Fidaxomicin for the Treatment of Clostridioides difficile Infection in Adult Patients: An Update on Results from Randomized Controlled Trials
Abstract
1. Introduction
2. Methods
3. Characteristics, Mechanism of Action, and Antimicrobial Activity of Fidaxomicin
4. Results of Phase-3/4 Randomized Controlled Trials
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guh, A.Y.; Mu, Y.; Winston, L.G.; Johnston, H.; Olson, D.; Farley, M.M.; Wilson, L.E.; Holzbauer, S.M.; Phipps, E.C.; Dumyati, G.K.; et al. Trends in U.S. Burden of Clostridioides difficile Infection and Outcomes. N. Engl. J. Med. 2020, 382, 1320–1330. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S. My Treatment Approach to Clostridioides difficile Infection. Mayo Clin. Proc. 2021, 96, 2192–2204. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Pardi, D.S.; Aronson, S.L.; Kammer, P.P.; Orenstein, R.; St Sauver, J.L.; Harmsen, W.S.; Zinsmeister, A.R. The epidemiology of community-acquired Clostridium difficile infection: A population-based study. Am. J. Gastroenterol. 2012, 107, 89–95. [Google Scholar] [CrossRef]
- Lessa, F.C. Community-associated Clostridium difficile infection: How real is it? Anaerobe 2013, 24, 121–123. [Google Scholar] [CrossRef]
- Alicino, C.; Giacobbe, D.R.; Durando, P.; Bellina, D.; AM, D.I.B.; Paganino, C.; Del Bono, V.; Viscoli, C.; Icardi, G.; Orsi, A. Increasing incidence of Clostridium difficile infections: Results from a 5-year retrospective study in a large teaching hospital in the Italian region with the oldest population. Epidemiol. Infect. 2016, 144, 2517–2526. [Google Scholar] [CrossRef]
- Finn, E.; Andersson, F.L.; Madin-Warburton, M. Burden of Clostridioides difficile infection (CDI)—A systematic review of the epidemiology of primary and recurrent CDI. BMC Infect. Dis. 2021, 21, 456. [Google Scholar] [CrossRef]
- Fekety, R.; McFarland, L.V.; Surawicz, C.M.; Greenberg, R.N.; Elmer, G.W.; Mulligan, M.E. Recurrent Clostridium difficile diarrhea: Characteristics of and risk factors for patients enrolled in a prospective, randomized, double-blinded trial. Clin. Infect. Dis. 1997, 24, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Petrosillo, N.; Adamoli, L.; Bartoletti, M.; Bartoloni, A.; Basile, G.; Bassetti, M.; Bonfanti, P.; Borromeo, R.; Ceccarelli, G.; et al. Prospective Study on Incidence, Risk Factors and Outcome of Recurrent Clostridioides difficile Infections. J. Clin. Med. 2021, 10, 1127. [Google Scholar] [CrossRef]
- McFarland, L.V.; Surawicz, C.M.; Rubin, M.; Fekety, R.; Elmer, G.W.; Greenberg, R.N. Recurrent Clostridium difficile disease: Epidemiology and clinical characteristics. Infect. Control Hosp. Epidemiol. 1999, 20, 43–50. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Iraci, F.; Raponi, G.; Goldoni, P.; Delle Rose, D.; Santino, I.; Carfagna, P.; Murri, R.; Fantoni, M.; et al. Risk factors for recurrence in patients with Clostridium difficile infection due to 027 and non-027 ribotypes. Clin. Microbiol. Infect. 2019, 25, 474–480. [Google Scholar] [CrossRef]
- Johnson, S.; Lavergne, V.; Skinner, A.M.; Gonzales-Luna, A.J.; Garey, K.W.; Kelly, C.P.; Wilcox, M.H. Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 Focused Update Guidelines on Management of Clostridioides difficile Infection in Adults. Clin. Infect. Dis. 2021, 73, 755–757. [Google Scholar] [CrossRef] [PubMed]
- van Prehn, J.; Reigadas, E.; Vogelzang, E.H.; Bouza, E.; Hristea, A.; Guery, B.; Krutova, M.; Noren, T.; Allerberger, F.; Coia, J.E.; et al. European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin. Microbiol. Infect. 2021, 27 (Suppl. S2), S1–S21. [Google Scholar] [CrossRef] [PubMed]
- Babakhani, F.; Gomez, A.; Robert, N.; Sears, P. Killing kinetics of fidaxomicin and its major metabolite, OP-1118, against Clostridium difficile. J. Med. Microbiol. 2011, 60, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A. Current and emerging management options for Clostridium difficile infection: What is the role of fidaxomicin? Clin. Microbiol. Infect. 2012, 18 (Suppl. S6), 28–35. [Google Scholar] [CrossRef] [PubMed]
- Louie, T.J.; Emery, J.; Krulicki, W.; Byrne, B.; Mah, M. OPT-80 eliminates Clostridium difficile and is sparing of bacteroides species during treatment of C. difficile infection. Antimicrob. Agents Chemother. 2009, 53, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Tannock, G.W.; Munro, K.; Taylor, C.; Lawley, B.; Young, W.; Byrne, B.; Emery, J.; Louie, T. A new macrocyclic antibiotic, fidaxomicin (OPT-80), causes less alteration to the bowel microbiota of Clostridium difficile-infected patients than does vancomycin. Microbiology 2010, 156, 3354–3359. [Google Scholar] [CrossRef] [PubMed]
- Artsimovitch, I.; Seddon, J.; Sears, P. Fidaxomicin is an inhibitor of the initiation of bacterial RNA synthesis. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S127–S131. [Google Scholar] [CrossRef]
- Cao, X.; Boyaci, H.; Chen, J.; Bao, Y.; Landick, R.; Campbell, E.A. Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile. Nature 2022, 604, 541–545. [Google Scholar] [CrossRef]
- How the antibiotic fidaxomicin targets an intestinal pathogen. Nature 2022. online ahead of print. [CrossRef]
- Ajami, N.J.; Cope, J.L.; Wong, M.C.; Petrosino, J.F.; Chesnel, L. Impact of Oral Fidaxomicin Administration on the Intestinal Microbiota and Susceptibility to Clostridium difficile Colonization in Mice. Antimicrob. Agents Chemother. 2018, 62, e02112-17. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Konishi, H.; Aoki, K.; Ishii, Y.; Chono, K.; Tateda, K. The gut microbiome diversity of Clostridioides difficile-inoculated mice treated with vancomycin and fidaxomicin. J. Infect. Chemother. 2020, 26, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.; Hurless, K.; Cadnum, J.L.; Chesnel, L.; Gao, L.; Chan, L.; Kundrapu, S.; Polinkovsky, A.; Donskey, C.J. Effect of Fidaxomicin versus Vancomycin on Susceptibility to Intestinal Colonization with Vancomycin-Resistant Enterococci and Klebsiella pneumoniae in Mice. Antimicrob. Agents Chemother. 2016, 60, 3988–3993. [Google Scholar] [CrossRef] [PubMed]
- Louie, T.J.; Cannon, K.; Byrne, B.; Emery, J.; Ward, L.; Eyben, M.; Krulicki, W. Fidaxomicin preserves the intestinal microbiome during and after treatment of Clostridium difficile infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S132–S142. [Google Scholar] [CrossRef] [PubMed]
- Biedenbach, D.J.; Ross, J.E.; Putnam, S.D.; Jones, R.N. In vitro activity of fidaxomicin (OPT-80) tested against contemporary clinical isolates of Staphylococcus spp. and Enterococcus spp. Antimicrob. Agents Chemother. 2010, 54, 2273–2275. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nerandzic, M.M.; Mullane, K.; Miller, M.A.; Babakhani, F.; Donskey, C.J. Reduced acquisition and overgrowth of vancomycin-resistant enterococci and Candida species in patients treated with fidaxomicin versus vancomycin for Clostridium difficile infection. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S121–S126. [Google Scholar] [CrossRef]
- Falcone, M.; Russo, A.; Iraci, F.; Carfagna, P.; Goldoni, P.; Vullo, V.; Venditti, M. Risk Factors and Outcomes for Bloodstream Infections Secondary to Clostridium difficile Infection. Antimicrob. Agents Chemother. 2016, 60, 252–257. [Google Scholar] [CrossRef]
- Babakhani, F.; Gomez, A.; Robert, N.; Sears, P. Postantibiotic effect of fidaxomicin and its major metabolite, OP-1118, against Clostridium difficile. Antimicrob. Agents Chemother. 2011, 55, 4427–4429. [Google Scholar] [CrossRef]
- Sears, P.; Crook, D.W.; Louie, T.J.; Miller, M.A.; Weiss, K. Fidaxomicin attains high fecal concentrations with minimal plasma concentrations following oral administration in patients with Clostridium difficile infection. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S116–S120. [Google Scholar] [CrossRef]
- Soriano, M.M.; Liao, S.; Danziger, L.H. Fidaxomicin: A minimally absorbed macrocyclic antibiotic for the treatment of Clostridium difficile infections. Expert Rev. Anti-Infect. Ther. 2013, 11, 767–776. [Google Scholar] [CrossRef]
- Mullane, K.M.; Gorbach, S. Fidaxomicin: First-in-class macrocyclic antibiotic. Expert Rev. Anti-Infect. Ther. 2011, 9, 767–777. [Google Scholar] [CrossRef]
- Shue, Y.K.; Sears, P.S.; Shangle, S.; Walsh, R.B.; Lee, C.; Gorbach, S.L.; Okumu, F.; Preston, R.A. Safety, tolerance, and pharmacokinetic studies of OPT-80 in healthy volunteers following single and multiple oral doses. Antimicrob. Agents Chemother. 2008, 52, 1391–1395. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Walkty, A.J.; Karlowsky, J.A. Fidaxomicin: A novel agent for the treatment of Clostridium difficile infection. Can. J. Infect. Dis. Med. Microbiol. 2015, 26, 305–312. [Google Scholar] [CrossRef]
- Goldstein, E.J.; Babakhani, F.; Citron, D.M. Antimicrobial activities of fidaxomicin. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S143–S148. [Google Scholar] [CrossRef]
- Liao, C.H.; Ko, W.C.; Lu, J.J.; Hsueh, P.R. Characterizations of clinical isolates of Clostridium difficile by toxin genotypes and by susceptibility to 12 antimicrobial agents, including fidaxomicin (OPT-80) and rifaximin: A multicenter study in Taiwan. Antimicrob. Agents Chemother. 2012, 56, 3943–3949. [Google Scholar] [CrossRef] [PubMed]
- Eitel, Z.; Terhes, G.; Soki, J.; Nagy, E.; Urban, E. Investigation of the MICs of fidaxomicin and other antibiotics against Hungarian Clostridium difficile isolates. Anaerobe 2015, 31, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Snydman, D.R.; McDermott, L.A.; Jacobus, N.V.; Thorpe, C.; Stone, S.; Jenkins, S.G.; Goldstein, E.J.; Patel, R.; Forbes, B.A.; Mirrett, S.; et al. U.S.-Based National Sentinel Surveillance Study for the Epidemiology of Clostridium difficile-Associated Diarrheal Isolates and Their Susceptibility to Fidaxomicin. Antimicrob. Agents Chemother. 2015, 59, 6437–6443. [Google Scholar] [CrossRef]
- Thorpe, C.M.; McDermott, L.A.; Tran, M.K.; Chang, J.; Jenkins, S.G.; Goldstein, E.J.C.; Patel, R.; Forbes, B.A.; Johnson, S.; Gerding, D.N.; et al. U.S.-Based National Surveillance for Fidaxomicin Susceptibility of Clostridioides difficile-Associated Diarrheal Isolates from 2013 to 2016. Antimicrob. Agents Chemother. 2019, 63, e00391-19. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, Y.; Nishiyama, N.; Koizumi, Y.; Matsukawa, Y.; Suematsu, H.; Hagihara, M.; Katsumata, K.; Mikamo, H. Antimicrobial activity of fidaxomicin against Clostridium difficile clinical isolates in Aichi area in Japan. J. Infect. Chemother. 2017, 23, 724–726. [Google Scholar] [CrossRef] [PubMed]
- Putsathit, P.; Maneerattanaporn, M.; Piewngam, P.; Knight, D.R.; Kiratisin, P.; Riley, T.V. Antimicrobial susceptibility of Clostridium difficile isolated in Thailand. Antimicrob. Resist. Infect. Control. 2017, 6, 58. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cheng, J.W.; Yang, Q.W.; Xiao, M.; Yu, S.Y.; Zhou, M.L.; Kudinha, T.; Kong, F.; Liao, J.W.; Xu, Y.C. High in vitro activity of fidaxomicin against Clostridium difficile isolates from a university teaching hospital in China. J. Microbiol. Immunol. Infect. 2018, 51, 411–416. [Google Scholar] [CrossRef]
- Wolfe, C.; Pagano, P.; Pillar, C.M.; Shinabarger, D.L.; Boulos, R.A. Comparison of the in vitro antibacterial activity of Ramizol, fidaxomicin, vancomycin, and metronidazole against 100 clinical isolates of Clostridium difficile by broth microdilution. Diagn. Microbiol. Infect. Dis. 2018, 92, 250–252. [Google Scholar] [CrossRef]
- Beran, V.; Kuijper, E.J.; Harmanus, C.; Sanders, I.M.; van Dorp, S.M.; Knetsch, C.W.; Janeckova, J.; Seidelova, A.; Barekova, L.; Tvrdik, J.; et al. Molecular typing and antimicrobial susceptibility testing to six antimicrobials of Clostridium difficile isolates from three Czech hospitals in Eastern Bohemia in 2011-2012. Folia Microbiol. 2017, 62, 445–451. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Adam, H.J.; Kosowan, T.; Baxter, M.R.; Nichol, K.A.; Laing, N.M.; Golding, G.; Zhanel, G.G. PCR ribotyping and antimicrobial susceptibility testing of isolates of Clostridium difficile cultured from toxin-positive diarrheal stools of patients receiving medical care in Canadian hospitals: The Canadian Clostridium difficile Surveillance Study (CAN-DIFF) 2013-2015. Diagn. Microbiol. Infect. Dis. 2018, 91, 105–111. [Google Scholar] [CrossRef]
- Freeman, J.; Vernon, J.; Morris, K.; Nicholson, S.; Todhunter, S.; Longshaw, C.; Wilcox, M.H.; Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin. Microbiol. Infect. 2015, 21, 248.E9–248.E16. [Google Scholar] [CrossRef]
- Freeman, J.; Vernon, J.; Pilling, S.; Morris, K.; Nicholson, S.; Shearman, S.; Longshaw, C.; Wilcox, M.H.; Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes Study Group. The ClosER study: Results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes, 2011–2014. Clin. Microbiol. Infect. 2018, 24, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; Vernon, J.; Pilling, S.; Morris, K.; Nicolson, S.; Shearman, S.; Clark, E.; Palacios-Fabrega, J.A.; Wilcox, M.; Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group. Five-year Pan-European, longitudinal surveillance of Clostridium difficile ribotype prevalence and antimicrobial resistance: The extended ClosER study. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 169–177. [Google Scholar] [CrossRef]
- Citron, D.M.; Babakhani, F.; Goldstein, E.J.; Nagaro, K.; Sambol, S.; Sears, P.; Shue, Y.K.; Gerding, D.N. Typing and susceptibility of bacterial isolates from the fidaxomicin (OPT-80) phase II study for C. difficile infection. Anaerobe 2009, 15, 234–236. [Google Scholar] [CrossRef]
- Goldstein, E.J.; Citron, D.M.; Sears, P.; Babakhani, F.; Sambol, S.P.; Gerding, D.N. Comparative susceptibilities to fidaxomicin (OPT-80) of isolates collected at baseline, recurrence, and failure from patients in two phase III trials of fidaxomicin against Clostridium difficile infection. Antimicrob. Agents Chemother. 2011, 55, 5194–5199. [Google Scholar] [CrossRef]
- Peng, Z.; Jin, D.; Kim, H.B.; Stratton, C.W.; Wu, B.; Tang, Y.W.; Sun, X. Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 2017, 55, 1998–2008. [Google Scholar] [CrossRef] [PubMed]
- Leeds, J.A.; Sachdeva, M.; Mullin, S.; Barnes, S.W.; Ruzin, A. In vitro selection, via serial passage, of Clostridium difficile mutants with reduced susceptibility to fidaxomicin or vancomycin. J. Antimicrob. Chemother. 2014, 69, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Leeds, J.A. Antibacterials Developed to Target a Single Organism: Mechanisms and Frequencies of Reduced Susceptibility to the Novel Anti-Clostridium difficile Compounds Fidaxomicin and LFF571. Cold Spring Harb. Perspect. Med. 2016, 6, a025445. [Google Scholar] [CrossRef]
- Kuehne, S.A.; Dempster, A.W.; Collery, M.M.; Joshi, N.; Jowett, J.; Kelly, M.L.; Cave, R.; Longshaw, C.M.; Minton, N.P. Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin. J. Antimicrob. Chemother. 2018, 73, 973–980. [Google Scholar] [CrossRef]
- Schwanbeck, J.; Riedel, T.; Laukien, F.; Schober, I.; Oehmig, I.; Zimmermann, O.; Overmann, J.; Gross, U.; Zautner, A.E.; Bohne, W. Characterization of a clinical Clostridioides difficile isolate with markedly reduced fidaxomicin susceptibility and a V1143D mutation in rpoB. J. Antimicrob. Chemother. 2019, 74, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Babakhani, F.; Bouillaut, L.; Gomez, A.; Sears, P.; Nguyen, L.; Sonenshein, A.L. Fidaxomicin inhibits spore production in Clostridium difficile. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S162–S169. [Google Scholar] [CrossRef]
- Chilton, C.H.; Crowther, G.S.; Freeman, J.; Todhunter, S.L.; Nicholson, S.; Longshaw, C.M.; Wilcox, M.H. Successful treatment of simulated Clostridium difficile infection in a human gut model by fidaxomicin first line and after vancomycin or metronidazole failure. J. Antimicrob. Chemother. 2014, 69, 451–462. [Google Scholar] [CrossRef]
- Aldape, M.J.; Packham, A.E.; Heeney, D.D.; Rice, S.N.; Bryant, A.E.; Stevens, D.L. Fidaxomicin reduces early toxin A and B production and sporulation in Clostridium difficile in vitro. J. Med. Microbiol. 2017, 66, 1393–1399. [Google Scholar] [CrossRef]
- Allen, C.A.; Babakhani, F.; Sears, P.; Nguyen, L.; Sorg, J.A. Both fidaxomicin and vancomycin inhibit outgrowth of Clostridium difficile spores. Antimicrob. Agents Chemother. 2013, 57, 664–667. [Google Scholar] [CrossRef] [PubMed]
- Chilton, C.H.; Crowther, G.S.; Ashwin, H.; Longshaw, C.M.; Wilcox, M.H. Association of Fidaxomicin with C. difficile Spores: Effects of Persistence on Subsequent Spore Recovery, Outgrowth and Toxin Production. PLoS ONE 2016, 11, e0161200. [Google Scholar] [CrossRef]
- Basseres, E.; Endres, B.T.; Montes-Bravo, N.; Perez-Soto, N.; Rashid, T.; Lancaster, C.; Begum, K.; Alam, M.J.; Paredes-Sabja, D.; Garey, K.W. Visualization of fidaxomicin association with the exosporium layer of Clostridioides difficile spores. Anaerobe 2021, 69, 102352. [Google Scholar] [CrossRef] [PubMed]
- Babakhani, F.; Bouillaut, L.; Sears, P.; Sims, C.; Gomez, A.; Sonenshein, A.L. Fidaxomicin inhibits toxin production in Clostridium difficile. J. Antimicrob. Chemother. 2013, 68, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Thabit, A.K.; Alam, M.J.; Khaleduzzaman, M.; Garey, K.W.; Nicolau, D.P. A pilot study to assess bacterial and toxin reduction in patients with Clostridium difficile infection given fidaxomicin or vancomycin. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 22. [Google Scholar] [CrossRef]
- Koon, H.W.; Wang, J.; Mussatto, C.C.; Ortiz, C.; Lee, E.C.; Tran, D.H.; Chen, X.; Kelly, C.P.; Pothoulakis, C. Fidaxomicin and OP-1118 Inhibit Clostridium difficile Toxin A- and B-Mediated Inflammatory Responses via Inhibition of NF-kappaB Activity. Antimicrob. Agents Chemother. 2018, 62, e01513-17. [Google Scholar] [CrossRef] [PubMed]
- Koon, H.W.; Ho, S.; Hing, T.C.; Cheng, M.; Chen, X.; Ichikawa, Y.; Kelly, C.P.; Pothoulakis, C. Fidaxomicin inhibits Clostridium difficile toxin A-mediated enteritis in the mouse ileum. Antimicrob. Agents Chemother. 2014, 58, 4642–4650. [Google Scholar] [CrossRef] [PubMed]
- Dapa, T.; Unnikrishnan, M. Biofilm formation by Clostridium difficile. Gut Microbes 2013, 4, 397–402. [Google Scholar] [CrossRef]
- Hamada, M.; Yamaguchi, T.; Ishii, Y.; Chono, K.; Tateda, K. Inhibitory effect of fidaxomicin on biofilm formation in Clostridioides difficile. J. Infect. Chemother. 2020, 26, 685–692. [Google Scholar] [CrossRef] [PubMed]
- James, G.A.; Chesnel, L.; Boegli, L.; deLancey Pulcini, E.; Fisher, S.; Stewart, P.S. Analysis of Clostridium difficile biofilms: Imaging and antimicrobial treatment. J. Antimicrob. Chemother. 2018, 73, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Pantaleon, V.; Bouttier, S.; Soavelomandroso, A.P.; Janoir, C.; Candela, T. Biofilms of Clostridium species. Anaerobe 2014, 30, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Biswas, J.S.; Patel, A.; Otter, J.A.; Wade, P.; Newsholme, W.; van Kleef, E.; Goldenberg, S.D. Reduction in Clostridium difficile environmental contamination by hospitalized patients treated with fidaxomicin. J. Hosp. Infect. 2015, 90, 267–270. [Google Scholar] [CrossRef][Green Version]
- Davies, K.; Mawer, D.; Walker, A.S.; Berry, C.; Planche, T.; Stanley, P.; Goldenberg, S.; Sandoe, J.; Wilcox, M.H. An Analysis of Clostridium difficile Environmental Contamination During and After Treatment for C difficile Infection. Open Forum Infect. Dis. 2020, 7, ofaa362. [Google Scholar] [CrossRef]
- Turner, N.A.; Warren, B.G.; Gergen-Teague, M.F.; Addison, R.M.; Addison, B.; Rutala, W.A.; Weber, D.J.; Sexton, D.J.; Anderson, D.J. Impact of Oral Metronidazole, Vancomycin, and Fidaxomicin on Host Shedding and Environmental Contamination with Clostridioides difficile. Clin. Infect. Dis. 2022, 74, 648–656. [Google Scholar] [CrossRef]
- Cataldo, M.A.; Granata, G.; Petrosillo, N. Clostridium difficile infection: New approaches to prevention, non-antimicrobial treatment, and stewardship. Expert Rev. Anti-Infect. Ther. 2017, 15, 1027–1040. [Google Scholar] [CrossRef]
- Cornely, O.A.; Crook, D.W.; Esposito, R.; Poirier, A.; Somero, M.S.; Weiss, K.; Sears, P.; Gorbach, S.; Group, O.P.T.C.S. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: A double-blind, non-inferiority, randomised controlled trial. Lancet Infect. Dis. 2012, 12, 281–289. [Google Scholar] [CrossRef]
- Louie, T.J.; Miller, M.A.; Mullane, K.M.; Weiss, K.; Lentnek, A.; Golan, Y.; Gorbach, S.; Sears, P.; Shue, Y.K.; OPT-80-003 Clinical Study Group. Fidaxomicin versus vancomycin for Clostridium difficile infection. N. Engl. J. Med. 2011, 364, 422–431. [Google Scholar] [CrossRef]
- Crook, D.W.; Walker, A.S.; Kean, Y.; Weiss, K.; Cornely, O.A.; Miller, M.A.; Esposito, R.; Louie, T.J.; Stoesser, N.E.; Young, B.C.; et al. Fidaxomicin versus vancomycin for Clostridium difficile infection: Meta-analysis of pivotal randomized controlled trials. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S93–S103. [Google Scholar] [CrossRef]
- Cornely, O.A.; Nathwani, D.; Ivanescu, C.; Odufowora-Sita, O.; Retsa, P.; Odeyemi, I.A. Clinical efficacy of fidaxomicin compared with vancomycin and metronidazole in Clostridium difficile infections: A meta-analysis and indirect treatment comparison. J. Antimicrob. Chemother. 2014, 69, 2892–2900. [Google Scholar] [CrossRef]
- Nelson, R.L.; Suda, K.J.; Evans, C.T. Antibiotic treatment for Clostridium difficile-associated diarrhoea in adults. Cochrane Database Syst. Rev. 2017, 3, CD004610. [Google Scholar] [CrossRef]
- Mullane, K.M.; Miller, M.A.; Weiss, K.; Lentnek, A.; Golan, Y.; Sears, P.S.; Shue, Y.K.; Louie, T.J.; Gorbach, S.L. Efficacy of fidaxomicin versus vancomycin as therapy for Clostridium difficile infection in individuals taking concomitant antibiotics for other concurrent infections. Clin. Infect. Dis. 2011, 53, 440–447. [Google Scholar] [CrossRef]
- Cornely, O.A.; Miller, M.A.; Fantin, B.; Mullane, K.; Kean, Y.; Gorbach, S. Resolution of Clostridium difficile-associated diarrhea in patients with cancer treated with fidaxomicin or vancomycin. J. Clin. Oncol. 2013, 31, 2493–2499. [Google Scholar] [CrossRef]
- Figueroa, I.; Johnson, S.; Sambol, S.P.; Goldstein, E.J.; Citron, D.M.; Gerding, D.N. Relapse versus reinfection: Recurrent Clostridium difficile infection following treatment with fidaxomicin or vancomycin. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S104–S109. [Google Scholar] [CrossRef]
- Eyre, D.W.; Babakhani, F.; Griffiths, D.; Seddon, J.; Del Ojo Elias, C.; Gorbach, S.L.; Peto, T.E.; Crook, D.W.; Walker, A.S. Whole-genome sequencing demonstrates that fidaxomicin is superior to vancomycin for preventing reinfection and relapse of infection with Clostridium difficile. J. Infect. Dis. 2014, 209, 1446–1451. [Google Scholar] [CrossRef]
- Cornely, O.A.; Miller, M.A.; Louie, T.J.; Crook, D.W.; Gorbach, S.L. Treatment of first recurrence of Clostridium difficile infection: Fidaxomicin versus vancomycin. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S154–S161. [Google Scholar] [CrossRef] [PubMed]
- Louie, T.J.; Miller, M.A.; Crook, D.W.; Lentnek, A.; Bernard, L.; High, K.P.; Shue, Y.K.; Gorbach, S.L. Effect of age on treatment outcomes in Clostridium difficile infection. J. Am. Geriatr. Soc. 2013, 61, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Mikamo, H.; Tateda, K.; Yanagihara, K.; Kusachi, S.; Takesue, Y.; Miki, T.; Oizumi, Y.; Gamo, K.; Hashimoto, A.; Toyoshima, J.; et al. Efficacy and safety of fidaxomicin for the treatment of Clostridioides (Clostridium) difficile infection in a randomized, double-blind, comparative Phase III study in Japan. J. Infect. Chemother. 2018, 24, 744–752. [Google Scholar] [CrossRef]
- Okumura, H.; Fukushima, A.; Taieb, V.; Shoji, S.; English, M. Fidaxomicin compared with vancomycin and metronidazole for the treatment of Clostridioides (Clostridium) difficile infection: A network meta-analysis. J. Infect. Chemother. 2020, 26, 43–50. [Google Scholar] [CrossRef]
- Housman, S.T.; Thabit, A.K.; Kuti, J.L.; Quintiliani, R.; Nicolau, D.P. Assessment of Clostridium difficile Burden in Patients Over Time with First Episode Infection Following Fidaxomicin or Vancomycin. Infect. Control Hosp. Epidemiol. 2016, 37, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Hvas, C.L.; Dahl Jorgensen, S.M.; Jorgensen, S.P.; Storgaard, M.; Lemming, L.; Hansen, M.M.; Erikstrup, C.; Dahlerup, J.F. Fecal Microbiota Transplantation Is Superior to Fidaxomicin for Treatment of Recurrent Clostridium difficile Infection. Gastroenterology 2019, 156, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, S.; Mihara, T.; Sasaki, M.; Shimamura, C.; Shimamura, R.; Suzuki, S.; Yoshikawa, M.; Hasegawa, T.; Enoki, Y.; Taguchi, K.; et al. Oral fidaxomicin versus vancomycin for the treatment of Clostridioides difficile infection: A systematic review and meta-analysis of randomized controlled trials. J. Infect. Chemother. 2022, 28, 1536–1545. [Google Scholar] [CrossRef]
- Guery, B.; Menichetti, F.; Anttila, V.J.; Adomakoh, N.; Aguado, J.M.; Bisnauthsing, K.; Georgopali, A.; Goldenberg, S.D.; Karas, A.; Kazeem, G.; et al. Extended-pulsed fidaxomicin versus vancomycin for Clostridium difficile infection in patients 60 years and older (EXTEND): A randomised, controlled, open-label, phase 3b/4 trial. Lancet Infect. Dis. 2018, 18, 296–307. [Google Scholar] [CrossRef]
- Chilton, C.H.; Crowther, G.S.; Todhunter, S.L.; Ashwin, H.; Longshaw, C.M.; Karas, A.; Wilcox, M.H. Efficacy of alternative fidaxomicin dosing regimens for treatment of simulated Clostridium difficile infection in an in vitro human gut model. J. Antimicrob. Chemother. 2015, 70, 2598–2607. [Google Scholar] [CrossRef]
- Guery, B.; Georgopali, A.; Karas, A.; Kazeem, G.; Michon, I.; Wilcox, M.H.; Cornely, O.A. Pharmacokinetic analysis of an extended-pulsed fidaxomicin regimen for the treatment of Clostridioides (Clostridium) difficile infection in patients aged 60 years and older in the EXTEND randomized controlled trial. J. Antimicrob. Chemother. 2020, 75, 1014–1018. [Google Scholar] [CrossRef]
- Cornely, O.A.; Vehreschild, M.; Adomakoh, N.; Georgopali, A.; Karas, A.; Kazeem, G.; Guery, B. Extended-pulsed fidaxomicin versus vancomycin for Clostridium difficile infection: EXTEND study subgroup analyses. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1187–1194. [Google Scholar] [CrossRef]
- Wilcox, M.H.; Cornely, O.A.; Guery, B.; Longshaw, C.; Georgopali, A.; Karas, A.; Kazeem, G.; Palacios-Fabrega, J.A.; Vehreschild, M. Microbiological Characterization and Clinical Outcomes After Extended-Pulsed Fidaxomicin Treatment for Clostridioides difficile Infection in the EXTEND Study. Open Forum Infect. Dis. 2019, 6, ofz436. [Google Scholar] [CrossRef]
- Beinortas, T.; Burr, N.E.; Wilcox, M.H.; Subramanian, V. Comparative efficacy of treatments for Clostridium difficile infection: A systematic review and network meta-analysis. Lancet Infect. Dis. 2018, 18, 1035–1044. [Google Scholar] [CrossRef]
- Vehreschild, M.J.; Weitershagen, D.; Biehl, L.M.; Tacke, D.; Waldschmidt, D.; Tox, U.; Wisplinghoff, H.; Von Bergwelt-Baildon, M.; Cornely, O.A.; Vehreschild, J.J. Clostridium difficile infection in patients with acute myelogenous leukemia and in patients undergoing allogeneic stem cell transplantation: Epidemiology and risk factor analysis. Biol. Blood Marrow Transplant. 2014, 20, 823–828. [Google Scholar] [CrossRef]
- Trifilio, S.M.; Pi, J.; Mehta, J. Changing epidemiology of Clostridium difficile-associated disease during stem cell transplantation. Biol. Blood Marrow Transplant. 2013, 19, 405–409. [Google Scholar] [CrossRef][Green Version]
- Dubberke, E.R.; Reske, K.A.; Srivastava, A.; Sadhu, J.; Gatti, R.; Young, R.M.; Rakes, L.C.; Dieckgraefe, B.; DiPersio, J.; Fraser, V.J. Clostridium difficile-associated disease in allogeneic hematopoietic stem-cell transplant recipients: Risk associations, protective associations, and outcomes. Clin. Transplant. 2010, 24, 192–198. [Google Scholar] [CrossRef]
- Alonso, C.D.; Treadway, S.B.; Hanna, D.B.; Huff, C.A.; Neofytos, D.; Carroll, K.C.; Marr, K.A. Epidemiology and outcomes of Clostridium difficile infections in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 2012, 54, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Mullane, K.M.; Winston, D.J.; Nooka, A.; Morris, M.I.; Stiff, P.; Dugan, M.J.; Holland, H.; Gregg, K.; Adachi, J.A.; Pergam, S.A.; et al. A Randomized, Placebo-controlled Trial of Fidaxomicin for Prophylaxis of Clostridium difficile-associated Diarrhea in Adults Undergoing Hematopoietic Stem Cell Transplantation. Clin. Infect. Dis. 2019, 68, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Gerding, D.N.; Li, X.; Reda, D.J.; Donskey, C.J.; Gupta, K.; Goetz, M.B.; Climo, M.W.; Gordin, F.M.; Ringer, R.; et al. Defining optimal treatment for recurrent Clostridioides difficile infection (OpTION study): A randomized, double-blind comparison of three antibiotic regimens for patients with a first or second recurrence. Contemp. Clin. Trials 2022, 116, 106756. [Google Scholar] [CrossRef] [PubMed]
- A Comparison of Fidaxomicin and Vancomycin in Patients with CDI Receiving Antibiotics for Concurrent. Available online: https://clinicaltrials.gov/ct2/show/study/NCT02692651 (accessed on 9 September 2022).
- Weiss, K.; Allgren, R.L.; Sellers, S. Safety analysis of fidaxomicin in comparison with oral vancomycin for Clostridium difficile infections. Clin. Infect. Dis. 2012, 55 (Suppl. S2), S110–S115. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Fidaxomicin | Comparator/s | Study Population | Frequency | % Difference a (95% CI) |
---|---|---|---|---|---|
Study Name [Ref] | Regimen | (Dosage) | Endpoint (Primary/Secondary) | (Events/Treated) | |
(Dosage) | |||||
Louie et al., 2011 OTP-80-003 [73] | Standard regimen (200 mg orally twice daily for 10 days) | Vancomycin (125 mg orally four times daily for 10 days) | mITT populationb | ||
Clinical cure (primary) | |||||
Fidaxomicin | 88.2% (253/287) | 2.4 (−3.1 d) | |||
Vancomycin | 85.8% (265/309) | Reference | |||
rCDI (secondary) | |||||
Fidaxomicin | 15.4% (39/253) | −9.9 (−16.6 to −2.9) | |||
Vancomycin | 25.3% (67/265) | Reference | |||
Global cure (secondary) | |||||
Fidaxomicin | 74.6% (214/287) | 10.5 (3.1 to 17.7) | |||
Vancomycin | 64.1% (198/309) | Reference | |||
Per-protocol populationc | |||||
Clinical cure (primary) | |||||
Fidaxomicin | 92.1% (244/265) | 2.3 (−2.6 d) | |||
Vancomycin | 89.8% (254/283) | Reference | |||
rCDI (secondary) | |||||
Fidaxomicin | 13.3% (28/211) | −10.7 (−17.9 to −3.3) | |||
Vancomycin | 24.0% (53/221) | Reference | |||
Global cure (secondary) | |||||
Fidaxomicin | 77.7% (206/265) | 10.6 (3.1 to 17.9) | |||
Vancomycin | 67.1% (190/283) | Reference | |||
Cornely et al., 2012 OTP-80-004 [72] | Standard regimen (200 mg orally twice daily for 10 days) | Vancomycin (125 mg orally four times daily for 10 days) | mITT populationb | ||
Clinical cure (primary) | |||||
Fidaxomicin | 87.7% (221/252) | 0.9 (−4.9 d) | |||
Vancomycin | 86.8% (223/257) | Reference | |||
rCDI (secondary) | |||||
Fidaxomicin | 12.7% (28/221) | −14.2 (−21.4 to −6.8) | |||
Vancomycin | 26.9% (60/223) | Reference | |||
Sustained response (secondary) | |||||
Fidaxomicin | 76.6% (193/252) | 13.2 (5.3 to 21.0) | |||
Vancomycin | 63.4% (163/257) | Reference | |||
Per-protocol populationc | |||||
Clinical cure (primary) | |||||
Fidaxomicin | 91.7% (198/216) | 1.1 (−4.3 d) | |||
Vancomycin | 90.6% (213/235) | Reference | |||
rCDI (secondary) | |||||
Fidaxomicin | 12.8% (23/180) | −12.5 (−20.5 to −4.5) | |||
Vancomycin | 25.3% (46/182) | Reference | |||
Global cure (secondary) | |||||
Fidaxomicin | 79.6% (172/216) | 14.1 (6.0 to 22.2) | |||
Vancomycin | 65.5% (154/235) | Reference | |||
Mikamo et al., 2018 [83] | Standard regimen (200 mg orally twice daily for 10 days) | Vancomycin (125 mg orally four times daily for 10 days) | FAS population | ||
Global cure (primary) | |||||
Fidaxomicin | 67.3% (70/104) | 1.2 (−11.3 to 13.7) | |||
Vancomycin | 65.7% (71/108) | Reference | |||
FAS-R populatione | |||||
rCDI (secondary) | |||||
Fidaxomicin | 19.5% (17/87) | −4.9 (−16.7 to 7.0) | |||
Vancomycin | 25.3% (24/95) | Reference | |||
Housman et al., 2016 [85] | Standard regimen (200 mg orally twice daily for 10 days) | Vancomycin (125 mg orally four times daily for 10 days) | Patients with CDI | ||
Reduction of spores (primary)f | |||||
Fidaxomicin | 66.7% (8/12) | 52.4 (NA) | |||
Vancomycin | 14.3% (1/7) | Reference | |||
Hvas et al., 2019 [86] | Standard regimen (200 mg orally twice daily for 10 days) | Vancomycin (125 mg orally four times daily for 10 days) or FMT | Patients with rCDI | ||
Clinical resolution (primary)g | |||||
Fidaxomicin | 33.3% (8/24) | 14.5% (NA) | |||
FMT | 70.8% (17/24) | 52.0% NA) | |||
Vancomycin | 18.8% (3/16) | Reference | |||
Guery et al., 2018 EXTEND [88] | Extended-pulsed regimen (200 mg twice daily on days 1–5, and then only once daily on alternate days from day 7 to day 25) | Vancomycin (125 mg orally four times daily for 10 days) | Modified FAS populationh | ||
Sustained clinical cure (primary) | |||||
Fidaxomicin | 70.1% (124/177) | OR 1.62 (1.04 to 2.54) | |||
Vancomycin | 59.2% (106/179) | Reference | |||
Per-protocol population | |||||
rCDI at day 40 (secondary) | |||||
Fidaxomicin | 2.4% (3/124) | OR 0.12 (0.04 to 0.41) | |||
Vancomycin | 17.6% (22/125) | Reference | |||
rCDI at day 55 (secondary) | |||||
Fidaxomicin | 5.6% (7/124) | OR 0.31 (0.13 to 0.73) | |||
Vancomycin | 18.4% (23/125) | Reference | |||
rCDI at day 90 (secondary) | |||||
Fidaxomicin | 8.8% (11/124) | OR 0.49 (0.23 to 1.04) | |||
Vancomycin | 18.4% (23/125) | Reference |
Guidelines/Guidance Document | Recommended Treatment for First CDI Episode * | Recommended Treatment for rCDI * |
---|---|---|
ESCMID guidance document [12] |
|
|
IDSA/SHEA guidelines [11] |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giacobbe, D.R.; Vena, A.; Falcone, M.; Menichetti, F.; Bassetti, M. Fidaxomicin for the Treatment of Clostridioides difficile Infection in Adult Patients: An Update on Results from Randomized Controlled Trials. Antibiotics 2022, 11, 1365. https://doi.org/10.3390/antibiotics11101365
Giacobbe DR, Vena A, Falcone M, Menichetti F, Bassetti M. Fidaxomicin for the Treatment of Clostridioides difficile Infection in Adult Patients: An Update on Results from Randomized Controlled Trials. Antibiotics. 2022; 11(10):1365. https://doi.org/10.3390/antibiotics11101365
Chicago/Turabian StyleGiacobbe, Daniele Roberto, Antonio Vena, Marco Falcone, Francesco Menichetti, and Matteo Bassetti. 2022. "Fidaxomicin for the Treatment of Clostridioides difficile Infection in Adult Patients: An Update on Results from Randomized Controlled Trials" Antibiotics 11, no. 10: 1365. https://doi.org/10.3390/antibiotics11101365
APA StyleGiacobbe, D. R., Vena, A., Falcone, M., Menichetti, F., & Bassetti, M. (2022). Fidaxomicin for the Treatment of Clostridioides difficile Infection in Adult Patients: An Update on Results from Randomized Controlled Trials. Antibiotics, 11(10), 1365. https://doi.org/10.3390/antibiotics11101365