Antimicrobial Activity and Composition of Five Rosmarinus (Now Salvia spp. and Varieties) Essential Oils
Abstract
:1. Introduction
2. Results and Discussions
2.1. Phytochemical Investigation
Statistical Analysis
2.2. Antimicrobial Investigation
2.3. Antimycotic Activity
3. Materials and Methods
3.1. Plant Material
3.2. Phytochemical Investigation
3.2.1. Essential oil (EO) Hydrodistillation
3.2.2. Gas Chromatography–Mass Spectrometry Analyses
3.2.3. Statistical Analysis
3.3. Antimicrobial Investigation
3.3.1. Antibacterial Activity
Bacterial Strains
Agar Disc Diffusion Method
Minimum Inhibitory Concentration (MIC)
3.3.2. Antimycotic Activity
Yeasts Species
Microdilution Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drew, B.T.; González-Gallegos, J.G.; Xiang, C.L.; Kriebel, R.; Drummond, C.P.; Walker, J.B.; Sytsma, K.J. Salvia united: The greatest good for the greatest number. Taxon 2017, 66, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Flamini, G.; Najar, B.; Leonardi, M.; Ambryszewska, K.E.; Cioni, P.L.; Parri, F.; Melai, B.; Pistelli, L. Essential oil composition of Salvia rosmarinus Spenn. wild samples collected from six sites and different seasonal periods in Elba Island (Tuscan Archipelago, Italy). Nat. Prod. Res. 2020, 1–7. [Google Scholar] [CrossRef]
- Najar, B.; Nardi, V.; Cervelli, C.; Mecacci, G.; Mancianti, F.; Ebani, V.V.; Nardoni, S.; Pistelli, L. Volatilome analyses and in vitro antimicrobial activity of the essential oils from five south african Helichrysum species. Molecules 2020, 25, 3196. [Google Scholar] [CrossRef]
- Roma-Marzio, F.; Galasso, G. New combinations for two hybrids in Salvia subg. rosmarinus (Lamiaceae). Ital. Bot. 2019, 7, 31–34. [Google Scholar] [CrossRef]
- Arnold, N.; Valentini, G.; Bellomaria, B.; Hocine, L. Comparative Study of the Essential Oils from Rosmarinus eriocalyx Jordan & Fourr. from Algeria and R. officinalis L. from Other Countries. J. Essent. Oil Res. 1997, 9, 167–175. [Google Scholar] [CrossRef]
- Bendif, H.; Boudjeniba, M.; Djamel Miara, M.; Biqiku, L.; Bramucci, M.; Caprioli, G.; Lupidi, G.; Quassinti, L.; Sagratini, G.; Vitali, L.A.; et al. Rosmarinus eriocalyx: An alternative to Rosmarinus officinalis as a source of antioxidant compounds. Food Chem. 2017, 218, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Flamini, G.; Cioni, P.L.; Morelli, I.; Macchia, M.; Ceccarini, L. Main agronomic-productive characteristics of two ecotypes of Rosmarinus officinalis L. and chemical composition of their essential oils. J. Agric. Food Chem. 2002, 50, 3512–3517. [Google Scholar] [CrossRef] [PubMed]
- Satyal, P.; Jones, T.H.; Lopez, E.M.; McFeeters, R.L.; Ali, N.A.A.; Mansi, I.; Al-Kaf, A.G.; Setzer, W.N. Chemotypic characterization and biological activity of Rosmarinus officinalis. Foods 2017, 6, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 2019, 229, 29–45. [Google Scholar] [CrossRef]
- Oualdi, I.; Brahmi, F.; Mokhtari, O.; Abdellaoui, S.; Tahani, A.; Oussaid, A. Rosmarinus officinalis from Morocco, Italy and France: Insight into chemical compositions and biological properties. Mater. Today Proc. 2021, 45, 7706–7710. [Google Scholar] [CrossRef]
- Napoli, E.M.; Curcuruto, G.; Ruberto, G. Screening of the essential oil composition of wild Sicilian rosemary. Biochem. Syst. Ecol. 2010, 38, 659–670. [Google Scholar] [CrossRef]
- Cioni, P.L.; Flamini, G.; Buti Castellini, C.; Ceccarini, L.; Macchia, M. Composition and yield of the essential oils from whole plant, leaves and branches of Rosmarinus officinalis L. growing in minor islands of “Parco Nazionale dell’Arcipelago Toscano”. In Proceedings of the Acta Horticulturae; International Society for Horticultural Science: Leuven, Belgium, 2006; Volume 723, pp. 255–260. [Google Scholar]
- Bendeddouche, M.S.; Benhassaini, H.; Hazem, Z.; Romane, A. Essential Oil Analysis and Antibacterial Activity of Rosmarinus tournefortii from Algeria. Nat. Prod. Commun. 2011, 6, 1934578X1100601. [Google Scholar] [CrossRef] [Green Version]
- Benbelaïd, F.; Khadir, A.; Bendahou, M.; Zenati, F.; Bellahsene, C.; Muselli, A.; Costa, J. Antimicrobial activity of Rosmarinus eriocalyx essential oil and polyphenols: An endemic medicinal plant from Algeria. J. Coast. Life Med. 2016, 4, 39–44. [Google Scholar] [CrossRef]
- Maqbul, M.S. Antifungal activity of Salvia jordanii against the Oralo thrush caused by the cosmopolitan yeast Candida Albicans among elderly diabetic type 2 patients. Adv. Mater. Lett. 2020, 11, 20031493. [Google Scholar] [CrossRef]
- Nieto, G. Biological Activities of Three Essential Oils of the Lamiaceae Family. Medicines 2017, 4, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abers, M.; Schroeder, S.; Goelz, L.; Sulser, A.; St. Rose, T.; Puchalski, K.; Langland, J. Antimicrobial activity of the volatile substances from essential oils. BMC Complement. Med. Ther. 2021, 21, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Soulaimani, B.; El Hidar, N.; Ben El Fakir, S.; Mezrioui, N.; Hassani, L.; Abbad, A. Combined antibacterial activity of essential oils extracted from Lavandula maroccana (Murb.), Thymus pallidus Batt. and Rosmarinus officinalis L. against antibiotic-resistant Gram-negative bacteria. Eur. J. Integr. Med. 2021, 43, 101312. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crop. Prod. 2013, 43, 587–595. [Google Scholar] [CrossRef]
- Wani, A.R.; Yadav, K.; Khursheed, A.; Rather, M.A. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb. Pathog. 2021, 152, 104620. [Google Scholar] [CrossRef] [PubMed]
- Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the Environment. Microbiol. Mol. Biol. Rev. 2012, 76, 685–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertelloni, F.; Salvadori, C.; Moni, A.; Cerri, D.; Mani, P.; Ebani, V.V. Antimicrobial resistance in Enterococcus spp. Isolated from laying hens of backyard poultry flocks. Ann. Agric. Environ. Med. 2015, 22, 665–669. [Google Scholar] [CrossRef] [Green Version]
- Jordán, M.J.; Lax, V.; Rota, M.C.; Lorán, S.; Sotomayor, J.A. Effect of bioclimatic area on the essential oil composition and antibacterial activity of Rosmarinus officinalis L. Food Control 2013, 30, 463–468. [Google Scholar] [CrossRef]
- Southwell, I.A.; Hayes, A.J.; Markham, J.; Leach, D.N. The search for optimally bioactive Australian tea tree oil. Acta Hortic. 1993, 256–265. [Google Scholar] [CrossRef]
- Mann, C.M.; Markham, J.L. A new method for determining the minimum inhibitory concentration of essential oils. J. Appl. Microbiol. 1998, 84, 538–544. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J.; Mendez, M.; Kibbler, C.; Erzsebet, P.; Chang, S.C.; Gibbs, D.L.; Newell, V.A.; Finquelievich, J.; Tiraboschi, N.; et al. Candida guilliermondii, an opportunistic fungal pathogen with decreased susceptibility to fluconazole: Geographic and temporal trends from the ARTEMIS DISK antifungal surveillance program. J. Clin. Microbiol. 2006, 44, 3551–3556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaller, M.A.; Castanheira, M.; Messer, S.A.; Jones, R.N. In vitro antifungal susceptibilities of isolates of Candida spp. and Aspergillus spp. from China to nine systemically active antifungal agents: Data from the SENTRY antifungal surveillance program, 2010 through 2012. Mycoses 2015, 58, 209–214. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Carol, S., Ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 1932633219. [Google Scholar]
- National Institute of Standards and Technology. NIST/EPA/NIH Mass Spectral Library; The NIST Mass Spectrometry Data Center: Gaithersburg, MD, USA, 2014.
- Clarke, K.R.; Gorley, R.; Sommerfield, P.J.; Warwick, R.M. Change in Marine Communities-Statistical Analysis; Primer-E: Plymouth, UK, 2014. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests. In Approved Standard, 11th ed.; CLSI document M02-A11; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; pp. 1–15. [Google Scholar]
- National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing. Twelfth International Supplement; M100-M112; NCCLS: Wayne, PA, USA, 2002. [Google Scholar]
- CLSI—National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved standard M7-A2; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 1990. [Google Scholar]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Rocchigiani, G.; Pistelli, L.; Mancianti, F. Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flavour Fragr. J. 2016, 31, 302–309. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, H.J.; Yu, S.H.; Wu, S.G.; Yoon, I.; Quigley, J.; Gao, Y.P.; Qi, G.H. Effects of yeast culture in broiler diets on performance and immunomodulatory functions. Poult. Sci. 2008, 87, 1377–1384. [Google Scholar] [CrossRef]
- Budzyńska, A.; Sadowska, B.; Lipowczan, G.; Maciąg, A.; Kalemba, D.; Różalska, B. Activity of Selected Essential Oils against Candida spp. strains. Evaluation of New Aspects of their Specific Pharmacological Properties, with Special Reference to Lemon Balm. Adv. Microbiol. 2013, 3, 317–325. [Google Scholar] [CrossRef] [Green Version]
Peak | Compounds | l.r.i. | Class. | Relative Abundances (%) ±SD | ||||
---|---|---|---|---|---|---|---|---|
Boule | Gori | Joyce | Vicom | Jord | ||||
1 | tricyclene | 922 | mh | - | 0.1 ± 0.00 | - | - | 0.1 ± 0.01 |
2 | α-thujene | 926 | mh | - | 0.2 ± 0.02 | 0.1 ± 0.00 | 0.2 ± 0.02 | - |
3 | α-pinene | 933 | mh | 37.3 ± 3.09 | 6.4 ± 0.10 | 25.6 ± 0.02 | 4.1 ± 0.04 | 3.1 ± 0.17 |
4 | camphene | 948 | mh | 2.9 ± 0.09 | 4.3 ± 0.04 | 2.0 ± 0.09 | 3.3 ± 0.10 | 3.9 ± 0.06 |
5 | thuja-2,4(10)-diene | 954 | mh | 0.3 ± 0.02 | - | 0.4 ± 0.07 | - | - |
6 | β-pinene | 977 | mh | 0.5 ± 0.04 | 4.2 ± 0.40 | 1.8 ± 0.07 | 1.6 ± 0.03 | 0.9 ± 0.01 |
7 | 3-octanone | 985 | nt | - | 1.0 ± 0.17 | - | - | - |
8 | myrcene | 991 | mh | 2.0 ± 0.16 | 0.6 ± 0.01 | 0.9 ± 0.09 | 0.4 ± 0.03 | 0.2 ± 0.02 |
9 | α-phellandrene | 1006 | mh | - | 1.2 ± 0.05 | 0.2 ± 0.00 | - | - |
10 | δ-3-carene | 1011 | mh | - | 0.4 ± 0.01 | - | - | - |
11 | α-terpinene | 1017 | mh | 0.2 ± 0.01 | 0.5 ± 0.02 | 0.5 ± 0.01 | 0.3 ± 0.01 | 0.7 ± 0.01 |
12 | p-cymene | 1025 | mh | 2.8 ± 0.22 | 1.0 ± 0.23 | 0.8 ± 0.08 | 1.8 ± 0.09 | 1.6 ± 0.06 |
13 | limonene | 1029 | mh | 3.3 ± 0.11 | 3.6 ± 0.05 | 2.1 ± 0.12 | 1.7 ± 0.14 | 1.7 ± 0.03 |
14 | 1,8-cineole | 1031 | om | 11.4 ± 0.22 | 20.5 ± 0.73 | 23.9 ± 0.42 | 20.0 ± 0.64 | 11.5 ± 0.11 |
15 | (Z)-β-ocimene | 1036 | om | - | - | - | - | 1.2 ± 0.10 |
16 | γ-terpinene | 1058 | mh | 0.4 ± 0.03 | 1.0 ± 0.10 | 0.9 ± 0.02 | 0.6 ± 0.02 | 0.7 ± 0.02 |
17 | cis-sabinene hydrate | 1066 | om | - | 0.3 ± 0.02 | - | 0.1 ± 0.01 | 0.1 ± 0.01 |
18 | terpinolene | 1089 | mh | 0.5 ± 0.02 | 0.6 ± 0.01 | 0.7 ± 0.03 | 0.4 ± 0.00 | 0.2 ± 0.01 |
19 | trans-sabinene hydrate | 1098 | om | - | 0.1 ± 0.02 | - | - | - |
20 | linalool | 1101 | om | 1.5 ± 0.01 | 0.4 ± 0.04 | 2.1 ± 0.14 | 0.2 ± 0.01 | - |
21 | filifolone | 1108 | om | 0.2 ± 0.00 | - | - | - | - |
22 | fenchol | 1114 | om | 0.1 ± 0.01 | - | - | - | - |
23 | cis-p-menth-2-en-1-ol | 1122 | om | - | - | 0.2 ± 0.03 | - | - |
24 | α-campholenal | 1125 | om | - | - | - | 0.2 ± 0.01 | - |
25 | chrysanthenone | 1126 | om | 0.8 ± 0.05 | 0.2 ± 0.06 | 0.2 ± 0.01 | - | - |
26 | trans-pinocarveol | 1139 | om | 0.2 ± 0.02 | 0.1 ± 0.02 | - | - | - |
27 | cis-verbenol | 1142 | om | - | 0.1 ± 0.03 | 0.1 ± 0.03 | - | - |
28 | camphor | 1145 | om | 7.7 ± 0.22 | 16.9 ± 1.35 | 3.3 ± 0.50 | 42.2 ± 0.52 | 33.4 ± 0.38 |
29 | trans-pinocampone | 1160 | om | 0.3 ± 0.01 | - | 0.2 ± 0.01 | 0.2 ± 0.02 | - |
30 | pinocarvone | 1163 | om | 0.2 ± 0.00 | 0.3 ± 0.02 | 0.3 ± 0.03 | 0.3 ± 0.07 | - |
31 | borneol | 1165 | om | 2.5 ± 0.11 | 6.5 ± 0.00 | 3.7 ± 0.26 | 0.6 ± 0.13 | 14.6 ± 0.01 |
32 | isopinocampheol | 1173 | om | 0.4 ± 0.04 | - | - | - | - |
33 | cis-pinocamphone | 1174 | om | - | 0.8 ± 0.02 | 0.8 ± 0.01 | 0.5 ± 0.00 | - |
34 | 4-terpineol | 1177 | om | 1.4 ± 0.08 | 0.9 ± 0.08 | 1.1 ± 0.01 | 1.2 ± 0.02 | 2.8 ± 0.03 |
35 | p-cymen-8-ol | 1185 | om | 0.1 ± 0.01 | - | - | 0.2 ± 0.01 | - |
36 | α-terpineol | 1191 | om | 2.6 ± 0.19 | 2.0 ± 0.24 | 2.4 ± 0.09 | 2.8 ± 0.07 | 2.9 ± 0.06 |
37 | myrtenol | 1195 | om | 0.2 ± 0.02 | 0.2 ± 0.02 | 0.4 ± 0.14 | 0.2 ± 0.03 | - |
38 | verbenone | 1210 | om | 12.8 ± 2.67 | 1.9 ± 0.15 | 14.9 ± 0.27 | 2.7 ± 0.03 | 0.6 ± 0.02 |
39 | trans-carveol | 1219 | om | 0.1 ± 0.06 | - | - | 0.2 ± 0.04 | - |
40 | carvone | 1244 | om | - | - | - | 0.1 ± 0.03 | - |
41 | geraniol | 1254 | om | 0.5 ± 0.08 | - | 3.9 ± 0.15 | - | - |
42 | trans-ascaridol glycol | 1268 | om | - | 0.4 ± 0.10 | - | - | - |
43 | geranial | 1271 | om | - | - | 0.3 ± 0.02 | - | - |
44 | bornyl acetate | 1286 | om | 3.9 ± 0.45 | 6.5 ± 0.50 | 2.6 ± 0.17 | 0.2 ± 0.01 | 10.8 ± 0.06 |
45 | myrtenyl acetate | 1326 | om | - | - | 0.1 ± 0.00 | - | - |
46 | eugenol | 1357 | pp | - | - | - | - | 0.4 ± 0.02 |
47 | α-copaene | 1376 | sh | - | 0.3 ± 0.05 | - | - | - |
48 | geranyl acetate | 1385 | om | - | - | 0.5 ± 0.03 | - | - |
49 | (Z)-jasmone | 1397 | nt | 0.4 ± 0.07 | - | - | - | - |
50 | methyl eugenol | 1407 | pp | - | - | 0.3 ± 0.02 | - | - |
51 | β-caryophyllene | 1419 | sh | 0.2 ± 0.03 | 6.7 ± 1.51 | 1.1 ± 0.15 | 0.6 ± 0.06 | 3.1 ± 0.08 |
52 | α-humulene | 1453 | sh | - | 1.9 ± 0.39 | 0.3 ± 0.04 | - | 3.2 ± 0.10 |
53 | γ-muurolene | 1477 | sh | - | 0.4 ± 0.08 | - | - | - |
54 | bicyclogermacrene | 1496 | sh | - | 0.3 ± 0.05 | - | - | - |
55 | trans-γ-cadinene | 1514 | sh | - | 0.4 ± 0.07 | - | - | - |
56 | δ-cadinene | 1524 | sh | - | 0.9 ± 0.20 | - | - | - |
57 | caryophyllene oxide | 1582 | os | 0.4 ± 0.09 | 4.3 ± 0.16 | 0.6 ± 0.10 | 1.5 ± 0.24 | 0.8 ± 0.02 |
58 | humulene oxide II | 1608 | os | 0.3 ± 0.07 | 0.5 ± 0.08 | - | - | 0.6 ± 0.03 |
59 | caryophylla-4(14),8(15)-dien-5-ol (unidentified isomer) | 1633 | os | - | 0.2 ± 0.06 | - | 0.3 ± 0.04 | - |
60 | T-cadinol | 1641 | os | - | 0.3 ± 0.03 | - | 0.2 ± 0.03 | - |
61 | α-bisabolol oxide B | 1655 | os | - | - | - | 0.8 ± 0.06 | - |
62 | 14-hydroxy-9-epi-(E)-caryophyllene | 1670 | os | - | - | - | 7.1 ± 1.76 | 0.2 ± 0.01 |
63 | α-bisabolol | 1685 | os | - | - | - | - | 0.4 ± 0.01 |
64 | trans-ferruginol | 2325 | od | 0.2 ± 0.04 | 0.2 ± 0.01 | - | - | - |
Total identified (%) | 98.6 ± 0.06 | 98.7 ± 0.31 | 99.1 ± 0.16 | 96.6 ± 0.16 | 100 ± 0.03 | |||
Boule | Gori | Joyce | Vicom | Jord | ||||
Monoterpene hydrocarbons (mh) | 50.2 ± 3.77 A | 24.0 ± 0.54 C | 36.0 ± 0.19 B | 14.3 ± 0.46 D | 14.2 ± 0.49 D | |||
Oxygenated monoterpenes (om) | 46.9 ± 3.42 C | 57.5 ± 2.08 B | 60.9 ± 0.04 B | 71.9 ± 1.55 A | 77.1 ± 0.25 A | |||
Sesquiterpene hydrocarbons (sh) | 0.2 ± 0.03 C | 10.7 ± 2.35 A | 1.3 ± 0.19 C | 0.6 ± 0.06 C | 6.3 ± 0.18 B | |||
Oxygenated sesquiterpenes (os) | 0.7 ± 0.16 C | 5.3 ± 0.33 B | 0.6 ± 0.10 C | 9.8 ± 2.12 A | 2.0 ± 0.07 C | |||
Oxygenates diterpenes (od) | 0.2 ± 0.04 A | 0.2 ± 0.01 A | - B | - B | - B | |||
Phenylpropanoids (pp) | - | - | 0.3 ± 0.02 | - | 0.4 ± 0.02 | |||
Other non-terpene derivates (nt) | 0.4 ± 0.07 B | 1.0 ± 0.17 A | - C | - C | - C | |||
EO Extraction yield (%w/w) | 0.57 ± 0.02 C | 1.17 ± 0.16 B | 0.76 ± 0.04 C | 2.25 ± 0.15 A | 0.71 ± 0.04 C |
Antibiotics | ||||||
---|---|---|---|---|---|---|
STRAINS | Tetracycline (30 μg/disc) | Ceftazidime (30 μg/disc) | Rifampicin (30 μg/disc) | Cephalexin (30 μg/disc) | Cefotaxime (30 μg/disc) | Chloramphenicol (30 μg/disc) |
S. ser. Typhimurium (S176) | 18 (S) | 19 (S) | 15 (R) | 21 (S) | 25 (S) | 21(S) |
Y. enterocolitica (YU3) | 22 (S) | 27 (S) | 17 (I) | 0 (R) | 32 (S) | 22 (S) |
L. monocytogenes (L1) | 26 (S) | 0 (R) | 28 (S) | 21 (S) | 10 (R) | 22 (S) |
E. durans (EU157) | 24 (S) | 0 (R) | 33 (S) | 14 (R) | 0 (R) | 19 (S) |
E. faecium (EU107) | 7 (R) | 0 (R) | 30 (S) | 0 (R) | 0 (R) | 18 (S) |
E. faecalis (EU37) | 10 (R) | 0 (R) | 15 (R) | 13 (R) | 18 (I) | 19 (S) |
Strain | Boule | Gori | Joyce | Vicom | Jord |
---|---|---|---|---|---|
S. ser. Typhimurium (S176) | 7.0 ± 0.0 | 7.0 ± 0.0 | 7.0 ± 0.0 | 8.0 ± 0.0 | 7.0 ± 0.0 |
Y. enterocolitica (YU3) | 8.0 ± 1.0 | 8.0 ± 0.0 | 8.0 ± 0.0 | 8.3 ± 0.6 | 9.3 ± 0.6 |
L. monocytogenes (L1) | 0.0 ± 0.0 | 7.0 ± 0.0 | 8.0 ± 0.0 | 7.7 ± 0.6 | 7.7 ± 0.6 |
E. durans (EU157) | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
E. faecium (EU107) | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
E. faecalis (EU37) | 7.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 7.0 ± 0.0 |
Strain | Boule | Gori | Joyce | Vicom | Jord |
---|---|---|---|---|---|
S. ser. Typhimurium (S176) | >10 | >10 | 2.5 | >10 | 5 |
Y. enterocolitica (YU3) | 5 | 5 | 1.25 | 2.5 | 1.25 |
L. monocytogenes (L1) | 10 | 10 | 1.25 | 5 | 2.5 |
E. durans (EU157) | 2.5 | 5 | 1.25 | 1.25 | 1.25 |
E. faecium (EU107) | 5 | 5 | 1.25 | 1.25 | 1.25 |
E. faecalis (EU37) | >10 | 10 | 2.5 | 5 | 5 |
EOs | C. albicans | C. guilliermondii | C. tropicalis | S. cerevisiae | C. parapsilosis | C. krusei |
---|---|---|---|---|---|---|
Boule | >10 | >10 | >10 | >10 | >10 | >10 |
Gori | >10 | >10 | >10 | >10 | >10 | >10 |
Joyce | >10 | >10 | >10 | >10 | >10 | >10 |
Vicom | >10 | >10 | >10 | >10 | >10 | >10 |
Jord | >10 | >10 | >10 | >10 | >10 | >10 |
Samples | Images | Botanical Description |
---|---|---|
Salvia rosmarinus ‘Boule’ | Voucher N° HMGBH.e/7219.2021.003
| |
Salvia rosmarinus ‘Gorizia’ | Voucher N° HMGBH.e/7219.2021.001
| |
Salvia rosmarinus ‘Joyce de ’Baggio’ | Voucher N° HMGBH.e/7219.2021.002
| |
Salvia rosmarinus ‘Vicomte de Noailles’ | Voucher N° HMGBH.e/7219.2021.004
| |
Salvia jordanii J.B.Walker | Voucher N° HMGBH.e/7219.2021.005
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieracci, Y.; Ciccarelli, D.; Giovanelli, S.; Pistelli, L.; Flamini, G.; Cervelli, C.; Mancianti, F.; Nardoni, S.; Bertelloni, F.; Ebani, V.V. Antimicrobial Activity and Composition of Five Rosmarinus (Now Salvia spp. and Varieties) Essential Oils. Antibiotics 2021, 10, 1090. https://doi.org/10.3390/antibiotics10091090
Pieracci Y, Ciccarelli D, Giovanelli S, Pistelli L, Flamini G, Cervelli C, Mancianti F, Nardoni S, Bertelloni F, Ebani VV. Antimicrobial Activity and Composition of Five Rosmarinus (Now Salvia spp. and Varieties) Essential Oils. Antibiotics. 2021; 10(9):1090. https://doi.org/10.3390/antibiotics10091090
Chicago/Turabian StylePieracci, Ylenia, Daniela Ciccarelli, Silvia Giovanelli, Luisa Pistelli, Guido Flamini, Claudio Cervelli, Francesca Mancianti, Simona Nardoni, Fabrizio Bertelloni, and Valentina Virginia Ebani. 2021. "Antimicrobial Activity and Composition of Five Rosmarinus (Now Salvia spp. and Varieties) Essential Oils" Antibiotics 10, no. 9: 1090. https://doi.org/10.3390/antibiotics10091090
APA StylePieracci, Y., Ciccarelli, D., Giovanelli, S., Pistelli, L., Flamini, G., Cervelli, C., Mancianti, F., Nardoni, S., Bertelloni, F., & Ebani, V. V. (2021). Antimicrobial Activity and Composition of Five Rosmarinus (Now Salvia spp. and Varieties) Essential Oils. Antibiotics, 10(9), 1090. https://doi.org/10.3390/antibiotics10091090