Sites for R-type Pyocins and Bacteriophage E79 in the Core Part of the Lipopolysaccharide of Pseudomonas aeruginosa PAC1. J. Gen. Microbiol. 1978, 108, 339–343. [Google Scholar] [CrossRef]
- Köhler, T.; Donner, V.; van Delden, C. Lipopolysaccharide as Shield and Receptor for R-Pyocin-Mediated Killing in Pseudomonas aeruginosa. J. Bacteriol. 2010, 192, 1921–1928. [Google Scholar] [CrossRef]
- Uratani, Y.; Hoshino, T. Pyocin R1 inhibits active transport in Pseudomonas aeruginosa and depolarizes membrane potential. J. Bacteriol. 1984, 157, 632–636. [Google Scholar] [CrossRef]
- Scholl, D.; Martin, D.W. Antibacterial Efficacy of R-Type Pyocins towards Pseudomonas aeruginosa in a Murine Peritonitis Model. Antimicrob. Agents Chemother. 2008, 52, 1647–1652. [Google Scholar] [CrossRef]
- Kuroda, K.; Kageyama, M. Biochemical Properties of a New Flexuous Bacteriocin, Pyocin Fl, Produced by Pseudomonas aeruginosa. J. Biochem. 1979, 85, 7–19. [Google Scholar] [CrossRef]
- Elfarash, A.; Wei, Q.; Cornelis, P. The soluble pyocins S2 and S4 from Pseudomonas aeruginosa bind to the same FpvAI receptor. Microbiologyopen 2012, 1, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Rasouliha, B.H.; Ling, H.; Ho, C.L.; Chang, M.W. A Predicted Immunity Protein Confers Resistance to Pyocin S5 in a Sensitive Strain of Pseudomonas aeruginosa. ChemBioChem 2013, 14, 2444–2446. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef]
- Oluyombo, O.; Penfold, C.N.; Diggle, S.P. Competition in Biofilms between Cystic Fibrosis Isolates of Pseudomonas aeruginosa Is Shaped by R-Pyocins. mBio 2019, 10, e01828-18. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Martin, L.; Rinaldi, A.; Rajendran, R.; Ramage, G.; Walker, D. Activity of Pyocin S2 against Pseudomonas aeruginosa Biofilms. Antimicrob. Agents Chemother. 2012, 56, 1599–1601. [Google Scholar] [CrossRef] [PubMed]
- Paškevičius, Š.; Starkevič, U.; Misiūnas, A.; Vitkauskienė, A.; Gleba, Y.; Ražanskienė, A. Plant-expressed pyocins for control of Pseudomonas aeruginosa. PLoS ONE 2017, 12, e0185782. [Google Scholar] [CrossRef] [PubMed]
- Bird, T.J.; Grieble, H.G. Pyocin antibiosis in chick embryos. Antimicrob. Agents Chemother. 1969, 9, 495–498. [Google Scholar]
- Merrikin, D.J.; Terry, C.S. Use of pyocin 78-C2 in the treatment of Pseudomonas aeruginosa infection in mice. Appl. Microbiol. 1972, 23, 164–165. [Google Scholar] [CrossRef]
- Haas, H.; Sacks, T.; Saltz, N. Protective Effect of Pyocin against Lethal Pseudomonas aeruginosa Infections in Mice. J. Infect. Dis. 1974, 129, 470–472. [Google Scholar] [CrossRef]
- Williams, R.J. Treatment of Pseudomonas aeruginosa infections with pyocines. J. Med. Microbiol. 1976, 9, 153–161. [Google Scholar] [CrossRef]
- McCaughey, L.C.; Josts, I.; Grinter, R.; White, P.; Byron, O.; Tucker, N.P.; Matthews, J.M.; Kleanthous, C.; Whitchurch, C.B.; Walker, D. Discovery, characterization and in vivo activity of pyocin SD2, a protein antibiotic from Pseudomonas aeruginosa. Biochem. J. 2016, 473, 2345–2358. [Google Scholar] [CrossRef] [PubMed]
- Six, A.; Mosbahi, K.; Barge, M.; Kleanthous, C.; Evans, T.; Walker, D. Pyocin efficacy in a murine model of Pseudomonas aeruginosa sepsis. J. Antimicrob. Chemother. 2021, 76, 2317–2324. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, J.M.; Greenwich, J.L.; Davis, B.M.; Bronson, R.T.; Gebhart, D.; Williams, S.R.; Martin, D.; Scholl, D.; Waldor, M. K An Escherichia coli O157-specific engineered pyocin prevents and ameliorates infection by E. coli O157:H7 in an animal model of diarrheal disease. Antimicrob. Agents Chemother. 2011, 55, 5469–5474. [Google Scholar] [CrossRef] [PubMed]
- Rui, P.; Kang, K. National Hospital Ambulatory Medical Care Survey: 2017 Emergency Department Summary Tables. Available online: https://www.cdc.gov/nchs/data/nhamcs/web_tables/2017_ed_web_tables-508.pdf (accessed on 11 September 2022).
- Ghafoor, A.; Hay, I.D.; Rehm, B.H.A. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl. Environ. Microbiol. 2011, 77, 5238–5246. [Google Scholar] [CrossRef]
- West, M.A.; Cripps, M.W. Chapter 18: Infections. In Trauma, 8e; Moore, E.E., Feliciano, D.V., Mattox, K.L., Eds.; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Magill, S.S.; O’Leary, E.; Janelle, S.J.; Thompson, D.L.; Dumyati, G.; Nadle, J.; Wilson, L.E.; Kainer, M.A.; Lynfield, R.; Greissman, S.; et al. Changes in Prevalence of Health Care-Associated Infections in U.S. Hospitals. N. Engl. J. Med. 2018, 379, 1732–1744. [Google Scholar] [CrossRef]
- Sanderson, M.; Chikhani, M.; Blyth, E.; Wood, S.; Moppett, I.K.; McKeever, T.; Simmonds, M.J. Predicting 30-day mortality in patients with sepsis: An exploratory analysis of process of care and patient characteristics. J. Intensive Care Soc. 2018, 19, 299–304. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Djuric, O.; Markovic-Denic, L.; Jovanovic, B.; Bumbasirevic, V. High incidence of multiresistant bacterial isolates from bloodstream infections in trauma emergency department and intensive care unit in Serbia. Acta Microbiol. Immunol. Hung 2019, 66, 307–325. [Google Scholar] [CrossRef]
- Driscoll, J.A.; Brody, S.L.; Kollef, M.H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 2007, 67, 351–368. [Google Scholar] [CrossRef]
- Fily, F.; Ronat, J.-B.; Malou, N.; Kanapathipillai, R.; Seguin, C.; Hussein, N.; Fakhri, R.M.; Langendorf, C. Post-traumatic osteomyelitis in Middle East war-wounded civilians: Resistance to first-line antibiotics in selected bacteria over the decade 2006–2016. BMC Infect. Dis. 2019, 19, 103. [Google Scholar] [CrossRef]
- Park, J.J.; Seo, Y.B.; Choi, Y.K.; Kym, D.; Lee, J. Changes in the prevalence of causative pathogens isolated from severe burn patients from 2012 to 2017. Burns 2019, 46, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Sousa, D.; Ceniceros, A.; Galeiras, R.; Pértega-Díaz, S.; Gutiérrez-Urbón, J.-M.; Rodríguez-Mayo, M.; López-Suso, E.; Mourelo-Fariña, M.; Llinares, P. Microbiology in burns patients with blood stream infections: Trends over time and during the course of hospitalization. Infect. Dis. 2018, 50, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Tuon, F.F.; Cieslinski, J.; Ono, A.F.M.; Goto, F.L.; Machinski, J.M.; Mantovani, L.K.; Kosop, L.R.; Namba, M.S.; Rocha, J.L. Microbiological profile and susceptibility pattern of surgical site infections related to orthopaedic trauma. Int. Orthop. 2019, 43, 1309–1313. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Rello, J.; Marshall, J.K.; Silva, E.; Anzueto, A.; Martin, C.D.; Moreno, R.; Lipman, J.; Gomersall, C.; Sakr, Y.; et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009, 302, 2323–2329. [Google Scholar] [CrossRef]
- McCaughey, L.C.; Ritchie, N.D.; Douce, G.R.; Evans, T.J.; Walker, D. Efficacy of species-specific protein antibiotics in a murine model of acute Pseudomonas aeruginosa lung infection. Sci. Rep. 2016, 6, 30201. [Google Scholar] [CrossRef]
Pyocin | Mechanism of Action | Structure | Protease Sensitive |
---|---|---|---|
R1-5 | Depolarizers cell membrane leading to arrest of protein and nucleic acid synthesis | Rod-like structure consisting of a double hollow cylinder, sheath, and a core | No |
F1-3 | Similar to R pyocins | Non-contractile rod with a uniform width (resemble flexible phage tails) | No |
S1-6 | DNase, tRNase, Pore-forming, and rRNase activity | A single protein consisting of several functional domains including: receptor-binding domain (I), translocation domain (II), domain with an unknown function (III), and killing domain (IV) | Yes |
Pyocin | Mode of Action | Toxin Domains | Immunity Domain |
---|---|---|---|
S1 | DNase | PF12639 (Colicin-DNase) | PF01320 (Colicin immunity protein) |
S2 | DNase | PF12639 (Colicin-DNase) | PF01320 (Colicin immunity protein) |
S3 | DNase | PF06958 (Colicin-DNase) | - |
S4 | tRNase | PF12106 (Colicin E5 ribonuclease) | PF11480 (Colicin E1 immunity protein) |
S5 | Pore-forming | PF01024 (Colicin pore-forming domain) | PF03526 (Colicin E1 immunity protein) |
S6 | rRNase | PF09000 (Cytotoxic) | - |
S7 | rRNase | PF09000 (Cytotoxic) | - |
S8 | DNase | PF12639 (DNase/tRNase domain of colicin-like bacteriocin) | PF01320 (Colicin immunity protein) |
S9 | DNase | PF12639 (DNase/tRNase domain of colicin-like bacteriocin) | PF01320 (Colicin immunity protein) |
S10 | DNase | PF06958 (S-type Pyocin) | - |
S11 | tRNase | PF11429 (Colicin D) | PF09204 (Bacterial self-protective colicin-like immunity) |
S12 | tRNase | PF11429 (Colicin D) | PF09204 (Bacterial self-protective colicin-like immunity) |
Pyocin | Model | Treatment Route | Protective Effect | Toxicity | References |
---|---|---|---|---|---|
Crude pyocin (Unknown) | Chick embryos | i.v. | Yes | Yes | Bird et al. [49] |
Purified pyocin 78-C2 (strain 78, pyocin type C2) | Murine (LACA strain) | i.v | Yes | No | Merrikin et al. [50] |
Crude pyocin | Murine (model not specified) | i.p | Yes | No | Haas et al. [51] |
Purified R-type | Murine (CFE mice) | i.p | Yes | No | Rosamu et al. [52] |
F-type | Murine (CFE mice) | i.p | Yes | No | Rosamu et al. [52] |
S-type | Murine (CFE mice) | i.p | No | NA | Rosamu et al. [52] |
Purified R2-pyocin | Murine Peritonitis Model | i.p/i.v | Yes | NA | Scholl et al. [41] |
Recombinant pyocin S2 | Galleria Mellonella Larvae | N/A | Yes | No | Smith et al. [47] |
Recombinant S2 pyocins | Acute P. aeruginosa Lung Infection | N/A | Yes | No | Paškevičius et al. [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, A.; Kopel, J.; Hamood, A. The In Vivo and In Vitro Assessment of Pyocins in Treating Pseudomonas aeruginosa Infections. Antibiotics 2022, 11, 1366. https://doi.org/10.3390/antibiotics11101366
Alqahtani A, Kopel J, Hamood A. The In Vivo and In Vitro Assessment of Pyocins in Treating Pseudomonas aeruginosa Infections. Antibiotics. 2022; 11(10):1366. https://doi.org/10.3390/antibiotics11101366
Chicago/Turabian StyleAlqahtani, Abdulaziz, Jonathan Kopel, and Abdul Hamood. 2022. "The In Vivo and In Vitro Assessment of Pyocins in Treating Pseudomonas aeruginosa Infections" Antibiotics 11, no. 10: 1366. https://doi.org/10.3390/antibiotics11101366
APA StyleAlqahtani, A., Kopel, J., & Hamood, A. (2022). The In Vivo and In Vitro Assessment of Pyocins in Treating Pseudomonas aeruginosa Infections. Antibiotics, 11(10), 1366. https://doi.org/10.3390/antibiotics11101366