The Risk and Clinical Implications of Antibiotic-Associated Acute Kidney Injury: A Review of the Clinical Data for Agents with Signals from the Food and Drug Administration’s Adverse Event Reporting System (FAERS) Database
Abstract
:1. Introduction
2. An Overview of Acute Kidney Injury
3. Specific Antibiotics Classes and Agents
3.1. Polymyxins (FAERS Relative Odds Ratio (ROR) 33.10, 95% Confidence Interval (CI) 21.24–51.56)
3.1.1. Mechanism of Action
3.1.2. Common Uses
3.1.3. Clinical Data Regarding AKI
3.1.4. Proposed Mechanism of AKI
3.1.5. Other Potential Risk Factors
3.1.6. Summary
3.2. Aminoglycosides (FAERS ROR 17.41, 95%CI 14.49–20.90)
3.2.1. Mechanism of Action
3.2.2. Common Uses
3.2.3. Clinical Data Regarding AKI
3.2.4. Proposed mechanism of AKI
3.2.5. Other Potential Risk Factors
3.2.6. Summary
3.3. Vancomycin (FAERS ROR 15.28, 95%CI 13.82–16.90)
3.3.1. Mechanism of Action
3.3.2. Common Uses
3.3.3. Clinical Data Regarding AKI
Therapeutic Drug Monitoring
Additional Dosing Strategies
Impact of Duration of Therapy
Relative AKI Risk to Other Anti-MRSA Agents
3.3.4. Proposed Mechanism of AKI
3.3.5. Other Potential Risk Factors
3.3.6. Summary
3.4. Trimethoprim/Sulfamethoxazole (FAERS ROR 13.72, 95%CI 11.94–15.76)
3.4.1. Mechanism of Action
3.4.2. Common Uses
3.4.3. Clinical Data Regarding AKI
3.4.4. Proposed Mechanism of AKI
3.4.5. Other Potential Risk Factors
3.4.6. Summary
3.5. Penicillin Combinations (FAERS ROR 7.95, 95%CI 7.09–8.91)
3.5.1. Mechanism of Action
3.5.2. Common Uses
3.5.3. Clinical Data Regarding AKI
3.5.4. Proposed Mechanism of AKI
3.5.5. Other Potential Risk Factors
3.5.6. Summary
3.6. Clindamycin (FAERS ROR 6.46, 95%CI 5.18–8.04)
3.6.1. Mechanism of Action
3.6.2. Common Uses
3.6.3. Clinical Data Regarding AKI
3.6.4. Proposed Mechanism of AKI
3.6.5. Other Potential Risk Factors
3.6.6. Summary
3.7. Cephalosporins (FAERS ROR 6.07, 95%CI 5.23–7.05)
3.7.1. Mechanism of Action
3.7.2. Common Uses
3.7.3. Clinical Data Regarding AKI
3.7.4. Proposed Mechanism of AKI
3.7.5. Other Potential Risk Factors
3.7.6. Summary
3.8. Daptomycin (FAERS ROR 6.07, 95%CI 4.61–7.99)
3.8.1. Mechanism of Action
3.8.2. Common Uses
3.8.3. Clinical Data Regarding AKI
3.8.4. Proposed Mechanism of AKI
3.8.5. Other Potential Risk Factors
3.8.6. Summary
3.9. Macrolides (FAERS ROR 3.60, 95%CI 3.04–4.26)
3.9.1. Mechanism of Action
3.9.2. Common Uses
3.9.3. Clinical Data Regarding AKI
3.9.4. Proposed Mechanism of AKI
3.9.5. Other Potential Risk Factors
3.9.6. Summary
3.10. Linezolid (FAERS ROR 3.48, 95%CI 2.54–4.77)
3.10.1. Mechanism of Action
3.10.2. Common Uses
3.10.3. Clinical Data Regarding AKI
3.10.4. Proposed Mechanism of AKI
3.10.5. Other potential Risk Factors
3.10.6. Summary
3.11. Carbapenems (FAERS ROR 3.31, 95%CI 2.58–4.25)
3.11.1. Mechanism of Action
3.11.2. Common Uses
3.11.3. Clinical Data Regarding AKI
3.11.4. Proposed Mechanism of AKI
3.11.5. Other Potential Risk Factors
3.11.6. Summary
3.12. Metronidazole (FAERS ROR 2.55, 95%CI 1.94–3.36)
3.12.1. Mechanism of Action
3.12.2. Common Uses
3.12.3. Clinical Data Regarding AKI
3.12.4. Proposed Mechanism of AKI
3.12.5. Other Potential Risk Factors
3.12.6. Summary
3.13. Tetracyclines (FAERS ROR 1.73, 95%CI 1.26–2.36)
3.13.1. Mechanism of Action
3.13.2. Common Uses
3.13.3. Clinical Data Regarding AKI
3.13.4. Proposed Mechanism of AKI
3.13.5. Other Potential Risk Factors
3.13.6. Summary
3.14. Fluoroquinolones (FAERS ROR 1.71, 95%CI 1.49–1.97)
3.14.1. Mechanism of Action
3.14.2. Common Uses
3.14.3. Clinical Data Regarding AKI
3.14.4. Proposed Mechanism of AKI
3.14.5. Other Potential Risk Factors
3.14.6. Summary
3.15. Combination Antibiotics
4. Conclusions
5. Future Directions and Expert Opinions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Levey, A.S.; James, M.T. Acute Kidney Injury. Ann. Intern. Med. 2017, 167, ITC66–ITC80. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, A.; Tokarz, A.; Gaszynski, W.; Gaszynski, T. The doripenem serum concentrations in intensive care patients suffering from acute kidney injury, sepsis, and multi organ dysfunction syndrome undergoing continuous renal replacement therapy slow low-efficiency dialysis. Drug Des. Devel. Ther. 2014, 8, 2039–2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahrbaf, F.G.; Assadi, F. Drug-induced renal disorders. J. Renal Inj. Prev. 2015, 4, 57–60. [Google Scholar] [CrossRef]
- Naughton, C.A. Drug-induced nephrotoxicity. Am. Fam. Physician 2008, 78, 743–750. [Google Scholar]
- Xie, H.; Chen, H.; Hu, Y.; Xu, S.; He, Q.; Liu, J.; Hu, W.; Lu, Z. Clindamycin-induced acute kidney injury: Large biopsy case series. Am. J. Nephrol. 2013, 38, 179–183. [Google Scholar] [CrossRef]
- Wan, H.; Hu, Z.; Wang, J.; Zhang, S.; Yang, X.; Peng, T. Clindamycin-induced Kidney Diseases: A Retrospective Analysis of 50 Patients. Intern. Med. 2016, 55, 1433–1437. [Google Scholar] [CrossRef] [Green Version]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R212. [Google Scholar] [CrossRef] [Green Version]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A.; Acute Kidney Injury Network. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [Green Version]
- Uchino, S.; Bellomo, R.; Goldsmith, D.; Bates, S.; Ronco, C. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit. Care Med. 2006, 34, 1913–1917. [Google Scholar] [CrossRef] [Green Version]
- Hoste, E.A.; Clermont, G.; Kersten, A.; Venkataraman, R.; Angus, D.C.; De Bacquer, D.; Kellium, J.A. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: A cohort analysis. Crit. Care 2006, 10, R73. [Google Scholar] [CrossRef] [Green Version]
- Lassnigg, A.; Schmidlin, D.; Mouhieddine, M.; Bachmann, L.M.; Druml, W.; Bauer, P.; Hiesmayr, M. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: A prospective cohort study. J. Am. Soc. Nephrol. 2004, 15, 1597–1605. [Google Scholar] [CrossRef]
- Ostermann, M.; Chang, R.W. Challenges of defining acute kidney injury. QJM Int. J. Med. 2011, 104, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Gameiro, J.; Agapito Fonseca, J.; Jorge, S.; Lopes, J.A. Acute Kidney Injury Definition and Diagnosis: A Narrative Review. J. Clin. Med. 2018, 7, 307. [Google Scholar] [CrossRef]
- Patek, T.M.; Teng, C.; Kennedy, K.E.; Alvarez, C.A.; Frei, C.R. Comparing Acute Kidney Injury Reports Among Antibiotics: A Pharmacovigilance Study of the FDA Adverse Event Reporting System (FAERS). Drug Saf. 2020, 43, 17–22. [Google Scholar] [CrossRef]
- Chien, H.T.; Lin, Y.C.; Sheu, C.C.; Hsieh, K.P.; Chang, J.S. Is colistin-associated acute kidney injury clinically important in adults? A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2020, 55, 105889. [Google Scholar] [CrossRef]
- Ahmed, H.; Farewell, D.; Francis, N.A.; Paranjothy, S.; Butler, C.C. Risk of adverse outcomes following urinary tract infection in older people with renal impairment: Retrospective cohort study using linked health record data. PLoS Med. 2018, 15, e1002652. [Google Scholar] [CrossRef] [Green Version]
- Okoduwa, A.; Ahmed, N.; Guo, Y.; Scipione, M.R.; Papdopoulos, J.; Eiras, D.P.; Dubrovskaya, Y. Nephrotoxicity Associated with Intravenous Polymyxin B Once- versus Twice-Daily Dosing Regimen. Antimicrob. Agents Chemother. 2018, 62, e00018–e00025. [Google Scholar] [CrossRef] [Green Version]
- Gai, Z.; Samodelov, S.L.; Kullak-Ublick, G.A.; Visentin, M. Molecular Mechanisms of Colistin-Induced Nephrotoxicity. Molecules 2019, 24, 653. [Google Scholar] [CrossRef] [Green Version]
- Durante-Mangoni, E.; Andini, R.; Signoriello, S.; Cavezza, G.; Murino, P.; Buono, S.; De Cristofaro, M.; Taglialatela, C.; Bassetti, M.; Malacarne, P.; et al. Acute kidney injury during colistin therapy: A prospective study in patients with extensively-drug resistant Acinetobacter baumannii infections. Clin. Microbiol. Infect. 2016, 22, 984–989. [Google Scholar] [CrossRef]
- Gul, S.; Kuscu, F.; Aydemir, H.; Ozturk, D.B.; Deveci, O.; Duygu, F.; Kacmaz, B.; Yaman, F.; Aslan, E. Risk Factors for Colistin-Associated Acute Kidney Injury: A Multicenter Study from Turkey. Jpn. J. Infect. Dis. 2016, 69, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K.; Anand, R.; Clarke, L.G.; Paronish, J.A.; Weirich, M.; Perone, H.; Kieserman, J.; Freddy, H.; Andrezjewski, C.; Bonilla, H. Defining the incidence and risk factors of colistin-induced acute kidney injury by KDIGO criteria. PLoS ONE 2017, 12, e0173286. [Google Scholar] [CrossRef]
- Min, K.L.; Son, E.S.; Kim, J.S.; Kim, S.H.; Jung, S.M.; Chang, M.J. Risk factors of colistin safety according to administration routes: Intravenous and aerosolized colistin. PLoS ONE 2018, 13, e0207588. [Google Scholar] [CrossRef]
- Nation, R.L.; Rigatto, M.H.P.; Falci, D.R.; Zavascki, A.P. Polymyxin Acute Kidney Injury: Dosing and Other Strategies to Reduce Toxicity. Antibiotics 2019, 8, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogue, J.M.; Kaye, K.S.; Veve, M.P.; Patel, T.S.; Gerlach, A.T.; Davis, S.L.; Puzniak, L.A.; File, T.M.; Olson, S.; Dhar, S.; et al. Ceftolozane/Tazobactam vs Polymyxin or Aminoglycoside-based Regimens for the Treatment of Drug-resistant Pseudomonas Aeruginosa. Clin. Infect. Dis. 2019, 71, 304–310. [Google Scholar] [CrossRef]
- Paquette, F.; Bernier-Jean, A.; Brunette, V.; Ammann, H.; Lavergne, V.; Pichette, V.; Toryanov, S.; Bouchard, J. Acute Kidney Injury and Renal Recovery with the Use of Aminoglycosides: A Large Retrospective Study. Nephron 2015, 131, 153–160. [Google Scholar] [CrossRef]
- Humes, H.D. Aminoglycoside nephrotoxicity. Kidney Int. 1988, 33, 900–911. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Novoa, J.M.; Quiros, Y.; Vicente, L.; Morales, A.I.; Lopez-Hernandez, F.J. New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Kidney Int. 2011, 79, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.D.; Smith, C.R.; Lipsky, J.J.; Mellits, E.D.; Lietman, P.S. Risk factors for nephrotoxicity in patients treated with aminoglycosides. Ann. Intern. Med. 1984, 100, 352–357. [Google Scholar] [CrossRef]
- Raveh, D.; Kopyt, M.; Hite, Y.; Rudensky, B.; Sonnenblick, M.; Yinnon, A.M. Risk factors for nephrotoxicity in elderly patients receiving once-daily aminoglycosides. QJM Int. J. Med. 2002, 95, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Wargo, K.A.; Edwards, J.D. Aminoglycoside-induced nephrotoxicity. J. Pharm. Pract. 2014, 27, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Picard, W.; Bazin, F.; Clouzeau, B.; Bui, H.N.; Soulat, M.; Guilhon, E.; Vargas, F.; Hilbert, G.; Bouchet, S.; Gruson, D.; et al. Propensity-based study of aminoglycoside nephrotoxicity in patients with severe sepsis or septic shock. Antimicrob. Agents Chemother. 2014, 58, 7468–7474. [Google Scholar] [CrossRef]
- Paterson, D.L.; Robson, J.M.; Wagener, M.M. Risk factors for toxicity in elderly patients given aminoglycosides once daily. J. Gen. Intern. Med. 1998, 13, 735–739. [Google Scholar] [CrossRef] [Green Version]
- Selby, N.M.; Shaw, S.; Woodier, N.; Fluck, R.J.; Kolhe, N.V. Gentamicin-associated acute kidney injury. QJM Int. J. Med. 2009, 102, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Matzke, G.R.; Lucarotti, R.L.; Shapiro, H.S. Controlled comparison of gentamicin and tobramycin nephrotoxicity. Am. J. Nephrol. 1983, 3, 11–17. [Google Scholar] [CrossRef]
- Bell, S.; Davey, P.; Nathwani, D.; Marwick, C.; Vadivello, T.; Sneddon, J.; Patton, A.; Bennie, M.; Fleming, S.; Donnan, P.T. Risk of AKI with gentamicin as surgical prophylaxis. J. Am. Soc. Nephrol. 2014, 25, 2625–2632. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.F.; Silva, C.A.; Barbieri, C.D.; Oliveira, G.M.; Zanetta, D.M.; Burdmann, E.A. Prevalence and risk factors for aminoglycoside nephrotoxicity in intensive care units. Antimicrob. Agents Chemother. 2009, 53, 2887–2891. [Google Scholar] [CrossRef] [Green Version]
- Ferriols-Lisart, R.; Alós-Almiñana, M. Effectiveness and safety of once-daily aminoglycosides: A meta-analysis. Am. J. Health Syst. Pharm. 1996, 53, 1141–1150. [Google Scholar] [CrossRef]
- Bertino, J.S., Jr.; Booker, L.A.; Franck, P.A.; Jenkins, P.L.; Franck, K.R.; Nafziger, A.N. Incidence of and significant risk factors for aminoglycoside-associated nephrotoxicity in patients dosed by using individualized pharmacokinetic monitoring. J. Infect. Dis. 1993, 167, 173–179. [Google Scholar] [CrossRef]
- Horey, A.; Mergenhagen, K.A.; Mattappallil, A. The Relationship of Nephrotoxicity to Vancomycin Trough Serum Concentrations in a Veteran’s Population: A Retrospective Analysis. Ann. Pharmacother. 2012, 46, 1477–1483. [Google Scholar] [CrossRef]
- Hidayat, L.K.; Hsu, D.I.; Quist, R.; Shriner, K.A.; Wong-Beringer, A. High-Dose Vancomycin Therapy for Methicillin-Resistant Staphylococcus aureus Infections. Arch. Intern. Med. 2006, 166, 2138. [Google Scholar] [CrossRef] [Green Version]
- Jeffres, M.N.; Isakow, W.; Doherty, J.A.; Micek, S.T.; Kollef, M.H. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin. Ther. 2007, 29, 1107–1115. [Google Scholar] [CrossRef]
- Pritchard, L.; Baker, C.; Leggett, J.; Sehdev, P.; Brown, A.; Bayley, K.B. Increasing Vancomycin Serum Trough Concentrations and Incidence of Nephrotoxicity. Am. J. Med. 2010, 123, 1143–1149. [Google Scholar] [CrossRef]
- Hall, R.G.; Hazlewood, K.A.; Brouse, S.D.; Giuliano, C.A.; Haase, K.K.; Frei, C.R.; Forcade, N.A.; Bell, T.; Bedimo, R.J.; Alvarez, C.A. Empiric guideline-recommended weight-based vancomycin dosing and nephrotoxicity rates in patients with methicillin-resistant Staphylococcus aureus bacteremia: A retrospective cohort study. BMC Pharmacol. Toxicology 2013, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hammoud, K.; Brimacombe, M.; Yu, A.; Goodloe, N.; Haidar, W.; El Atrouni, W. Vancomycin Trough and Acute Kidney Injury: A Large Retrospective, Cohort Study. Am. J. Nephrol. 2016, 44, 456–461. [Google Scholar] [CrossRef]
- Park, S.J.; Lim, N.R.; Park, H.J.; Yang, J.W.; Kim, M.J.; Kim, K.; In, Y.W.; Lee, Y.M. Evaluation of risk factors for vancomycin-induced nephrotoxicity. Int. J. Clin. Pharm. 2018, 40, 1328–1334. [Google Scholar] [CrossRef]
- Gyamlani, G.; Potukuchi, P.K.; Thomas, F.; Akbilgic, O.; Soohoo, M.; Streja, E.; Naseer, A.; Sumida, K.; Molnar, M.Z.; Kalantar-Zadah, K.; et al. Vancomycin-Associated Acute Kidney Injury in a Large Veteran Population. Am. J. Nephrol. 2019, 49, 133–142. [Google Scholar] [CrossRef]
- Bosso, J.A.; Nappi, J.; Rudisill, C.; Wellein, M.; Bookstaver, P.B.; Swindler, J.; Mauldin, P.D. Relationship between Vancomycin Trough Concentrations and Nephrotoxicity: A Prospective Multicenter Trial. Antimicrob. Agents Chemother. 2011, 55, 5475–5479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wang, J. A comparison of telavancin and vancomycin for treatment of methicillin-resistant Staphylococcus aureus infections: A meta-analysis. Int. J. Clin. Pharmacol. Ther. 2017, 55, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Executive Summary: Therapeutic Monitoring of Vancomycin for Serious Methicillin-Resistant Staphylococcus aureus Infections: A Revised Consensus Guideline and Review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2020, 40, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, S.C.J.; Spellberg, B.; Shorr, A.F.; Wright, W.F. Should Therapeutic Drug Monitoring Based on the Vancomycin Area Under the Concentration-Time Curve Be Standard for Serious Methicillin-Resistant Staphylococcus aureus Infections?—No. Clin. Infect. Dis. 2021, 72, 1502–1506. [Google Scholar] [CrossRef]
- Lodise, T.P.; Fan, W.; Griffith, D.C.; Dudley, M.N.; Sulham, K.A. A Retrospective Cohort Analysis Shows that Coadministration of Minocycline with Colistin in Critically Ill Patients Is Associated with Reduced Frequency of Acute Renal Failure. Antimicrob. Agents Chemother. 2018, 62, e01165-17. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; Patel, N.; Lomaestro, B.M.; Rodvold, K.A.; Drusano, G.L. Relationship between Initial Vancomycin Concentration-Time Profile and Nephrotoxicity among Hospitalized Patients. Clin. Infect. Dis. 2009, 49, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, E.; Dadashev, A.; Drucker, M.; Samra, Z.; Rubinstein, E.; Garty, M. Once-daily versus twice-daily intravenous administration of vancomycin for infections in hospitalized patients. J. Antimicrob. Chemother. 2002, 49, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Rosini, J.M.; Laughner, J.; Levine, B.J.; Papas, M.A.; Reinhardt, J.F.; Jasani, N.B. A randomized trial of loading vancomycin in the emergency department. Ann. Pharmacother. 2015, 49, 6–13. [Google Scholar] [CrossRef]
- Rosini, J.M.; Davis, J.J.; Muenzer, J.; Levine, B.J.; Papas, M.A.; Comer, D.; Arnold, R. High Single-dose Vancomycin Loading Is Not Associated with Increased Nephrotoxicity in Emergency Department Sepsis Patients. Acad. Emerg. Med. 2016, 23, 744–746. [Google Scholar] [CrossRef] [Green Version]
- Mei, H.; Wang, J.; Che, H.; Wang, R.; Cai, Y. The clinical efficacy and safety of vancomycin loading dose: A systematic review and meta-analysis. Medicine 2019, 98, e17639. [Google Scholar] [CrossRef]
- Cataldo, M.A.; Tacconelli, E.; Pea, F.; Petrosillo, N. Vancomycin Way of Administration: Where is the Evidence? Clin. Infect. Dis. 2011, 53, 308–310. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.T.; Goolsby, T.A.; Sherman, D.S.; Mueller, S.W.; Reynolds, P.; Cava, L.; Neumann, R.; Kiser, T.H. Continuous infusion vs intermittent vancomycin in neurosurgical intensive care unit patients. J. Crit. Care 2015, 30, e1151–e1156. [Google Scholar] [CrossRef]
- Hanrahan, T.P.; Kotapati, C.; Roberts, M.J.; Rowland, J.; Lipman, J.; Roberts, J.A.; Udy, A. Factors Associated with Vancomycin Nephrotoxicity in the Critically Ill. Anaesth. Intensive Care 2015, 43, 594–599. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.; Luo, Y.; Quan, X.; Jiang, M.; Zhou, B. Intermittent vs. continuous vancomycin infusion for gram-positive infections: A systematic review and meta-analysis. J. Infect. Public Health 2020, 13, 591–597. [Google Scholar] [CrossRef]
- Meaney, C.J.; Hynicka, L.M.; Tsoukleris, M.G. Vancomycin-Associated Nephrotoxicity in Adult Medicine Patients: Incidence, Outcomes, and Risk Factors. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2014, 34, 653–661. [Google Scholar] [CrossRef]
- van Hal, S.J.; Paterson, D.L.; Lodise, T.P. Systematic Review and Meta-Analysis of Vancomycin-Induced Nephrotoxicity Associated with Dosing Schedules That Maintain Troughs between 15 and 20 Milligrams per Liter. Antimicrob. Agents Chemother. 2012, 57, 734–744. [Google Scholar] [CrossRef] [Green Version]
- Lodise, T.P.; Lomaestro, B.; Graves, J.; Drusano, G.L. Larger Vancomycin Doses (at Least Four Grams per Day) Are Associated with an Increased Incidence of Nephrotoxicity. Antimicrob. Agents Chemother. 2008, 52, 1330–1336. [Google Scholar] [CrossRef] [Green Version]
- Minejima, E.; Choi, J.; Beringer, P.; Lou, M.; Tse, E.; Wong-Beringer, A. Applying New Diagnostic Criteria for Acute Kidney Injury to Facilitate Early Identification of Nephrotoxicity in Vancomycin-Treated Patients. Antimicrob. Agents Chemother. 2011, 55, 3278–3283. [Google Scholar] [CrossRef] [Green Version]
- Ray, A.S.; Haikal, A.; Hammoud, K.A.; Yu, A.S. Vancomycin and the Risk of AKI: A Systematic Review and Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2016, 11, 2132–2140. [Google Scholar] [CrossRef] [Green Version]
- Beibei, L.; Yun, C.; Mengli, C.; Nan, B.; Xuhong, Y.; Rui, W. Linezolid versus vancomycin for the treatment of gram-positive bacterial infections: Meta-analysis of randomised controlled trials. Int. J. Antimicrob. Agents 2010, 35, 3–12. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, Y.; Xie, J.; Wang, T.; Zheng, X.; He, H.; Dong, W.; Xing, J.; Dong, Y. Linezolid versus vancomycin for the treatment of suspected methicillin-resistant Staphylococcus aureus nosocomial pneumonia: A systematic review employing meta-analysis. Eur. J. Clin. Pharmacol. 2015, 71, 107–115. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Niederman, M.S.; Kollef, M.H.; Shorr, A.F.; Kunkel, M.J.; Baruch, A.; McGee, W.T.; Reisman, A.; Chastre, J. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: A randomized, controlled study. Clin. Infect. Dis. 2012, 54, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Chavada, R.; Ghosh, N.; Sandaradura, I.; Maley, M.; Van Hal, S.J. Establishment of an AUC(0-24) Threshold for Nephrotoxicity Is a Step towards Individualized Vancomycin Dosing for Methicillin-Resistant Staphylococcus aureus Bacteremia. Antimicrob. Agents Chemother. 2017, 61, e02535-16. [Google Scholar] [CrossRef] [Green Version]
- Zasowski, E.J.; Murray, K.P.; Trinh, T.D.; Finch, N.A.; Pogue, J.M.; Mynatt, R.P.; Rybak, M.J. Identification of Vancomycin Exposure-Toxicity Thresholds in Hospitalized Patients Receiving Intravenous Vancomycin. Antimicrob. Agents Chemother. 2018, 62, e01684-17. [Google Scholar] [CrossRef] [Green Version]
- Neely, M.N.; Kato, L.; Youn, G.; Kraler, L.; Bayard, D.; van Guider, M.; Schumitzky, A.; Yamada, W.; Jones, B.; Minejima, E. Prospective Trial on the Use of Trough Concentration versus Area under the Curve to Determine Therapeutic Vancomycin Dosing. Antimicrob. Agents Chemother. 2018, 62, e02042-17. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.K.; Tang, H.L.; Zhai, S.D. Benefits of therapeutic drug monitoring of vancomycin: A systematic review and meta-analysis. PLoS ONE 2013, 8, e77169. [Google Scholar] [CrossRef]
- Lodise, T.P.; Hall, R.G., II; Scheetz, M.H. Vancomycin Area Under the Curve-guided Dosing and Monitoring: “Is the Juice Worth the Squeeze”? Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020, 40, 1176–1179. [Google Scholar] [CrossRef] [PubMed]
- Carreno, J.J.; Kenney, R.M.; Divine, G.; Vazquez, J.A.; Davis, S.L. Randomized Controlled Trial to Determine the Efficacy of Early Switch from Vancomycin to Vancomycin Alternatives as a Strategy to Prevent Nephrotoxicity in Patients With Multiple Risk Factors for Adverse Renal Outcomes (STOP-NT). Ann. Pharmacother. 2017, 51, 185–193. [Google Scholar] [CrossRef]
- Tuerff, D.; Nunez, M. More Frequent Premature Antibiotic Discontinuations and Acute Kidney Injury in the Outpatient Setting with Vancomycin Compared to Daptomycin. J. Clin. Pharmacol. 2020, 60, 384–390. [Google Scholar] [CrossRef]
- Bailie, G.R.; Neal, D. Vancomycin ototoxicity and nephrotoxicity. A review. Med. Toxicol. Adverse Drug. Exp. 1988, 3, 376–386. [Google Scholar] [CrossRef]
- Mullins, B.P.; Kramer, C.J.; Bartel, B.J.; Catlin, J.S.; Gilder, R.E. Comparison of the Nephrotoxicity of Vancomycin in Combination with Cefepime, Meropenem, or Piperacillin/Tazobactam: A Prospective, Multicenter Study. Ann. Pharmacother. 2018, 52, 639–644. [Google Scholar] [CrossRef]
- Hammond, D.A.; Smith, M.N.; Li, C.; Hayes, S.M.; Lusardi, K.; Bookstaver, P.B. Systematic Review and Meta-Analysis of Acute Kidney Injury Associated with Concomitant Vancomycin and Piperacillin/tazobactam. Clin. Infect. Dis. 2016, 64, 666–674. [Google Scholar] [CrossRef]
- Buckley, M.S.; Hartsock, N.C.; Berry, A.J.; Bikin, D.S.; Richards, E.C.; Yerondopoulos, M.J.; Kobic, E.; Wicks, L.M.; Hammond, D.A. Comparison of acute kidney injury risk associated with vancomycin and concomitant piperacillin/tazobactam or cefepime in the intensive care unit. J. Crit. Care 2018, 48, 32–38. [Google Scholar] [CrossRef]
- Bergman, M.M.; Glew, R.H.; Ebert, T.H. Acute interstitial nephritis associated with vancomycin therapy. Arch. Intern. Med. 1988, 148, 2139–2140. [Google Scholar] [CrossRef]
- Luque, Y.; Louis, K.; Jouanneau, C.; Placier, S.; Esteve, E.; Bazin, D.; Rondeau, E.; Letavernier, E.; Wolfromm, A.; Gosset, C.; et al. Vancomycin-Associated Cast Nephropathy. J. Am. Soc. Nephrol. 2017, 28, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Stokes, M.B. Vancomycin in the Kidney-A Novel Cast Nephropathy. J. Am. Soc. Nephrol. 2017, 28, 1669–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tantranont, N.; Obi, C.; Luque, Y.; Truong, L.D. Vancomycin nephrotoxicity: Vancomycin tubular casts with characteristic electron microscopic findings. Clin. Nephrol. Case Stud. 2019, 7, 66–72. [Google Scholar] [CrossRef]
- Jorgensen, S.C.J.; Murray, K.P.; Lagnf, A.M.; Melvin, S.; Bhatia, S.; Shamin, M.D.; Smith, J.R.; Brade, K.D.; Simon, S.P.; Nagel, J.; et al. A Multicenter Evaluation of Vancomycin-Associated Acute Kidney Injury in Hospitalized Patients with Acute Bacterial Skin and Skin Structure Infections. Infect. Dis. Ther. 2020, 9, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Sheftel, T.G.; Mader, J.T.; Pennick, J.J.; Cierny, G., III. Methicillin-resistant Staphylococcus aureus osteomyelitis. Clin. Orthop. Relat. Res. 1985, 198, 231–239. [Google Scholar]
- Goetz, M.B.; Sayers, J. Nephrotoxicity of vancomycin and aminoglycoside therapy separately and in combination. J. Antimicrob. Chemother. 1993, 32, 325–334. [Google Scholar] [CrossRef]
- Rutter, W.C.; Cox, J.N.; Martin, C.A.; Burgess, D.R.; Burgess, D.S. Nephrotoxicity during Vancomycin Therapy in Combination with Piperacillin-Tazobactam or Cefepime. Antimicrob. Agents Chemother. 2017, 61, e02089-16, Erratum in 2017, 61, e00314-17. [Google Scholar] [CrossRef] [Green Version]
- Rutter, W.C.; Burgess, D.R.; Talbert, J.C.; Burgess, D.S. Acute kidney injury in patients treated with vancomycin and piperacillin-tazobactam: A retrospective cohort analysis. J. Hosp. Med. 2017, 12, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Kwan, L.P.; Mok, M.M.; Choy, B.Y.; Chan, T.M. Acute kidney injury in a renal transplant recipient due to concomitant use of vancomycin and foscarnet. Nephrology 2017, 22, 821–822. [Google Scholar] [CrossRef]
- Psevdos, G., Jr.; Gonzalez, E.; Sharp, V. Acute renal failure in patients with AIDS on tenofovir while receiving prolonged vancomycin course for osteomyelitis. AIDS Read. 2009, 19, 245–248. [Google Scholar]
- Crellin, E.; Mansfield, K.E.; Leyrat, C.; Nitsch, D.; Douglas, I.J.; Root, A.; Williamson, E.; Smeeth, L.; Tomlinson, L.A. Trimethoprim use for urinary tract infection and risk of adverse outcomes in older patients: Cohort study. BMJ 2018, 360, k341. [Google Scholar] [CrossRef] [Green Version]
- Gentry, C.A.; Nguyen, A.T. An evaluation of hyperkalemia and serum creatinine elevation associated with different dosage levels of outpatient trimethoprim-sulfamethoxazole with and without concomitant medications. Ann. Pharmacother. 2013, 47, 1618–1626. [Google Scholar] [CrossRef]
- Saltissi, D.; Pusey, C.D.; Rainford, D.J. Recurrent acute renal failure due to antibiotic-induced interstitial nephritis. Br. Med. J. 1979, 1, 1182–1183. [Google Scholar] [CrossRef]
- Linton, A.L.; Chatfield, W.R. A clinical trial of sulphamethoxazole in pyelonephritis with simplified methods of assessment. Br. J. Urol. 1965, 37, 515–517. [Google Scholar] [CrossRef] [PubMed]
- Rudra, T.; Webb, D.B.; Evans, A.G. Acute tubular necrosis following co-trimoxazole therapy. Nephron 1989, 53, 85–86. [Google Scholar] [CrossRef] [PubMed]
- Kalowski, S.; Nanra, R.S.; Mathew, T.H.; Kincaid-Smith, P. Deterioration in renal function in association with co-trimoxazole therapy. Lancet 1973, 1, 394–397. [Google Scholar] [CrossRef]
- Fraser, T.N.; Avellaneda, A.A.; Graviss, E.A.; Musher, D.M. Acute kidney injury associated with trimethoprim/sulfamethoxazole. J. Antimicrob. Chemother. 2012, 67, 1271–1277. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, T.; Nagashima, H.; Morimoto, Y.; Tokuyama, S. Frequency of Acute Kidney Injury Caused by Tazobactam/Piperacillin in Patients with Pneumonia and Chronic Kidney Disease: A Retrospective Observational Study. Yakugaku Zasshi 2017, 137, 1129–1136. [Google Scholar] [CrossRef] [Green Version]
- Carreno, J.; Smiraglia, T.; Hunter, C.; Tobin, E.; Lomaestro, B. Comparative incidence and excess risk of acute kidney injury in hospitalised patients receiving vancomycin and piperacillin/tazobactam in combination or as monotherapy. Int. J. Antimicrob. Agents. 2018, 52, 643–650. [Google Scholar] [CrossRef]
- Lorenz, M.A.; Moenster, R.P.; Linneman, T.W. Effect of piperacillin/tazobactam restriction on usage and rates of acute renal failure. J. Med. Microbiol. 2016, 65, 195–199. [Google Scholar] [CrossRef]
- Hall, R.G.; Yoo, E.; Faust, A.; Smith, T.; Goodman, E.; Mortensen, E.M.; Raza, J.; Dehmami, F.; Alvarez, C.A. Impact of piperacillin/tazobactam on nephrotoxicity in patients with Gram-negative bacteraemia. Int. J. Antimicrob. Agents 2019, 53, 343–346. [Google Scholar] [CrossRef]
- Cotner, S.E.; Rutter, W.C.; Burgess, D.R.; Wallace, K.L.; Martin, C.A.; Burgess, D.S. Influence of β-Lactam Infusion Strategy on Acute Kidney Injury. Antimicrob. Agents Chemother. 2017, 61, e00871-17. [Google Scholar] [CrossRef] [Green Version]
- Rutter, W.C.; Burgess, D.S. Acute Kidney Injury in Patients Treated with IV Beta-Lactam/Beta-Lactamase Inhibitor Combinations. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 593–598. [Google Scholar] [CrossRef]
- Thomas, L.; Le Beller, C.; Trenque, T.; Michot, J.; Zenut, M.; Letavernier, E.; Mongardon, N.; Vodovar, D. Amoxicillin-induced crystal nephropathy: A nationwide French pharmacovigilance databases study. Br. J. Clin. Pharmacol. 2020, 86, 2256–2265. [Google Scholar] [CrossRef]
- Fritz, G. Amoxicillin-induced acute renal failure. Nephrol. Dial. Transplant. 2003, 18, 1660–1662. [Google Scholar] [CrossRef] [Green Version]
- Saurina, A. Acute intratubular obstructive renal failure after ampicillin treatment. Nephrol. Dial. Transplant. 2004, 19, 513. [Google Scholar] [CrossRef] [Green Version]
- Vodovar, D.; Thomas, L.; Mongardon, N.; Lepeule, R.; Lebrun-Vignes, B.; Biour, M.; Netzer, F.; Haouache, H.; Le Beller, C.; Dhonneur, G. Dramatic Increase of Amoxicillin-Induced Crystal Nephropathy Found in a Cohort Study of French Pharmacovigilance Centers. Antimicrob. Agents Chemother. 2017, 62, e01630-17. [Google Scholar] [CrossRef] [Green Version]
- Geller, R.J.; Chevalier, R.L.; Spyker, D.A. Acute amoxicillin nephrotoxicity following an overdose. J. Toxicol. Clin. Toxicol. 1986, 24, 175–182. [Google Scholar] [CrossRef]
- Labriola, L.; Jadoul, M.; Daudon, M.; Pirson, Y.; Lambert, M. Massive amoxycillin crystalluria causing anuric acute renal failure. Clin. Nephrol. 2003, 59, 455–457. [Google Scholar] [CrossRef]
- Toma, Y.; Ishiki, T.; Nagahama, K.; Okumura, K.; Kamiyama, T.; Kohagura, K.; Kakihana, A.; Tana, T.; Ohya, Y.; Takishita, S. Penicillin G-induced Hemorrhagic Cystitis with Hydronephrosis. Intern. Med. 2009, 48, 1667–1669. [Google Scholar] [CrossRef] [Green Version]
- Dennen, P.; Douglas, I.S.; Anderson, R. Acute kidney injury in the intensive care unit: An update and primer for the intensivist. Crit. Care Med. 2010, 38, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Subedi, P.; Chowdhury, A.; Tanovic, K.; Dumic, I. Clindamycin: An Unusual Cause of Acute Kidney Injury. Am. J. Case Rep. 2019, 20, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Foord, R.D. Nephrotoxicity of cephaloridine. Br. Med. J. 1971, 4, 493. [Google Scholar] [CrossRef] [PubMed]
- Mocan, H.; Beattie, T.J. Acute tubular necrosis associated with cephalexin therapy. Clin. Nephrol. 1985, 24, 212. [Google Scholar] [PubMed]
- Baradhi, K.M.; Ahmed, S.; Buford, M.L. The Case | Acute renal failure after antibiotic treatment for bronchitis. Kidney Int. 2015, 87, 1269–1270. [Google Scholar] [CrossRef] [Green Version]
- Reddy, J.; Bailey, R.R. Cefoxitin-associated renal failure. N. Z. Med. J. 1981, 93, 337–339. [Google Scholar]
- Ferro, A.; Griffiths, M.; Smith, R.; Fry, A. Acute kidney injury as the presenting complaint of ceftazidime-induced immune-mediated haemolysis. BMJ Case Rep. 2019, 12, e232884. [Google Scholar] [CrossRef]
- Leong, C.L.; Thiruventhiran, T. Cefuroxime-Induced Acute Renal Failure. Nephron 2000, 84, 185. [Google Scholar] [CrossRef]
- Goddard, J.K.; Janning, S.W.; Gass, J.S.; Wilson, R.F. Cefuroxime-induced acute renal failure. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1994, 14, 488–491. [Google Scholar]
- Zhang, Y.; Ning, B.; Zhu, H.; Cong, X.; Zhou, L.; Wang, Q.; Zhang, L.; Sun, X. Characterizing ceftriaxone-induced urolithiasis and its associated acute kidney injury: An animal study and Chinese clinical systematic review. Int. Urol. Nephrol. 2016, 48, 1061–1069. [Google Scholar] [CrossRef]
- Chatchen, S.; Pongsakul, N.; Srisomsap, C.; Chiangjong, W.; Hongeng, S.; Svasti, J.; Chutipongtanate, S. Unravelling Pathophysiology of Crystalline Nephropathy in Ceftriaxone-Associated Acute Kidney Injury: A Cellular Proteomic Approach. Nephron 2018, 139, 70–82. [Google Scholar] [CrossRef]
- Pannell, W.C.; Banks, K.; Hahn, J.; Inaba, K.; Marecek, G.S. Antibiotic related acute kidney injury in patients treated for open fractures. Injury 2016, 47, 653–657. [Google Scholar] [CrossRef]
- Tucker, A.; Hegarty, P.; Magill, P.J.; Blaney, J.; Armstrong, L.V.; McCaffrey, J.E.; Beverland, D.E. Acute Kidney Injury After Prophylactic Cefuroxime and Gentamicin in Patients Undergoing Primary Hip and Knee Arthroplasty—A Propensity Score–Matched Study. J. Arthroplast. 2018, 33, 3009–3015. [Google Scholar] [CrossRef]
- Pogue, J.M.; Bonomo, R.A.; Kaye, K.S. Ceftazidime/Avibactam, Meropenem/Vaborbactam, or Both? Clinical and Formulary Considerations. Clin. Infect. Dis. 2019, 68, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Fowler, V.G., Jr.; Boucher, H.W.; Corey, G.R.; Abrutyn, E.; Karchmer, A.W.; Rupp, M.E.; Levine, D.P.; Chambers, H.F.; Tally, F.P.; Vigliani, G.A.; et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N. Engl. J. Med. 2006, 355, 653–665. [Google Scholar] [CrossRef]
- Abraham, G.; Finkelberg, D.; Spooner, L.M. Daptomycin-induced acute renal and hepatic toxicity without rhabdomyolysis. Ann. Pharmacother. 2008, 42, 719–721. [Google Scholar] [CrossRef]
- Moise, P.A.; Culshaw, D.L.; Wong-Beringer, A.; Bensman, J.; Lamp, K.C.; Smith, W.J.; Bauer, K.; Goff, D.A.; Adamson, R.; Leuthner, K.; et al. Comparative Effectiveness of Vancomycin Versus Daptomycin for MRSA Bacteremia with Vancomycin MIC > 1 mg/L: A Multicenter Evaluation. Clin. Ther. 2016, 38, 16–30. [Google Scholar] [CrossRef]
- Gaudard, P.; Saour, M.; Morquin, D.; David, H.; Eliet, J.; Villiet, M.; Daures, J.P.; Colson, P. Acute kidney injury during daptomycin versus vancomycin treatment in cardiovascular critically ill patients: A propensity score matched analysis. BMC Infect. Dis. 2019, 19, 438. [Google Scholar] [CrossRef] [Green Version]
- Billups, K.B.; Reed, E.E.; Phillips, G.S.; Stevenson, K.B.; Steinberg, S.M.; Murphy, C.V. Risk of acute kidney injury in critically ill surgical patients with presumed pneumonia is not impacted by choice of methicillin-resistant staphylococcus aureus therapy. Int. J. Crit. Illn. Inj. Sci. 2018, 8, 22–27. [Google Scholar] [CrossRef]
- Gandhi, S.; Fleet, J.L.; Bailey, D.G.; McArthur, E.; Wald, R.; Rehman, F.; Garg, A.X. Calcium-channel blocker-clarithromycin drug interactions and acute kidney injury. JAMA 2013, 310, 2544–2553. [Google Scholar] [CrossRef] [Green Version]
- Woodruff, A.E.; Meaney, C.J.; Hansen, E.A.; Prescott, G.M. Azithromycin-Induced, Biopsy-Proven Acute Interstitial Nephritis in an Adult Successfully Treated with Low-Dose Corticosteroids. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015, 35, e169–e174. [Google Scholar] [CrossRef]
- Russell, W.; Smith, W. Clarithromycin-induced acute interstitial nephritis and minimal change disease. NDT Plus 2009, 2, 382–383. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, J.; Gura, V.; Boner, G.; Ben-Bassat, M.; Livni, E. Interstitial nephritis with acute renal failure after erythromycin. Br. Med. J. Clin. Res. Ed. 1983, 286, 938–939. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.M.; Shariff, S.; Bailey, D.G.; Juurlink, D.N.; Gandhi, S.; Mamdani, M.; Gomes, T.; Fleet, J.; Hwang, Y.J.; Garg, A.X. Statin toxicity from macrolide antibiotic coprescription: A population-based cohort study. Ann. Intern. Med. 2013, 158, 869–876. [Google Scholar] [CrossRef] [Green Version]
- Shimada, N.; Omuro, H.; Saka, S.; Ebihara, I.; Koide, H. A case of acute renal failure with rhabdomyolysis caused by the interaction of theophylline and clarithromycin. Nihon Jinzo Gakkai Shi 1999, 41, 460–463. [Google Scholar]
- Fu, J.; Ye, X.; Chen, C.; Chen, S. The efficacy and safety of linezolid and glycopeptides in the treatment of Staphylococcus aureus infections. PLoS ONE 2013, 8, e58240. [Google Scholar] [CrossRef]
- Brown, M.L.; Motsch, J.; Kaye, K.S.; File, T.M.; Boucher, H.W.; Vendetti, N.; Aggrey, A.; Joeng, H.K.; Tipping, R.W.; Du, J.; et al. Evaluation of Renal Safety Between Imipenem/Relebactam and Colistin Plus Imipenem in Patients With Imipenem-Nonsusceptible Bacterial Infections in the Randomized, Phase 3 RESTORE-IMI 1 Study. Open Forum Infect. Dis. 2020, 7, ofaa054. [Google Scholar] [CrossRef] [Green Version]
- Kollef, M.H.; Chastre, J.; Clavel, M.; Restrepo, M.I.; Michiels, B.; Kaniga, K.; Cirillo, I.; Kimko, H.; Redman, R. A randomized trial of 7-day doripenem versus 10-day imipenem-cilastatin for ventilator-associated pneumonia. Crit. Care 2012, 16, R218. [Google Scholar] [CrossRef] [Green Version]
- Imani, S.; Buscher, H.; Marriott, D.; Gentili, S.; Sandaradura, I. Too much of a good thing: A retrospective study of β-lactam concentration-toxicity relationships. J. Antimicrob. Chemother. 2017, 72, 2891–2897. [Google Scholar] [CrossRef] [Green Version]
- Huo, X.; Meng, Q.; Wang, C.; Zhu, Y.; Liu, Z.; Ma, X.; Ma, X.; Peng, J.; Sun, H.; Liu, K. Cilastatin protects against imipenem-induced nephrotoxicity via inhibition of renal organic anion transporters (OATs). Acta Pharm. Sin. B 2019, 9, 986–996. [Google Scholar] [CrossRef]
- Vincent, F.; Glotz, D.; Kreft-Jais, C.; Boudjeltia, S.; Duboust, A.; Bariety, J. Acute kidney failure in a patient treated with cyclosporine A and metronidazole following kidney transplantation. Therapie 1994, 49, 155. [Google Scholar] [PubMed]
- Bihorac, A.; Ozener, C.; Akoglu, E.; Kullu, S. Tetracycline-induced acute interstitial nephritis as a cause of acute renal failure. Nephron 1999, 81, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Whelton, A. Exacerbation of renal failure with doxycycline use. Arch. Intern. Med. 1979, 139, 603–604. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.T.; Etminan, M.; Brophy, J.M.; Hartzema, A.G.; Delaney, J.A. Risk of acute kidney injury associated with the use of fluoroquinolones. CMAJ 2013, 185, E475–E482. [Google Scholar] [CrossRef] [Green Version]
- Rennie, T.J.W.; De Souza, N.; Donnan, P.T.; Marwick, C.A.; Davey, P.; Dreischulte, T.; Bell, S. Risk of acute kidney injury following community prescription of antibiotics: Self-controlled case series. Nephrol. Dial. Transplant. 2019, 34, 1910–1916. [Google Scholar] [CrossRef]
- Goli, R.; Mukku, K.K.; Raju, S.B.; Uppin, M.S. Acute Ciprofloxacin-Induced Crystal Nephropathy with Granulomatous Interstitial Nephritis. Indian J. Nephrol. 2017, 27, 231–233. [Google Scholar] [CrossRef]
- Baird, P.; Leung, S.; Hoang, H.; Babalola, O.; Devoe, C.E.; Wanchoo, R.; Jhaveri, K.D. A case of acute kidney injury from crystal nephropathy secondary to pomalidomide and levofloxacin use. J. Oncol. Pharm. Pract. 2016, 22, 357–360. [Google Scholar] [CrossRef]
- Chatzikyrkou, C.; Hamwi, I.; Clajus, C.; Becker, J.; Hafer, C.; Kielstein, J.T. Biopsy proven acute interstitial nephritis after treatment with moxifloxacin. BMC Nephrol. 2010, 11, 19. [Google Scholar] [CrossRef] [Green Version]
- Hootkins, R.; Fenves, A.Z.; Stephens, M.K. Acute renal failure secondary to oral ciprofloxacin therapy: A presentation of three cases and a review of the literature. Clin. Nephrol. 1989, 32, 75–78. [Google Scholar]
- Jump, R.L.P.; Gaur, S.; Katz, M.J.; Crnich, C.J.; Dumyati, G.; Ashraf, M.S.; Frentzel, E.; Schweon, S.J.; Sloane, P.; Infection Advisory Committee for AMDA–The Society of Post-Acute and Long-Term Care Medicine; et al. Template for an Antibiotic Stewardship Policy for Post-Acute and Long-Term Care Settings. J. Am. Med. Dir. Assoc. 2017, 18, 913–920. [Google Scholar] [CrossRef]
- Sehgal, P.; Elligsen, M.; Lo, J.; Lam, P.W.; Leis, J.A.; Fowler, R.; Pinto, R.; Daneman, N. Long-Term Sustainability and Acceptance of Antimicrobial Stewardship in Intensive Care: A Retrospective Cohort Study. Crit. Care Med. 2021, 49, 19–26. [Google Scholar] [CrossRef]
- Machiels, J.D.; Cremers, A.J.H.; van Bergen-Verkuyten, M.; Paardekoper-Strijbosch, S.J.M.; Frijns, K.C.; Wertheim, H.F.L.; Rahamat-Langendoen, J.; Mechers, W.J.G. Impact of the BioFire FilmArray gastrointestinal panel on patient care and infection control. PLoS ONE 2020, 15, e0228596. [Google Scholar] [CrossRef]
- Wu, H.; Huang, J. Drug-Induced Nephrotoxicity: Pathogenic Mechanisms, Biomarkers and Prevention Strategies. Curr. Drug Metab. 2018, 19, 559–567. [Google Scholar] [CrossRef]
- Neeser, O.L.; Vukajlovic, T.; Felder, L.; Haubitz, S.; Hammerer-Lercher, A.; Ottiger, C.; Mueller, B.; Schuetz, P.; Fux, C.A. A high C-reactive protein/procalcitonin ratio predicts Mycoplasma pneumoniae infection. Clin. Chem. Lab. Med. 2019, 57, 1638–1646. [Google Scholar] [CrossRef]
- Bell, M.; Granath, F.; Mårtensson, J.; Löfberg, E.; Ekbom, A.; Martling, C.R. Cystatin C is correlated with mortality in patients with and without acute kidney injury. Nephrol. Dial. Transplant. 2009, 24, 3096–3102. [Google Scholar] [CrossRef]
- Villa, P.; Jiménez, M.; Soriano, M.C.; Manzanares, J.; Casasnovas, P. Serum cystatin C concentration as a marker of acute renal dysfunction in critically ill patients. Crit. Care 2005, 9, R139–R143. [Google Scholar] [CrossRef] [Green Version]
- Ostermann, M.; Philips, B.J.; Forni, L.G. Clinical review: Biomarkers of acute kidney injury: Where are we now? Crit. Care 2012, 16, 233. [Google Scholar] [CrossRef]
- Di Somma, S.; Magrini, L.; De Berardinis, B.; Marino, R.; Ferri, E.; Moscatelli, P.; Ballarino, P.; Carpinteri, G.; Noto, P.; Gliozzo, B.; et al. Additive value of blood neutrophil gelatinase-associated lipocalin to clinical judgement in acute kidney injury diagnosis and mortality prediction in patients hospitalized from the emergency department. Crit. Care 2013, 17, R29. [Google Scholar] [CrossRef] [Green Version]
- Lima, C.; Macedo, E. Urinary Biochemistry in the Diagnosis of Acute Kidney Injury. Dis. Markers 2018, 2018, 4907024. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Ankawi, G.; Zhang, J.; Digvijay, K.; Giavarina, D.; Yin, Y.; Ronco, C. Current understanding and future directions in the application of TIMP-2 and IGFBP7 in AKI clinical practice. Clin. Chem. Lab. Med. 2019, 57, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Kashani, K.; Cheungpasitporn, W.; Ronco, C. Biomarkers of acute kidney injury: The pathway from discovery to clinical adoption. Clin. Chem. Lab. Med. 2017, 55, 1074–1089. [Google Scholar] [CrossRef]
- Al-Shaer, M.H.; Peloquin, C.A. Using precision dosing to minimize cefepime-induced neurotoxicity: The challenge of targets. J. Infect. Chemother. 2021, 27, 929–930. [Google Scholar] [CrossRef]
- Tomašev, N.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Mottram, A.; Meyer, C.; Ravuri, S.; Protsyuk, I.; et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 2019, 572, 116–119. [Google Scholar] [CrossRef]
- Mohamadlou, H.; Lynn-Palevsky, A.; Barton, C.; Chettipally, U.; Shieh, L.; Calvert, J.; Saber, N.R.; Das, R. Prediction of Acute Kidney Injury with a Machine Learning Algorithm Using Electronic Health Record Data. Can. J. Kidney Health Dis. 2018, 5, 2054358118776326. [Google Scholar] [CrossRef] [Green Version]
- Kwong, Y.D.; Liu, K.D. Prediction Models for AKI: Will They Result in Improved Outcomes for AKI? Clin. J. Am. Soc. Nephrol. 2019, 14, 488–490. [Google Scholar] [CrossRef]
Class/Stage | SCr/GFR | UO | ||||
---|---|---|---|---|---|---|
RIFLE | AKIN | KDIGO | RIFLE | AKIN | KDIGO | |
Risk/1 * | ↑ SCr × 1.5 or ↓ GFR > 25% | ↑ SCr ≥ 26.5 μmol/L (≥0.3 mg/dL) or ↑ SCr ≥ 150 to 200% (1.5–2X) | ↑ SCr ≥ 26.5 μmol/L (≥0.3 mg/dL) or ↑ SCr ≥ 150 to 200% (1.5–2X) | <0.5 mL/kg/h (>6 h) | <0.5 mL/kg/h (>6 h) | <0.5 mL/kg/h (>6 h) |
Injury/2 * | ↑ SCr × 2 or ↓ GFR > 50% | ↑ SCr > 200–300% (>2–3X) | ↑ SCr > 200–300% (>2–3X) | <0.5 mL/kg/h (>12 h) | <0.5 mL/kg/h (>12 h) | <0.5 mL/kg/h (>12 h) |
Failure/3 * | ↑ SCr × 3 or ↓ GFR > 75% or if baseline SCr ≥ 353.6 μmol/L (≥ 4 mg/dL) ↑ SCr ≥ 44.2 μmol/L (≥0.5 mg/dL) | ↑ SCr > 300% or SCr to 353.6 μmol/L (>4 mg/dL) or initiation of renal replacement therapy | ↑ SCr > 300% or SCr to 353.6 μmol/L (>4 mg/dL) or initiation of renal replacement therapy | <0.3 mL/kg/h (>24 h) or anuria (>12 h) | <0.3 mL/kg/h (24 h) or anuria (12 h) | <0.3 mL/kg/h (24 h) or anuria (12 h) or GFR < 35 mL/min/1.73 m2 in patients younger than 18 years |
Risk Factors Associated with Acute Kidney Injury (AKI) and Antibiotic-Associated Acute Kidney Injury (AA-AKI) | |
---|---|
Hypovolemia
| Underlying Renal Disease
|
Diuresis
| Critically Ill
|
Exacerbation of comorbid conditions
| Concomitant Medications and Administration
|
Concomitant use of nephrotoxic agents
| Patient-specific Factors
|
FAERS Rank | Antibiotic or Class | FAERS ROR | Key Points Regarding AKI |
---|---|---|---|
1 | Polymyxins | 33.1 |
|
2 | Aminoglycosides | 17.4 |
|
3 | Vancomycin | 15.3 |
|
4 | Trimethoprim/sulfamethoxazole | 13.7 |
|
5 | Penicillin combinations (Beta-lactam/beta-lactamase inhibitor combinations) | 8.0 |
|
6 | Clindamycin | 6.5 |
|
7 | Cephalosporins | 6.1 |
|
8 | Daptomycin | 6.1 |
|
9 | Macrolides | 3.6 |
|
10 | Linezolid | 3.5 |
|
11 | Carbapenems | 3.3 |
|
12 | Metronidazole | 2.6 |
|
13 | Tetracyclines | 1.7 |
|
14 | Fluoroquinolones | 1.7 |
|
Key Recommendation #1: Clinicians should attempt to identify other patient-specific risk factors for AKI prior to prescribing (or recommending) empiric antibiotic therapy. |
Key Recommendation #2: If a patient is at increased risk for AKI, the clinician should attempt to utilize antibiotic options which have a decreased risk of, or known incidence of contributing to AKI, when clinically possible. |
Key Recommendation #3: If a patient does experience AKI due to antibiotic therapy, clinicians must discontinue the offending agent (if known), decrease doses of all other medications as indicated, and determine if other therapy adjustments for treating the infectious insult are required. |
Key Recommendation #4: If possible, a clinician should attempt to correct, or stabilize, all modifiable risk factors prior to initiating therapy with a nephrotoxic antibiotic. |
Key Recommendation #5: All clinicians should de-escalate antibiotic therapy once causative pathogens have been identified to potentially limit the duration of nephrotoxic antibiotics. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clifford, K.M.; Selby, A.R.; Reveles, K.R.; Teng, C.; Hall, R.G., 2nd; McCarrell, J.; Alvarez, C.A. The Risk and Clinical Implications of Antibiotic-Associated Acute Kidney Injury: A Review of the Clinical Data for Agents with Signals from the Food and Drug Administration’s Adverse Event Reporting System (FAERS) Database. Antibiotics 2022, 11, 1367. https://doi.org/10.3390/antibiotics11101367
Clifford KM, Selby AR, Reveles KR, Teng C, Hall RG 2nd, McCarrell J, Alvarez CA. The Risk and Clinical Implications of Antibiotic-Associated Acute Kidney Injury: A Review of the Clinical Data for Agents with Signals from the Food and Drug Administration’s Adverse Event Reporting System (FAERS) Database. Antibiotics. 2022; 11(10):1367. https://doi.org/10.3390/antibiotics11101367
Chicago/Turabian StyleClifford, Kalin M., Ashley R. Selby, Kelly R. Reveles, Chengwen Teng, Ronald G. Hall, 2nd, Jamie McCarrell, and Carlos A. Alvarez. 2022. "The Risk and Clinical Implications of Antibiotic-Associated Acute Kidney Injury: A Review of the Clinical Data for Agents with Signals from the Food and Drug Administration’s Adverse Event Reporting System (FAERS) Database" Antibiotics 11, no. 10: 1367. https://doi.org/10.3390/antibiotics11101367
APA StyleClifford, K. M., Selby, A. R., Reveles, K. R., Teng, C., Hall, R. G., 2nd, McCarrell, J., & Alvarez, C. A. (2022). The Risk and Clinical Implications of Antibiotic-Associated Acute Kidney Injury: A Review of the Clinical Data for Agents with Signals from the Food and Drug Administration’s Adverse Event Reporting System (FAERS) Database. Antibiotics, 11(10), 1367. https://doi.org/10.3390/antibiotics11101367