In Vitro Antimicrobial Susceptibilities of Francisella tularensis subsp. holarctica Isolates from Tularemia Outbreaks That Occurred from the End of the 20th Century to the 2020s in Spain
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Sensitivity to 148 Animal F. tularensis Isolates
2.2. Antimicrobial Sensitivity to 29 Human F. tularensis Isolates
2.3. Statistical Analysis
2.4. Resistotypes
3. Discussion
4. Materials and Methods
4.1. Francisella tularensis Strains
4.2. Antimicrobial Sensitivity Testing
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Doern, G.V. Detection of selected fastidious bacteria. Clin. Infect. Dis. 2000, 30, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Stuart, S.J. Francisella. In Manual of Clinical Microbiology, 6th ed.; Murray, P.A., Baron, E.J., Pfaller, M.A., Tenover, F.C., Yoken, R.H., Eds.; American Society for Microbiology: Washington, DC, USA, 1995. [Google Scholar]
- Challacombe, J.F.; Petersen, J.M.; Gallegos-Graves, L.V.; Hodge, D.; Pillai, S.; Kuske, C.R. Whole-genome relationships among Francisella bacteria of diverse origins define new species and provide specific regions for detection. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [Green Version]
- Ariza-Miguel, J.; Johansson, A.; Fernández-Natal, M.I.; Martínez-Nistal, M.C.; Orduña, A.; Rodríguez-Ferri, E.F.; Hernández, M.; Rodríguez-Lázaro, D. Molecular investigation of tularemia outbreaks, Spain, 1997–2008. Emerg. Infect. Dis. 2014, 20, 754–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjöstedt, A. Tularemia: History, epidemiology, pathogen physiology, and clinical manifestations. Ann. NY Acad. Sci. 2007, 1105, 1–29. [Google Scholar] [CrossRef]
- Syrjälä, H.; Schildt, R.; Raisainen, S. In vitro susceptibility of Francisella tularensis to fluoroquinolones and treatment of tularemia with norfloxacina and ciprofloxacin. Eur. J. Clin. Microbiol. Infect. Dis. 1991, 10, 68–70. [Google Scholar] [CrossRef]
- Ikäheimo, I.; Syrjälä, H.; Karhukorpi, J.; Schildt, R.; Koskela, M. In vitro antibiotic susceptibility of Francisella tularensis isolated from humans and animals. J. Antimicrob. Chemother. 2000, 46, 287–290. [Google Scholar] [CrossRef] [Green Version]
- García del Blanco, N.; Gutiérrez-Martín, C.B.; de la Puente-Redondo, V.A.; Rodríguez-Ferri, E.F. In vitro susceptibility of field isolates of Francisella tularensis subsp. holarctica recovered in Spain to several antimicrobial agents. Res. Vet. Sci. 2004, 76, 195–198. [Google Scholar] [CrossRef]
- Caspar, Y.; Hennebique, A.; Maurin, M. Antibiotic susceptibility of Francisella tularensis subsp. holartica strains isolated from tularemia patients in France between 2006 and 2016. J. Antimicrob. Chemother. 2018, 73, 687–691. [Google Scholar] [CrossRef]
- Bengtsson, S.; Bjelkenbrant, C.; Kahlmeter, G. Validation of EUCAST zone diameter breakpoints against reference broth microdilution. Clin. Microbiol. Infect. 2014, 20, O353–O360. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI Supplement VET08; Wayne: Philadelphia, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI Supplement M100; Wayne: Philadelphia, PA, USA, 2018. [Google Scholar]
- Caspar, Y.; Maurin, M. Francisella tularensis susceptibility to antibiotics: A comprehensive review of the data obtained in vitro and in animal models. Front. Cell. Infect. Microbiol. 2017, 7, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreizinger, Z.; Makrai, L.; Helyes, G.; Magyar, T.; Erdélyi, K.; Gyuranecz, M. Antimicrobial susceptibility of Francisella tularensis subsp. holartica strains from Hungary, Central Europe. J. Antimicrob. Chemother. 2013, 68, 370–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, W.A. Qualitative susceptibility tests versus quantitative MIC tests. Diagn. Microbiol. Infect. Dis. 1993, 16, 231–236. [Google Scholar] [CrossRef]
- Boisset, S.; Caspar, Y.; Sutera, V.; Maurin, M. New therapeutic approaches for treatment of tularemia: A review. Front. Cell Infect. Microbiol. 2014, 4, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomaso, H.; Hotzel, H.; Otto, P.; Myrtennäs, K.; Forsman, M. Antibiotic susceptibility in vitro of Francisella tularensis subsp. holarctica isolates from Germany. J. Antimicrob. Chemother. 2017, 72, 2539–2543. [Google Scholar] [CrossRef] [Green Version]
- Yeşilyurt, M.Y.; Kiliç, S.; Çelebi, B.; Çelik, M.; Gül, S.; Erdoğan, F.; Özel, G. Antimicrobial susceptibilities of Francisella tularensis subsp. holarctica strains isolated from humans in the Central Anatolia region of Turkey. J. Antimicrob. Chemother. 2011, 66, 2588–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velinov, K.; Kantardjiev, T.; Nicolova, M.; Kuzmanov, A. In vitro antimicrobial susceptibility of Francisella tularensis isolated in Bulgaria. Probl. Infect. Parasit. Dis. 2011, 39, 7–9. [Google Scholar]
- Hotta, A.; Fujita, O.; Uda, A.; Sharma, N.; Tanabayashi, K.; Yamamoto, Y.; Yamada, A.; Morikawa, S. In vitro antibiotic susceptibility of Francisella tularensis isolates from Japan. Jpn. J. Infect. Dis. 2013, 66, 534–536. [Google Scholar] [CrossRef] [Green Version]
- Heine, H.S.; Miller, L.; Halsohoris, S.; Purcell, B. In vitro antibiotic susceptibilities of Francisella tularensis determined by broth microdilution following CLSI methods. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Kiliç, S.; Celebi, B.; Acar, B.; Ataş, M. In vitro susceptibility of isolates of Francisella tularensis from Turkey. Scand. J. Infect. Dis. 2013, 45, 337–341. [Google Scholar] [CrossRef]
- Kiliç, A.U.; Kiliç, S.; Celebi, B.; Sencan, I. In vitro activity of tigecycline against Francisella tularensis subsp. holarctica in comparison with doxycycline, ciprofloxacin and aminoglycosides. Mikrobiyol. Bol. 2013, 47, 189–191. [Google Scholar] [CrossRef] [Green Version]
- Urich, S.K.; Petersen, J.M. In vitro susceptibility of isolates of Francisella tularensis types A and B from North America. Antimicrob. Agents Chemother. 2008, 52, 2276–2278. [Google Scholar] [CrossRef] [Green Version]
- Maurin, M.; Mersali, N.F.; Raoult, D. Bactericidal activities of antibiotics against intracellular Francisella tularensis. Antimicrob. Agents Chemother. 2000, 44, 3428–3431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pankey, G.A. Tigecycline. J. Antimicrob. Chemother. 2005, 56, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Biot, F.V.; Bachert, B.A.; Mlynek, K.D.; Toothman, R.G.; Koroleva, G.I.; Lovett, S.P.; Klimko, C.P.; Palacios, G.F.; Cote, C.K.; Ladner, J.T.; et al. Evolution of antibiotic resistance in surrogates of Francisella tularensis (LVS and Francisella novicida): Effects on biofilm formation and fitness. Front. Microbiol. 2020, 11, 593542. [Google Scholar] [CrossRef]
- Broekhuijsen, M.; Larsson, P.; Johansson, A.; Byström, M.; Eriksson, U.; Larsson, E.; Prior, R.G.; Sjöstedt, A.; Titball, R.W.; Forsman, M. Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J. Clin. Microbiol. 2003, 41, 2924–2931. [Google Scholar] [CrossRef] [Green Version]
- Fujita, O.; Tatsumi, M.; Tanabayashi, K.; Yamada, A. Development of a real-time PCR assay for detection and quantification of Francisella tularensis. Jpn. J. Infect. Dis. 2006, 59, 46–51. [Google Scholar]
- World Health Organization. Guidelines on Tularaemia. Geneva: The Organization. Epidemic and Pandemic Alert and Response, 2007. Available online: http://www.who.int/crs//resources/publications/WHOCDSEPR20077.pdf (accessed on 7 March 2019).
Antimicrobial Agent (Concentrations Used in mg/L) | MIC Range (mg/L) | MIC50 (mg/L) | MIC90 (mg/L) | Breakpoint (mg/L) * | Susceptibility of Isolates to Antimicrobial Agents (%) |
---|---|---|---|---|---|
Ampicillin (4–32) | <4 to >32 | >32 | >32 | ≤4 a | 2.0 |
Ampicillin/sulbactam (4–32/2–16) | <4/2 to >32/16 | >32/16 | >32/16 | ≤4 a | 1.4 |
Piperacillin/tazobactam (16/4–128/4) | <16/4 to >128/4 | <16/4 | 32/4 | ≤8 b | 0.0 |
Ticarcillin/clavulanic acid (16/2–64/2) | <16/2 to >64/2 | 16/2 | >64/2 | ≤16 c | 15.5 |
Ertapenem (2–16) | <2 to >16 | >16 | >16 | ≤4 d | 23.7 |
Meropenem (1–8) | <1 to >8 | >8 | >8 | ≤4 a | 6.1 |
Aztreonam (4–32) | <4 to >32 | >32 | >32 | ≤8 b | 7.4 |
Cephalothin (2–16) | <2 to >16 | >16 | >16 | ≤8 e | 3.4 |
Cefazolin (4–32) | <4 to >32 | >32 | >32 | ≤8 e | 5.4 |
Cefoxitin (4–32) | <4 to >32 | 32 | >32 | --- | --- |
Ceftazidime (1–32) | <1 to 32 | 1 | 4 | ≤1 b | 38.5 |
Ceftriaxone (1–64) | <1 to >64 | 2 | 8 | ≤1 b | 8.1 |
Cefuroxime (4–32) | <4 to >32 | >32 | >32 | ≤8 b | 2.7 |
Cefepime (4–32) | <4 to >32 | 32 | >32 | ≤4 b | 3.4 |
Cefpodoxime (2–16) | <2 to >16 | 4 | >16 | ≤2 c | 8.1 |
Amikacin (8–64) | <8 to 32 | <8 | <8 | ≤16 e | 98.0 |
Gentamicin (2–16) | <2 to 16 | <2 | <2 | ≤8 f | 98.7 |
Tobramycin (4–8) | <4 to 8 | <4 | <4 | ≤8 g | 96.6 |
Tetracycline (0.5–16) | <0.5 to >16 | 2 | 2 | ≤4 f | 94.6 |
Tigecycline (1–8) | <1 to 8 | <1 | 2 | ≤2 h | 76.4 |
Ciprofloxacin (0.5–4) | <0.5 to >4 | <0.5 | <0.5 | ≤0.5 f | 92.6 |
Sulfamethoxazole/trimethoprim (9.5/0.5–76/4) | <9.5/<0.5 to >76/>4 | >76/>4 | >76/>4 | ≤38/2 c | 23.0 |
Antimicrobial Agent (Concentrations Used in mg/L) | MIC Range (mg/L) | MIC50 (mg/L) | MIC90 (mg/L) | Breakpoint (mg/L) * | Susceptibility of Isolates to Antimicrobial Agents (%) |
---|---|---|---|---|---|
Ampicillin (4–32) | <4 to >32 | >32 | >32 | ≤4 a | 2.0 |
Ampicillin/sulbactam (4–32/2–16) | <4/2 to >32/16 | >32/16 | >32/16 | ≤4 a | 1.4 |
Piperacillin/tazobactam (16/4–128/4) | <16/4 to 128/4 | <16/4 | 128/4 | ≤8 b | 0.0 |
Ticarcillin/clavulanic acid (16/2–64/2) | <16/2 to >64/2 | 32/2 | >64/2 | ≤16 c | 15.1 |
Ertapenem (2–16) | <2 to >16 | >16 | >16 | ≤4 d | 23.7 |
Meropenem (1–8) | <1 to >8 | >8 | >8 | ≤4 a | 6.1 |
Aztreonam (4–32) | <4 to >32 | >32 | >32 | ≤8 b | 7.4 |
Cephalothin (2–16) | <2 to >16 | >16 | >16 | ≤8 e | 3.4 |
Cefazolin (4–32) | <4 to >32 | >32 | >32 | ≤8 e | 5.4 |
Cefoxitin (4–32) | <4 to >32 | 32 | >32 | --- | --- |
Ceftazidime (1–32) | <1 to 32 | 2 | 16 | ≤1 b | 38.5 |
Ceftriaxone (1–64) | <1 to >64 | 4 | 64 | ≤1 b | 8.1 |
Cefuroxime (4–32) | <4 to >32 | >32 | >32 | ≤8 b | 2.7 |
Cefepime (4–32) | <4 to >32 | >32 | >32 | ≤4 b | 3.4 |
Cefpodoxime (2–16) | <2 to >16 | 16 | >16 | ≤2 c | 8.1 |
Amikacin (8–64) | <8 to 64 | <8 | 16 | ≤16 e | 97.9 |
Gentamicin (2–16) | <2 | <2 | <2 | ≤8 f | 98.7 |
Tobramycin (4–8) | <4 | <4 | <4 | ≤8 g | 96.6 |
Tetracycline (0.5–16) | 0.5 to 8 | 2 | 4 | ≤4 f | 94.6 |
Tigecycline (1–8) | <1 to 8 | 2 | 4 | ≤2 h | 76.4 |
Ciprofloxacin (0.5–4) | <0.5 to2 | <0.5 | <0.5 | ≤0.5 f | 92.6 |
Sulfamethoxazole/trimethoprim (9.5/0.5–76/4) | <9.5/<0.5 to >76/>4 | >76/>4 | >76/>4 | ≤38/2 c | 23.0 |
Antibiotic Parameters Tested | Rate of Susceptibility (%) | p-Value | Antibiotic Parameters Tested | Rate of Susceptibility (%) | p-Value |
---|---|---|---|---|---|
Amikacin | Tetracycline | ||||
Humans | 96.8 | 0.114 | Humans | 93.5 | 0.234 |
Hares | 100 | Hares | 99.0 | ||
Voles | 100 | Voles | 97.4 | ||
Palencia | 100 | --- (ns) | Palencia | 98.3 | 0.767 |
Valladolid | 100 | Valladolid | 96.1 | ||
Zamora | 100 | Zamora | 97.2 | ||
1997–1998 | 100 | < 0.01 * | 1997–1998 | 90.0 | 0.009 * |
1999–2006 | 75 | 1999–2006 | 100 | ||
2007–2010 | 100 | 2007–2010 | 100 | ||
2014–2015 | 100 | 2014–2015 | 100 | ||
2016–2017 | 100 | 2016–2017 | 86.7 | ||
2019–2020 | 100 | 2019–2020 | 100 | ||
Gentamicin | Ciprofloxacin | ||||
Humans | 100 | 0.594 | Humans | 100 | 0.594 |
Hares | 99.0 | Hares | 99.0 | ||
Voles | 97.4 | Voles | 97.4 | ||
Palencia | 98.3 | 0.482 | Palencia | 98.3 | 0.713 |
Valladolid | 100 | Valladolid | 98.0 | ||
Zamora | 100 | Zamora | 100 | ||
1997–1998 | 100 | 0.679 | 1997–1998 | 100 | 0.392 |
1999–2006 | 100 | 1999–2006 | 100 | ||
2007–2010 | 97.1 | 2007–2010 | 98.6 | ||
2014–2015 | 100 | 2014–2015 | 100 | ||
2016–2017 | 100 | 2016–2017 | 93.3 | ||
2019–2020 | 100 | 2019–2020 | 100 | ||
Tobramycin | |||||
Humans | 100 | 0.446 | |||
Hares | 96.9 | ||||
Voles | 94.7 | ||||
Palencia | 96.7 | 0.329 | |||
Valladolid | 94.1 | ||||
Zamora | 100 | ||||
1997–1998 | 100 | 0.712 | |||
1999–2006 | 100 | ||||
2007–2010 | 95.7 | ||||
2014–2015 | 97.4 | ||||
2016–2017 | 93.3 | ||||
2019–2020 | 100 |
Number of Antimicrobial Agents to Which Resistance of Isolates Was Detected | Number of Animal Isolates (n = 148) (%) | Number of Human Isolates (n = 29) (%) |
---|---|---|
6 | 1 (0.7) | 1 (3.4) |
7 | 2 (1.4) | - |
8 | 1 (0.7) | 1 (3.4) |
9 | 3 (2.0) | - |
10 | 4 (2.7) | - |
11 | 7 (4.7) | - |
12 | 9 (6.1) | - |
13 | 22 (14.9) | 1 (3.4) |
14 | 39 (26.3) | 3 (10.3) |
15 | 35 (23.6) | 4 (13.9) |
16 | 20 (13.5) | 13 (44.8) |
17 | 5 (3.4) | 4 (13.9) |
18 | - | 2 (6.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Martínez, S.; Rodríguez-Ferri, E.-F.; Rodríguez-Lázaro, D.; Hernández, M.; Gómez-Campillo, J.-I.; Martínez-Nistal, M.d.C.; Fernández-Natal, M.-I.; García-Iglesias, M.-J.; Mínguez-González, O.; Gutiérrez-Martín, C.-B. In Vitro Antimicrobial Susceptibilities of Francisella tularensis subsp. holarctica Isolates from Tularemia Outbreaks That Occurred from the End of the 20th Century to the 2020s in Spain. Antibiotics 2021, 10, 938. https://doi.org/10.3390/antibiotics10080938
Martínez-Martínez S, Rodríguez-Ferri E-F, Rodríguez-Lázaro D, Hernández M, Gómez-Campillo J-I, Martínez-Nistal MdC, Fernández-Natal M-I, García-Iglesias M-J, Mínguez-González O, Gutiérrez-Martín C-B. In Vitro Antimicrobial Susceptibilities of Francisella tularensis subsp. holarctica Isolates from Tularemia Outbreaks That Occurred from the End of the 20th Century to the 2020s in Spain. Antibiotics. 2021; 10(8):938. https://doi.org/10.3390/antibiotics10080938
Chicago/Turabian StyleMartínez-Martínez, Sonia, Elías-Fernando Rodríguez-Ferri, David Rodríguez-Lázaro, Marta Hernández, José-Ignacio Gómez-Campillo, María del Carmen Martínez-Nistal, María-Isabel Fernández-Natal, María-José García-Iglesias, Olga Mínguez-González, and César-Bernardo Gutiérrez-Martín. 2021. "In Vitro Antimicrobial Susceptibilities of Francisella tularensis subsp. holarctica Isolates from Tularemia Outbreaks That Occurred from the End of the 20th Century to the 2020s in Spain" Antibiotics 10, no. 8: 938. https://doi.org/10.3390/antibiotics10080938
APA StyleMartínez-Martínez, S., Rodríguez-Ferri, E. -F., Rodríguez-Lázaro, D., Hernández, M., Gómez-Campillo, J. -I., Martínez-Nistal, M. d. C., Fernández-Natal, M. -I., García-Iglesias, M. -J., Mínguez-González, O., & Gutiérrez-Martín, C. -B. (2021). In Vitro Antimicrobial Susceptibilities of Francisella tularensis subsp. holarctica Isolates from Tularemia Outbreaks That Occurred from the End of the 20th Century to the 2020s in Spain. Antibiotics, 10(8), 938. https://doi.org/10.3390/antibiotics10080938