Prevalence of Multidrug-Resistant Diarrheagenic Escherichia coli in Asia: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Study Selection and Characteristics of the Included Studies
2.2. Prevalence of Diarrheagenic Escherichia coli
2.3. Antibiotic Resistance Patterns of Diarrheagenic Escherichia coli
2.4. Prevalence of Multidrug-Resistant Diarrheagenic Escherichia coli
2.5. Patterns of Extended-Spectrum-β-lactamase-Producing Escherichia coli
3. Discussion
4. Methodology
4.1. Literature Search Strategy and Selection
4.2. Inclusion and Exclusion Criteria
4.3. Data Extraction and Quality Control
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juhas, M. Horizontal gene transfer in human pathogens. Crit. Rev. Microbiol. 2013, 41, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.; Goldlust, K.; Quebre, V.; Shen, M.; Lesterlin, C.; Bouet, J.-Y.; Yamaichi, Y. Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4. Genes 2020, 11, 1207. [Google Scholar] [CrossRef] [PubMed]
- Pickering, L.K. Approach to patients with gastrointestinal tract infections and food poisoning. In Feigin and Cherry’s Textbook of Pediatric Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2009; pp. 621–653. [Google Scholar] [CrossRef]
- Gomes, T.A.; Elias, W.P.; Scaletsky, I.C.; Guth, B.E.C.; Rodrigues, J.F.; Piazza, R.M.; Ferreira, L.; Martinez, M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016, 47, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Jafari, A.; Aslani, M.; Bouzari, S. Escherichia coli: A brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran. Iran. J. Microbiol. 2012, 4, 102–117. [Google Scholar]
- Servin, A.L. Pathogenesis of Human Diffusely Adhering Escherichia coli Expressing Afa/Dr Adhesins (Afa/Dr DAEC): Current Insights and Future Challenges. Clin. Microbiol. Rev. 2014, 27, 823–869. [Google Scholar] [CrossRef]
- Yang, S.-C.; Lin, C.-H.; Aljuffali, I.A.; Fang, J.-Y. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch. Microbiol. 2017, 199, 811–825. [Google Scholar] [CrossRef]
- Abbasi, E.; Mondanizadeh, M.; van Belkum, A.; Ghaznavi-Rad, E. Multi-Drug-Resistant Diarrheagenic Escherichia coli Pathotypes in Pediatric Patients with Gastroenteritis from Central Iran. Infect. Drug Resist. 2020, 13, 1387–1396. [Google Scholar] [CrossRef]
- Naghavi, M.; Wang, H.; Lozano, R.; Davis, A.; Liang, X.; Zhou, M.; Vollset, S.E.; Abbasoglu Ozgoren, A.; Abdalla, S.; Abd-Allah, F.; et al. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar] [CrossRef]
- GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specifc mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1151–1210. [Google Scholar] [CrossRef]
- UNICEF. “Diarrhoea-UNICEF DATA”. 2022. Available online: https://data.unicef.org/topic/child-health/diarrhoeal-disease/ (accessed on 18 September 2022).
- Chiyangi, H.; Muma, J.B.; Malama, S.; Manyahi, J.; Abade, A.; Kwenda, G.; Matee, M.I. Identification and antimicrobial resistance patterns of bacterial enteropathogens from children aged 0-59 months at the University Teaching Hospital, Lusaka, Zambia: A prospective cross sectional study. BMC Infect. Dis. 2017, 17, 117. [Google Scholar] [CrossRef] [Green Version]
- Mazzariol, A.; Bazaj, A.; Cornaglia, G. Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: A review. J. Chemother. 2017, 29, 2–9. [Google Scholar] [CrossRef]
- Kayastha, K.; Dhungel, B.; Karki, S.; Adhikari, B.; Banjara, M.R.; Rijal, K.R.; Ghimire, P. Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella Species in Pediatric Patients Visiting International Friendship Children’s Hospital, Kathmandu, Nepal. Infect. Dis. Res. Treat. 2020, 13, 117863372090979. [Google Scholar] [CrossRef]
- Jomehzadeh, N.; Ahmadi, K.; Javaherizadeh, H.; Afzali, M. The first evaluation relationship of integron genes and the multidrug-resistance in class A ESBLs genes in enteropathogenic Escherichia coli strains isolated from children with diarrhea in Southwestern Iran. Mol. Biol. Rep. 2020, 48, 307–313. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, X.; Hou, H.; Lu, Y.; Yu, J.; Mao, L.; Mao, L.; Sun, Z. Characteristics of diarrheagenic Escherichia coli among children under 5 years of age with acute diarrhea: A hospital based study. BMC Infect. Dis. 2018, 18, 63. [Google Scholar] [CrossRef]
- Kantele, A.; Lääveri, T. Extended-spectrum beta-lactamase-producing strains among diarrhoeagenic Escherichia coli—prospective traveller study with literature review. J. Travel Med. 2022, 29, taab042. [Google Scholar] [CrossRef]
- Margulieux, K.R.; Srijan, A.; Ruekit, S.; Nobthai, P.; Poramathikul, K.; Pandey, P.; Serichantalergs, O.; Shrestha, S.K.; Bodhidatta, L.; Swierczewski, B.E. Extended-spectrum β-lactamase prevalence and virulence factor characterization of enterotoxigenic Escherichia coli responsible for acute diarrhea in Nepal from 2001 to 2016. Antimicrob. Resist. Infect. Control 2018, 7, 87. [Google Scholar] [CrossRef]
- Aminshahidi, M.; Arastehfar, A.; Pouladfar, G.; Arman, E.; Fani, F. Diarrheagenic Escherichia coli and Shigella with High Rate of Extended-Spectrum Beta-Lactamase Production: Two Predominant Etiological Agents of Acute Diarrhea in Shiraz, Iran. Microb. Drug Resist. 2017, 23, 1037–1044. [Google Scholar] [CrossRef]
- Aslani, M.M.; Alikhani, M.Y.; Zavari, A.; Yousefi, R.; Zamani, A.R. Characterization of enteroaggregative Escherichia coli (EAEC) clinical isolates and their antibiotic resistance pattern. Int. J. Infect. Dis. 2010, 15, e136–e139. [Google Scholar] [CrossRef]
- Wasito, E.B.; Shigemura, K.; Osawa, K.; Fardah, A.; Kanaida, A.; Raharjo, D.; Kuntaman, K.; Hadi, U.; Harijono, S.; Sudarmo, S.M.; et al. Antibiotic Susceptibilities and Genetic Characteristics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Stools of Pediatric Diarrhea Patients in Surabaya, Indonesia. Jpn. J. Infect. Dis. 2017, 70, 378–382. [Google Scholar] [CrossRef]
- Begum, Y.A.; Talukder, K.A.; Azmi, I.J.; Shahnaij, M.; Sheikh, A.; Sharmin, S.; Svennerholm, A.-M.; Qadri, F. Resistance Pattern and Molecular Characterization of Enterotoxigenic Escherichia coli (ETEC) Strains Isolated in Bangladesh. PLoS ONE 2016, 11, e0157415. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Zhang, L.; Ge, Y.; Cai, J.; Wang, X.; Huang, Z.; Guo, J.; Xu, H.; Gu, Z.; Chen, H.; et al. A Hospital-based Case-control Study of Diarrhea in Children in Shanghai. Pediatr. Infect. Dis. J. 2017, 36, 1057–1063. [Google Scholar] [CrossRef]
- Chellapandi, K.; Dutta, T.K.; Sharma, I.; De Mandal, S.; Kumar, N.S.; Ralte, L. Prevalence of multi drug resistant enteropathogenic and enteroinvasive Escherichia coli isolated from children with and without diarrhea in Northeast Indian population. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 49. [Google Scholar] [CrossRef]
- Eltai, N.O.; Al Thani, A.A.; Al Hadidi, S.H.; Al Ansari, K.; Yassine, H.M. Antibiotic resistance and virulence patterns of pathogenic Escherichia coli strains associated with acute gastroenteritis among children in Qatar. BMC Microbiol. 2020, 20, 12–54. [Google Scholar] [CrossRef]
- Haghi, F.; Zeighami, H.; Hajiahmadi, F.; Khoshvaght, H.; Bayat, M. Frequency and antimicrobial resistance of diarrhoeagenic Escherichia coli from young children in Iran. J. Med. Microbiol. 2014, 63, 427–432. [Google Scholar] [CrossRef]
- Hoang, P.H.; Awasthi, S.P.; Nguyen, P.D.; Nguyen, N.L.H.; Nguyen, D.T.A.; LE, N.H.; VAN Dang, C.; Hinenoya, A.; Yamasaki, S. Antimicrobial resistance profiles and molecular characterization of Escherichia coli strains isolated from healthy adults in Ho Chi Minh City, Vietnam. J. Vet. Med. Sci. 2017, 79, 479–485. [Google Scholar] [CrossRef]
- Huang, Y.; Shan, X.-F.; Deng, H.; Huang, Y.-J.; Mu, X.-P.; Huang, A.-L.; Long, Q. Epidemiology, Antimicrobial Resistance and β-lactamase Genotypic Features of Enteropathogenic Escherichia coli Isolated from Children with Diarrhea in Southern China. Jpn. J. Infect. Dis. 2015, 68, 239–243. [Google Scholar] [CrossRef]
- Huang, Z.; Pan, H.; Zhang, P.; Cao, X.; Ju, W.; Wang, C.; Zhang, J.; Meng, J.; Yuan, Z.; Xu, X. Prevalence and Antimicrobial Resistance Patterns of Diarrheagenic Escherichia coli in Shanghai, China. Pediatr. Infect. Dis. J. 2016, 35, 835–839. [Google Scholar] [CrossRef]
- Islam, M.A.; Amin, M.B.; Roy, S.; Asaduzzaman, M.; Islam, M.R.; Navab-Daneshmand, T.; Mattioli, M.C.; Kile, M.L.; Julian, K.L.T.R. Fecal colonization with multidrug-resistant E. Coli among Healthy Infants in Rural Bangladesh. Front. Microbiol. 2019, 10, 640. [Google Scholar] [CrossRef] [PubMed]
- Jafari, E.; Oloomi, M.; Bouzari, S. Characterization of antimicrobial susceptibility, extended-spectrum β-lactamase genes and phylogenetic groups of Shigatoxin producing Escherichia coli isolated from patients with diarrhea in Iran. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Karami, P.; Bazmamoun, H.; Sedighi, I.; Nejad, A.S.M.; Aslani, M.M.; Alikhani, M.Y. Antibacterial resistance patterns of extended spectrum β-lactamase -producing enteropathogenic Escherichia coli strains isolated from children. Arab J. Gastroenterol. 2017, 18, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Khalil, U.; Younus, M.; Asghar, N.; Siddiqui, F.; Gómez-Duarte, O.G.; Wren, B.W.; Bokhari, H. Phenotypic and genotypic characterization of enteroaggregative Escherichia coli isolates from pediatric population in Pakistan. APMIS 2016, 124, 872–880. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Q.; Shi, X.; Lin, Y.; Qiu, Y.; Lv, D.; Jiang, Y.; Chen, Q.; Jiang, M.; Ma, H.; et al. Phenotypic and Genotypic Characterization of Clinical Enterotoxigenic Escherichia coli Isolates from Shenzhen, China. Foodborne Pathog. Dis. 2017, 14, 333–340. [Google Scholar] [CrossRef]
- Broujerdi, S.M.; Ardakani, M.R.; Rezatofighi, S.E. Characterization of diarrheagenic Escherichia coli strains associated with diarrhea in children, Khouzestan, Iran. J. Infect. Dev. Ctries. 2018, 12, 649–656. [Google Scholar] [CrossRef]
- Aznaveh, A.M.; Bakhshi, B.; Najar-Peerayeh, S. The trend of enteropathogenic Escherichia coli towards atypical multidrug resistant genotypes. J. Chemother. 2017, 29, 1–7. [Google Scholar] [CrossRef]
- Malvi, S.; Appannanavar, S.; Mohan, B.; Kaur, H.; Gautam, N.; Bharti, B.; Kumar, Y.; Taneja, N. Comparative analysis of virulence determinants, antibiotic susceptibility patterns and serogrouping of atypical enteropathogenic Escherichia coli versus typical enteropathogenic E. coli in India. J. Med. Microbiol. 2015, 64, 1208–1215. [Google Scholar] [CrossRef]
- Meng, C.Y.; Smith, B.L.; Bodhidatta, L.; Richard, S.A.; Vansith, K.; Thy, B.; Srijan, A.; Serichantalergs, O.; Mason, C.J. Etiology of Diarrhea in Young Children and Patterns of Antibiotic Resistance in Cambodia. Pediatr. Infect. Dis. J. 2011, 30, 331–335. [Google Scholar] [CrossRef]
- Modgil, V.; Chaudhary, P.; Bharti, B.; Mahindroo, J.; Yousuf; Koundal, M.; Mohan, B.; Taneja, N. Prevalence, Virulence Gene Profiling, and Characterization of Enteroaggregative Escherichia coli from Children with Acute Diarrhea, Asymptomatic Nourished, and Malnourished Children Younger Than 5 Years of Age in India. J. Pediatr. 2021, 234, 106–114. [Google Scholar] [CrossRef]
- Moharana, S.; Panda, R.; Dash, M.; Chayani, N.; Bokade, P.; Pati, S.; Bhattacharya, D. Etiology of childhood diarrhoea among under five children and molecular analysis of antibiotic resistance in isolated enteric bacterial pathogens from a tertiary care hospital, eastern odisha, india. BMC Infect. Dis. 2019, 19, 1018. [Google Scholar] [CrossRef]
- Natarajan, M.; Kumar, D.; Mandal, J.; Biswal, N.; Stephen, S. A study of virulence and antimicrobial resistance pattern in diarrhoeagenic Escherichia coli isolated from diarrhoeal stool specimens from children and adults in a tertiary hospital, Puducherry, India. J. Health Popul. Nutr. 2018, 37, 17. [Google Scholar] [CrossRef]
- Nazarian, S.; Gargari, S.L.M.; Rasooli, I.; Alerasol, M.; Bagheri, S.; Alipoor, S.D. Prevalent Phenotypic and Genotypic Profile of Enterotoxigenic Escherichia coli among Iranian Children. Jpn. J. Infect. Dis. 2014, 67, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Bodhidatta, L.; Lewis, M.; Murphy, H.; Shlim, D.R.; Cave, W.; Rajah, R.; Springer, M.; Batchelor, T.; Sornsakrin, S.; et al. Travelers’ Diarrhea in Nepal: An Update on the Pathogens and Antibiotic Resistance. J. Travel Med. 2010, 18, 102–108. [Google Scholar] [CrossRef]
- Pazhani, G.; Chakraborty, S.; Fujihara, K.; Yamasaki, S.; Ghosh, A.; Nair, G.; Ramamurthy, T. QRDR mutations, efflux system & antimicrobial resistance genes in enterotoxigenic Escherichia coli isolated from an outbreak of diarrhoea in Ahmedabad, India. Indian J. Med. Res. 2011, 134, 214–223. [Google Scholar]
- Rahman, M.; Ahmed, P.; Kar, A.; Sakib, N.; Shibly, A.Z.; Zohora, F.T.; Hasan, N. Prevalence, Antimicrobial Resistance, and Pathogenic Potential of Enterotoxigenic and Enteropathogenic Escherichia coli Associated with Acute Diarrheal Patients in Tangail, Bangladesh. Foodborne Pathog. Dis. 2020, 17, 434–439. [Google Scholar] [CrossRef]
- Singh, T.; Singh, P.K.; Dar, S.A.; Haque, S.; Akhter, N.; Das, S. Changing paradigm of antibiotic resistance amongst Escherichia coli isolates in Indian pediatric population. PLoS ONE 2019, 14, e0213850. [Google Scholar] [CrossRef]
- Snehaa, K.; Singh, T.; Dar, S.A.; Haque, S.; Ramachandran, V.G.; Saha, R.; Shah, D.; Das, S. Typical and atypical enteropathogenic Escherichia coli in children with acute diarrhoea: Changing trend in East Delhi. Biomed. J. 2020, 44, 471–478. [Google Scholar] [CrossRef]
- Taghadosi, R.; Shakibaie, M.R.; Nave, H.H. Antibiotic resistance, ESBL genes, integrons, phylogenetic groups and MLVA profiles of Escherichia coli pathotypes isolated from patients with diarrhea and farm animals in south-east of Iran. Comp. Immunol. Microbiol. Infect. Dis. 2019, 63, 117–126. [Google Scholar] [CrossRef]
- Tian, L.; Zhu, X.; Chen, Z.; Liu, W.; Li, S.; Yu, W.; Zhang, W.; Xiang, X.; Sun, Z. Characteristics of bacterial pathogens associated with acute diarrhea in children under 5 years of age: A hospital-based cross-sectional study. BMC Infect. Dis. 2016, 16, 253. [Google Scholar] [CrossRef]
- Xiang, Y.; Wu, F.; Chai, Y.; Xu, X.; Yang, L.; Tian, S.; Zhang, H.; Li, Y.; Yang, C.; Liu, H.; et al. A new plasmid carrying mphA causes prevalence of azithromycin resistance in enterotoxigenic Escherichia coli serogroup O6. BMC Microbiol. 2020, 20, 247. [Google Scholar] [CrossRef]
- Younas, M.; Siddiqui, F.; Noreen, Z.; Bokhari, S.S.; Gomez-Duarte, O.G.; Wren, B.W.; Bokhari, H. Characterization of enteropathogenicEscherichia coliof clinical origin from the pediatric population in Pakistan. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 414–420. [Google Scholar] [CrossRef]
- Zeighami, H.; Haghi, F.; Hajiahmadi, F.; Kashefiyeh, M.; Memariani, M. Multi-drug-resistant enterotoxigenic and enterohemorrhagicEscherichia coliisolated from children with diarrhea. J. Chemother. 2014, 27, 152–155. [Google Scholar] [CrossRef]
- Zhang, S.-X.; Zhou, Y.-M.; Tian, L.-G.; Chen, J.-X.; Tinoco-Torres, R.; Serrano, E.; Li, S.-Z.; Chen, S.-H.; Ai, L.; Chen, J.-H.; et al. Antibiotic resistance and molecular characterization of diarrheagenic Escherichia coli and non-typhoidal Salmonella strains isolated from infections in Southwest China. Infect. Dis. Poverty 2018, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.; Yu, F.; Chen, X.; Cui, D.; Cheng, Y.; Xie, G.; Yang, X.; Han, D.; Wang, Y.; Zhang, W.; et al. Enteropathogens in children less than 5 years of age with acute diarrhea: A 5-year surveillance study in the Southeast Coast of China. BMC Infect. Dis. 2016, 16, 434. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-H.; Tian, L.; Cheng, Z.-J.; Liu, W.-Y.; Li, S.; Yu, W.-T.; Zhang, W.-Q.; Xiang, X.; Sun, Z.-Y. Viral and Bacterial Etiology of Acute Diarrhea among Children under 5 Years of Age in Wuhan, China. Chin. Med. J. 2016, 129, 1939–1944. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Nguyen, T.; Fagbayigbo, B.; Cissé, G.; Redi, N.; Fuhrimann, S.; Okedi, J.; Schindler, C.; Röösli, M.; Armitage, N.; Carden, K.; et al. Diarrhoea among Children Aged under Five Years and Risk Factors in Informal Settlements: A Cross-Sectional Study in Cape Town, South Africa. Int. J. Environ. Res. Public Health 2021, 18, 6043. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef]
- Abraham, S.; Trott, D.J.; Jordan, D.; Gordon, D.M.; Groves, M.D.; Fairbrother, J.M.; Smith, M.G.; Zhang, R.; Chapman, T. Phylogenetic and molecular insights into the evolution of multidrug-resistant porcine enterotoxigenic Escherichia coli in Australia. Int. J. Antimicrob. Agents 2014, 44, 105–111. [Google Scholar] [CrossRef]
- Benmessaoud, R.; Nezha, M.; Moraleda, C.; Jroundi, I.; Tligui, H.; Seffar, M.; Pons, M.J.; Alvarez, M.J.; Chaacho, S.; Vila, J.; et al. Antimicrobial resistance levels among diarrhoeagenic micro-organisms recovered from children under-5 with acute moderate-to-severe diarrhoea in Rabat, Morocco. J. Glob. Antimicrob. Resist. 2016, 7, 34–36. [Google Scholar] [CrossRef]
- Medina, A.M.; Rivera, F.P.; Pons, M.J.; Riveros, M.; Gomes, C.; Bernal, M.; Meza, R.; Maves, R.C.; Huicho, L.; Chea-Woo, E.; et al. Comparative analysis of antimicrobial resistance in enterotoxigenic Escherichia coli isolates from two paediatric cohort studies in Lima, Peru. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 493–502. [Google Scholar] [CrossRef]
- Imrey, P.B. Limitations of Meta-analyses of Studies With High Heterogeneity. JAMA Netw. Open 2020, 3, e1919325. [Google Scholar] [CrossRef]
- Alizade, H.; Teshnizi, S.H.; Azad, M.; Shojae, S.; Gouklani, H.; Davoodian, P.; Ghanbarpour, R. An overview of diarrheagenic Escherichia coli in Iran: A systematic review and meta-analysis. J. Res. Med. Sci. 2019, 24, 23. [Google Scholar] [CrossRef]
- Winstead, A.; Hunter, J.C.; Griffin, P.M. Escherichia coli, Diarrheagenic-Chapter 4-2020 Yellow Book Travelers’ Health CDC. 2020. Available online: https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-related-infectious-diseases/escherichia-coli-diarrheagenic (accessed on 3 August 2022).
- Beyene, A.M.; Gezachew, M.; Mengesha, D.; Yousef, A.; Gelaw, B. Prevalence and drug resistance patterns of Gram-negative enteric bacterial pathogens from diarrheic patients in Ethiopia: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0265271. [Google Scholar] [CrossRef]
- Pormohammad, A.; Nasiri, M.J.; Azimi, T. Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: A systematic review and meta-analysis. Infect. Drug Resist. 2019, ume 12, 1181–1197. [Google Scholar] [CrossRef]
- Aworh, M.K.; Abiodun-Adewusi, O.; Mba, N.; Helwigh, B.; Hendriksen, R.S. Prevalence and risk factors for faecal carriage of multidrug resistant Escherichia coli among slaughterhouse workers. Sci. Rep. 2021, 11, 13362. [Google Scholar] [CrossRef]
- Rivera-Izquierdo, M.; Benavente-Fernández, A.; López-Gómez, J.; Láinez-Ramos-Bossini, A.J.; Rodríguez-Camacho, M.; Valero-Ubierna, M.D.C.; Martín-Delosreyes, L.M.; Jiménez-Mejías, E.; Moreno-Roldán, E.; Lardelli-Claret, P.; et al. Prevalence of Multi-Resistant Microorganisms and Antibiotic Stewardship among Hospitalized Patients Living in Residential Care Homes in Spain: A Cross-Sectional Study. Antibiotics 2020, 9, 324. [Google Scholar] [CrossRef]
- Nkansa-Gyamfi, N.A.; Kazibwe, J.; Traore, D.A.K.; Nji, E. Prevalence of multidrug-, extensive drug-, and pandrug-resistant commensal Escherichia coli isolated from healthy humans in community settings in low- and middle-income countries: A systematic review and meta-analysis. Glob. Health Action 2019, 12, 1815272. [Google Scholar] [CrossRef]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef]
- Lob, S.H.; Nicolle, L.E.; Hoban, D.J.; Kazmierczak, K.M.; Badal, R.E.; Sahm, D.F. Susceptibility patterns and ESBL rates of Escherichia coli from urinary tract infections in Canada and the United States, SMART 2010–2014. Diagn. Microbiol. Infect. Dis. 2016, 85, 459–465. [Google Scholar] [CrossRef]
- Flokas, M.E.; Alevizakos, M.; Shehadeh, F.; Andreatos, N.; Mylonakis, E. Extended-spectrum β-lactamase-producing Enterobacteriaceae colonisation in long-term care facilities: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2017, 50, 649–656. [Google Scholar] [CrossRef]
- Ipekci, T.; Seyman, D.; Berk, H.; Celik, O. Clinical and bacteriological efficacy of amikacin in the treatment of lower urinary tract infection caused by extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella pneumoniae. J. Infect. Chemother. 2014, 20, 762–767. [Google Scholar] [CrossRef]
- Kang, C.-I.; Wi, Y.M.; Ko, K.S.; Chung, D.R.; Peck, K.R.; Lee, N.Y.; Song, J.-H. Outcomes and risk factors for mortality in community-onset bacteremia caused by extended-spectrum beta-lactamase-producing Escherichia coli, with a special emphasis on antimicrobial therapy. Scand. J. Infect. Dis. 2013, 45, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Hajissa, K.; Marzan, M.; Idriss, M.; Islam, A. Prevalence of Drug-Resistant Tuberculosis in Sudan: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 932. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting Meta-Analyses in R with themetaforPackage. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef] [Green Version]
No | Study ID (Author, Year) | Ref. | Study Period | Country | Sample Population | Age | Sample Size | Bacterial Species | Study Methods | Tested Antibiotics |
---|---|---|---|---|---|---|---|---|---|---|
1 | Aminshahidi, M. 2017 | [19] | 8/2014 to 2/2015 | Iran | 269 | 0 to 18 years | 48 | EAEC, EIEC, EPEC, ETEC | KB, PCR | MEM, CAZ, CTX, CTR, CIP, AMK, AMP, SXT, GEN |
2 | Aslani, M. M. 2011 | [20] | 7/2007 to 5/2008 | Iran | 140 | 0 to 12 years | 14 | EAEC | KB, PCR | AMP, ERY, CEP, SXT, TET, NAL, CFM, AMC, CTX, CTR, CHL, GEN, CIP, NOR |
3 | Bagus Wasito, E. 2017 | [21] | 2012 | Indonesia | ND | 0 to 3 years | 133 | DEC | KB, DDST, PCR | GEN, AMK, SXT, CIP, TET |
4 | Begum, Y. A. 2016 | [22] | 2005 to 2009 | Bangladesh | 8580 | ND | 1067 | ETEC | KB, PCR | AMP, AZI, CIP, CTR, SXT, DOX, ERY, NAL, NOR, STR, TET |
5 | Chang, H. 2017 | [23] | 2014 | China | 680 | Pediatrics | 201 | EPEC, EAEC, ETEC, STEC | KB, PCR | CHL, GEN, NAL, CIP, SXT, TET, AMP, AMC, CTR, FOX, AZI |
6 | Chellapandi, K. 2017 | [24] | 11/2013 to 10/2015 | India | 210 | 0 to 5 years | 58 | EPEC, EIEC | KB, PCR | AMP, AMK, CHL, CTR, LEX, CIP, SXT, CFP, MEM, NOR, GEN, CFM, DOX, OFX |
7 | Eltai, N. O. 2020 | [25] | 8/2017 to 1/2018 | Qatar | 175 | 0 to 10 years | 76 | EPEC, EAEC, EIEC, ETEC | E-test, PCR | AMP, AMC, TZP, GEN, CIP, CHL, TET, SXT, CEP, CFX, CTR, CEF |
8 | Haghi, F. 2014 | [26] | 3/2011 to 1/2012 | Iran | 600 | 0 to 5 years | 140 | DEC | KB, PCR | AMX, AZT, AMK, FOX, CTX, CAZ, AMC, SXT, CIP, GEN, ERY, IMI, TET |
9 | Hoang, P. H. 2017 | [27] | 3/2013 to 11/2013 | Vietnam | ND | 20 to 70 years | 103 | DEC | KB, DDST, PCR | AMP, CTX, CAZ, IMI, NAL, CIP, GEN, KAN, STR, FOS, TET, SXT, CHL |
10 | Huang, Y. 2015 | [28] | 2009 | China | 1643 | Pediatrics | 58 | EPEC | KB, PCR | AMP, SXT, CHL, CIP, CTR, CAZ, IMI |
11 | Huang, Z. 2016 | [29] | 6/2012 to 10/2013 | China | 7204 | All group | 735 | EPEC, ETEC, EIEC, STEC | Agar dilution, PCR | STR, AMP, NAL, SUL, TET, TMP, SXT, AMC, CTX, CEF, GEN, CAZ, CHL, CIP, OFX, IMI |
12 | Islam, M. A. 2019 | [30] | 3/2017 to 10/2017 | Bangladesh | 100 | 0 to 1 year | 82 | DEC | KB, DDST, PCR | AMP, AZI, CEF, NAL, CIP, SXT, TET, GEN, CHL, MEM, IMI, COL, NIT |
13 | Jafari, E. 2021 | [31] | 2014 | Iran | 340 | 5 months to 92 years | 174 | STEC | KB, PCR | CTX, CAZ, TZP, ETP, IMI, CIP, LEV, AMK, TET, AMP, SXT |
14 | Jomehzadeh, N. 2021 | [15] | 3/2016 to 2/2017 | Iran | 321 | 0 to 5 years | 14 | EPEC | KB, DDST, PCR | CAZ, CTR, CTX, FOX, CIP, IMI, MEM, SXT, AMK, TET, GEN, CHL, AMX, PIP, AZT |
15 | Karami, P. 2017 | [32] | Summer months | Iran | 247 | 0 to 10 years | 192 | EPEC | KB, DDST, PCR | AMP, FAM, CAZ, CTX, CTR, IMI, AZT, GEN, AMK, TET, CIP, TMP, CHL |
16 | Khalil, U. 2016 | [33] | 7/2010 to 8/2011 | Pakistan | 225 | 0 to 5 years | 35 | EAEC | KB, DDST, PCR | TET, NAL, SXT, ERY, GEN, DOX, CEC, CHL, CIP, AMP |
17 | Li, Y. 2017 | [34] | 2009 to 2014 | China | 13324 | 20 to 59 years | 168 | ETEC | KB | NAL, CEP, AMP, TET, STR, TMP, SXT, AMC, CTX, CTR, GEN, FAM, CEF, KAN, CIP, LEV, CAZ, FOX, AMK, CHL, IMI, MEM |
18 | Mahdavi Broujerdi, S. 2018 | [35] | 9/2015 to 6/2016 | Iran | 208 | 0 to 5 years | 54 | EAEC, EPEC, EIEC, ETEC | KB, DDST, PCR | CTR, CIP, AMK, GEN, FOX, CAZ, CTX, IMI |
19 | Mahmoudi-Aznaveh, A. 2017 | [36] | 11/2012 to 10/2013 | Iran | 349 | 0 to 5 years | 30 | EPEC | KB, PCR | TET, SXT, NAL, STR, MIN, GEN, CIP |
20 | Malvi, S. 2015 | [37] | 2012 to 2013 | India | 900 | 0 to 10 years | 59 | EPEC | KB, DDST, PCR | AMX, CHL, SXT, NAL, CIP, NOR, GEN, AMK, CTR, CEF, IMI, MEM, ETP, TZP, AZI |
21 | Margulieux, K. R. 2018 | [18] | 2001 to 2016 | Nepal | ND | ND | 265 | ETEC | KB, DDST, PCR | AMP, SXT, TET, FAM, CIP, ETP |
22 | Meng, C. Y. 2011 | [38] | 11/2004 to 10/2006 | Cambodia | 600 | 3 months to 5 years | 323 | ETEC, EPEC, EAEC | KB | AZI, ERY, NAL, CIP, AMP, GEN, SXT, TET |
23 | Modgil, V. 2021 | [39] | 2015 to 2017 | India | 548 | 0 to 5 years | 164 | EAEC, EPEC, ETEC | KB, PCR | AMP, CIP, AMK, IMI, LEV, GEN, CFM, TZP, ETP, SXT, FOX, CTR |
24 | Moharana, S. S. 2019 | [40] | 9/2015 to 11/2017 | India | 320 | 0 to 5 years | 77 | ETEC, EPEC, EAEC | KB, DDST, PCR | AMK, SXT, IMI, NAL, OFX, CTR, AMP, LEV, AMC, CIP |
25 | Natarajan, M. 2018 | [41] | 7/2015 to 6/2016 | India | 220 | All groups | 67 | DEC | KB, PCR | CTR, CAZ, SXT, TET, LEV, CIP, GEN, AMK, CHL |
26 | Nazarian, S. 2014 | [42] | 4/2010 to 9/2011 | Iran | 261 | 0 to 5 years | 21 | ETEC | KB, PCR | AMP, NAL, CHL, TET, CIP, GEN, FOX, CEP, SXT |
27 | Pandey, P. 2011 | [43] | 3/2001 to 3/2003 | Nepal | 381 | >18 years | 88 | ETEC, EPEC | KB | AMX, SXT, NAL, CIP, AZI |
28 | Pazhani, G. P. 2011 | [44] | 2000 | India | ND | ND | 17 | ETEC | KB, PCR | AMP, CEP, TET, SXT, NAL, NOR, CIP, CHL, STR, KAN |
29 | Rahman, M. M. 2020 | [45] | 3/2018 to 5/2018 | Bangladesh | 100 | ND | 31 | ETEC, EPEC | KB, PCR | AMC, TET, NAL, AZI, CIP, AMP, ERY |
30 | Singh, T. 2019 | [46] | 7/2013 to 7/2015 | India | 120 | 0 to 5 years | 40 | DEC | KB, PCR | NOR, CTX, IMI, MEM, CAZ, AZT, NAL, AMC, GEN, CIP, AMP, AMK, PLB, CTR, TZP |
31 | Snehaa, K. 2021 | [47] | 6/2014 to 6/2015 | India | 200 | 0 to 5 years | 19 | EPEC | KB, PCR | NAL, CTX, AMK, GEN, TZP, IMI, AZT, NOR |
32 | Taghadosi, R. 2019 | [48] | 10/2014 to 11/2015 | Iran | 395 | All groups | 39 | EPEC, ETEC | KB, DDST, PCR | AMC, AZT, PIP, CIP, CTR, KAN, IMI, AMP, NAL, AMK, SXT, CAZ, CFX, TOB |
33 | Tian, L. 2016 | [49] | 5/2014 to 8/2015 | China | 508 | 0 to 5 years | 24 | EPEC, STEC, EAEC | Agar dilution, PCR | AMP, FAM, CTR, CTX, NAL, CIP, LEV, SXT, AZI, CHL, TET, CFZ, CFX, IMI, AMK, GEN, ERY, DOX |
34 | Xiang, Y. 2020 | [50] | 2016 to 2018 | China | 84 | 20 to 60 years | 30 | ETEC | Agar dilution | CTR, TET, TIO, FOX, GEN, AMP, CHL, CIP, SXT, SUL, NAL, STR, AZI, AMC |
35 | Younas, M. 2016 | [51] | 2010 to 2012 | Pakistan | 225 | 0 to 5 years | 46 | EPEC | KB, DDST, PCR | AMP, CEC, ERY, AMC, SXT, TET, NAL, CIP, GEN |
36 | Zeighami, H. 2015 | [52] | 3/2011 to 1/2012 | Iran | 450 | 0 to 5 years | 140 | DEC | KB, PCR | AMX, AZT, AMK, FOX, CTX, CAZ, AMC, SXT, CIP, GEN, IMI, TET |
37 | Zhang, S. X. 2018 | [53] | 6/2014 to 7/2015 | China | 1121 | All groups | 127 | DEC | KB | AMP, AMC, CEP, CIP, CTX, GEN, NAL, RIF, SXT, TET |
38 | Zheng, S. 2016 | [54] | 7/2009 to 12/2014 | China | 2318 | 0 to 5 years | 177 | EAEC, EPEC, ETEC, STEC, EIEC | KB, PCR | AMP, TET, CFZ, SXT, PIP, CFX, FAM, CTX, GEN, AZT, CIP, CAZ, AMC, CEF, FOX, TZP, AMK, IMI, MEM |
39 | Zhou, Y. 2018 | [16] | 8/2015 to 9/2016 | China | 684 | 0 to 5 years | 54 | EPEC, EAEC, ETEC, EIEC, STEC | Agar dilution, PCR | MEM, IMI, TZP, SXT, AMK, GEN, LEV, CIP, FOX, AZT, CEF, CAZ, CTX, CFX, CFZ, AMP |
40 | Zhu, X. H. 2016 | [55] | 7/2014 to 6/2015 | China | 381 | 0 to 5 years | 18 | EAEC, EPEC, STEC | Agar dilution | AMP, FAM, CFZ, CFX, CTX, IMI, AMK, GEN, CIP, LEV, CHL, TET, SXT |
Subgroup | Prevalence (%) [95% Cis] | No. Of Studies | Sample Size | Sample Population | I2 | p-Value |
---|---|---|---|---|---|---|
Regions | ||||||
East Asia | 11.1 [4.5–17.7] | 10 | 1592 | 27947 | 99% | <0.01 |
Middle East | 25.9 [13.4–38.3] | 12 | 942 | 3755 | 99% | <0.01 |
South Asia | 26.4 [16.3–36.5] | 13 | 1833 | 12129 | 98% | <0.01 |
Southeast Asia | 53.8 [49.8–57.9] | 1 | 323 | 600 | NA | NA |
Countries | ||||||
Bangladesh | 41.7 [0.9–82.5] | 3 | 1180 | 8780 | 99% | <0.01 |
Cambodia | 53.8 [49.8–57.9] | 1 | 323 | 600 | NA | NA |
China | 11.1 [4.5–17.7] | 10 | 1592 | 27947 | 99% | <0.01 |
India | 22.7 [14.7–30.8] | 7 | 484 | 2518 | 97% | <0.01 |
Iran | 24.3 [11.1–37.5] | 11 | 866 | 3580 | 99% | <0.01 |
Nepal | 23.1 [19.0–27.7] | 1 | 88 | 381 | NA | NA |
Pakistan | 17.9 [13.1–22.6] | 2 | 81 | 450 | 45% | 0.18 |
Qatar | 43.4 [36.0–51.1] | 1 | 76 | 175 | NA | NA |
Antibiotics | Prevalence (%) [95% CIs] | No. of Resistant Isolates | No. of Studies | I2 | p-Value |
---|---|---|---|---|---|
1st gen. Cephalosporins | |||||
Cefaclor (CEC) | 80.2 [71.6–88.9] | 65 | 2 | 0% | 0.96 |
Cephalothin (CEP) | 48.4 [24.2–72.5] | 161 | 6 | 96% | <0.01 |
Cefazolin (CFZ) | 48.3 [34.5–62.0] | 148 | 4 | 69% | 0.02 |
2nd gen. Cephalosporins | |||||
Cefuroxime (CFX) | 42.5 [29.9–55.0] | 168 | 6 | 84% | <0.01 |
Cefoxitin (FOX) | 17.6 [7.0–28.3] | 177 | 9 | 96% | <0.01 |
3rd gen. Cephalosporins | |||||
Ceftazidime (CAZ) | 29.5 [17.2–41.9] | 557 | 17 | 99% | <0.01 |
Ceftriaxone (CTR) | 31.7 [19.7–43.7] | 617 | 20 | 98% | <0.01 |
Cefotaxime (CTX) | 36.6 [27.4–45.7] | 720 | 18 | 96% | <0.01 |
4th gen. Cephalosporins | |||||
Cefepime (CEF) | 26.3 [8.4–44.3] | 303 | 7 | 98% | <0.01 |
Aminoglycosides | |||||
Amikacin (AMK) | 10.9 [6.5–15.4] | 169 | 21 | 89% | <0.01 |
Gentamicin (GEN) | 21.3 [16.4–26.1] | 675 | 31 | 92% | <0.01 |
Kanamycin (KAN) | 14.7 [0.0–29.9] | 35 | 5 | 91% | <0.01 |
Streptomycin (STR) | 48.7 [25.7–71.8] | 1317 | 7 | 99% | <0.01 |
Carbapenems | |||||
Ertapenem (ETP) | 2.6 [0.0–6.3] | 14 | 4 | 79% | <0.01 |
Imipenem (IMI) | 0.1 [0.0–0.4] | 55 | 20 | 71% | <0.01 |
Meropenem (MEM) | 7.9 [0.8–14.9] | 41 | 9 | 85% | <0.01 |
Macrolides | |||||
Azithromycin (AZI) | 38.9 [18.4–59.3] | 578 | 9 | 98% | <0.01 |
Erythromycin (ERY) | 63.2 [33.7–92.8] | 1259 | 8 | 100% | 0 |
Monobactams | |||||
Aztreonam (AZT) | 37.4 [19.3–55.5] | 345 | 9 | 98% | <0.01 |
Penicillins | |||||
Amoxicillin + clavulanic acid (AMC) | 34.5 [20.9–48.1] | 612 | 16 | 99% | <0.01 |
Amoxicillin (AMX) | 80.9 [71.5–90.3] | 339 | 5 | 85% | <0.01 |
Ampicillin (AMP) | 73.5 [67.1–79.8] | 3031 | 30 | 98% | <0.01 |
Ampicillin + sulbactam (FAM) | 22.6 [8.1–37.2] | 169 | 5 | 96% | <0.01 |
Piperacillin (PIP) | 47.7 [14.0–81.5] | 129 | 4 | 99% | <0.01 |
Piperacillin + tazobactam (TZP) | 8.4 [3.0–13.8] | 53 | 8 | 85% | <0.01 |
Phenicols | |||||
Chloramphenicol (CHL) | 21.9 [15.0–28.8] | 314 | 19 | 93% | <0.01 |
Quinolones | |||||
Ciprofloxacin (CIP) | 25.7 [18.3–33.1] | 1081 | 38 | 98% | <0.01 |
Levofloxacin (LEV) | 30.7 [17.3–44.2] | 232 | 8 | 97% | <0.01 |
Nalidixic acid (NAL) | 58.2 [47.4–69.1] | 2321 | 24 | 99% | 0 |
Norfloxacin (NOR) | 31.1 [8.7–53.5] | 348 | 7 | 97% | <0.01 |
Ofloxacin (OFX) | 36.0 [1.9–70.1] | 98 | 3 | 99% | <0.01 |
Tetracyclines | |||||
Doxycycline (DOX) | 40.1 [11.5–68.7] | 522 | 4 | 99% | <0.01 |
Tetracycline (TET) | 54.7 [46.9–62.6] | 2272 | 29 | 96% | <0.01 |
Others | |||||
Rifampicin (RIF) | 48.8 [0.0–100.0] | 124 | 2 | 100% | 0 |
Sulfamethoxazole/trimethoprim (SXT) | 50.0 [42.0–58.0] | 2333 | 36 | 99% | 0 |
Trimethoprim (TMP) | 36.3 [9.6–63.0] | 400 | 3 | 98% | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salleh, M.Z.; Nik Zuraina, N.M.N.; Hajissa, K.; Ilias, M.I.; Deris, Z.Z. Prevalence of Multidrug-Resistant Diarrheagenic Escherichia coli in Asia: A Systematic Review and Meta-Analysis. Antibiotics 2022, 11, 1333. https://doi.org/10.3390/antibiotics11101333
Salleh MZ, Nik Zuraina NMN, Hajissa K, Ilias MI, Deris ZZ. Prevalence of Multidrug-Resistant Diarrheagenic Escherichia coli in Asia: A Systematic Review and Meta-Analysis. Antibiotics. 2022; 11(10):1333. https://doi.org/10.3390/antibiotics11101333
Chicago/Turabian StyleSalleh, Mohd Zulkifli, Nik Mohd Noor Nik Zuraina, Khalid Hajissa, Mohamad Ikram Ilias, and Zakuan Zainy Deris. 2022. "Prevalence of Multidrug-Resistant Diarrheagenic Escherichia coli in Asia: A Systematic Review and Meta-Analysis" Antibiotics 11, no. 10: 1333. https://doi.org/10.3390/antibiotics11101333
APA StyleSalleh, M. Z., Nik Zuraina, N. M. N., Hajissa, K., Ilias, M. I., & Deris, Z. Z. (2022). Prevalence of Multidrug-Resistant Diarrheagenic Escherichia coli in Asia: A Systematic Review and Meta-Analysis. Antibiotics, 11(10), 1333. https://doi.org/10.3390/antibiotics11101333