Effects of Incubation Time and Inoculation Level on the Stabilities of Bacteriostatic and Bactericidal Antibiotics against Salmonella Typhimurium
Abstract
:1. Introduction
2. Results
2.1. Stability of Antibiotics in the Media
2.2. Sustainability of Antimicrobial Activity
2.3. Inoculum Effect
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Culture Conditions
4.2. Antibiotic Susceptibility Assay
4.3. Time-Delayed Inoculation Assay
4.4. Time-Extended Incubation Assay
4.5. Estimation of Inoculum Effect
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 300–305. [Google Scholar] [CrossRef]
- Baquero, F.; Levin, B.R. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat. Rev. Microbiol. 2021, 19, 123–132. [Google Scholar] [CrossRef]
- Pankey, G.A.; Sabath, L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004, 38, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Stubbings, W.J.; Bostock, J.M.; Ingham, E.; Chopra, I. Assessment of a microplate method for determining the post-antibiotic effect in Staphylococcus aureus and Escherichia coli. J. Antimicrob. Chemother. 2004, 54, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Brouwers, R.; Vass, H.; Dawson, A.; Squires, T.; Tavaddod, S.; Allen, R.J. Stability of β-lactam antibiotics in bacterial growth media. PLoS ONE 2020, 15, e0236198. [Google Scholar] [CrossRef] [PubMed]
- Temmerman, R.; Goethals, K.; Garmyn, A.; Vanantwerpen, G.; Vanrobaeys, M.; Haesebrouck, F.; Antonissen, G.; Devreese, M. Agreement of quantitative and qualitative antimicrobial susceptibility testing methodologies: The case of enrofloxacin and avian pathogenic Escherichia coli. Front. Microbiol. 2020, 11, 2234. [Google Scholar] [CrossRef] [PubMed]
- Heller, A.A.; Spence, D.M. A rapid method for post-antibiotic bacterial susceptibility testing. PLoS ONE 2019, 14, e0210534. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharmaceut. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Craig, W.A. Does the dose matter? Clin. Infect. Dis. 2001, 33, S233–S237. [Google Scholar] [CrossRef]
- Lallemand, E.A.; Lacroix, M.Z.; Toutain, P.-L.; Boullier, S.; Ferran, A.A.; Bousquet-Melou, A. In vitro degradation of antimicrobials during use of broth microdilution method can increase the measured minimal inhibitory and minimal bactericidal concentrations. Front. Microbiol. 2016, 7, 2051. [Google Scholar] [CrossRef] [Green Version]
- Bonev, B.; Hooper, J.; Parisot, J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother. 2008, 61, 1295–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levison, M.E.; Levison, J.H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. N. Am. 2009, 23, 791–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akaho, E.; Nakayama, H. An innovative classification of, and a new structure-activity-relationship approach to degradation kinetics of cephalosporins: An attempt to enhance the therapeutic activity. J. Antibiot. 2003, 56, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Sah, H. Degradation patterns of tetracycline antibiotics in reverse micelles and water. Biomed. Chromatogr. 2006, 20, 1142–1149. [Google Scholar] [CrossRef]
- Allahverdiyeva, S.; Yardım, Y.; Şentürk, Z. Electrooxidation of tetracycline antibiotic demeclocycline at unmodified boron-doped diamond electrode and its enhancement determination in surfactant-containing media. Talanta 2021, 223, 121695. [Google Scholar] [CrossRef]
- Wick, W.E. Influence of antibiotic stability on the results of in vitro testing procedures. J. Bacteriol. 1964, 87, 1162–1170. [Google Scholar] [CrossRef] [Green Version]
- Hope, R.; Warner, M.; Mushtaq, S.; Ward, M.E.; Parsons, T.; Livermore, D.M. Effect of medium type, age and aeration on the MICs of tigecycline and classical tetracyclines. J. Antimicrob. Chemother. 2005, 56, 1042–1046. [Google Scholar] [CrossRef] [Green Version]
- Baquero, F. Low-level antibacterial resistance: A gateway to clinical resistance. Drug. Resist. Updat. 2001, 4, 93–105. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.; Suo, Y.; Cui, Y.; Zhang, F.; Shi, C.; Shi, X. Effect of sublethal concentrations of ceftriaxone on antibiotic susceptibility of multiple antibiotic-resistant Salmonella strains. FEMS Microbiol. Lett. 2019, 366, fny283. [Google Scholar] [CrossRef]
- Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478. [Google Scholar] [CrossRef]
- Broussou, D.C.; Toutain, P.-L.; Woehrlé, F.; El Garch, F.; Bousquet-Melou, A.; Ferran, A.A. Comparison of in vitro static and dynamic assays to evaluate the efficacy of an antimicrobial drug combination against Staphylococcus aureus. PLoS ONE 2019, 14, e0211214. [Google Scholar] [CrossRef] [PubMed]
- White, R.L.; Kays, M.B.; Friedrich, L.V.; Brown, E.W.; Koonce, J.R. Pseudoresistance of Pseudomonas aeruginosa resulting from degradation of imipenem in an automated susceptibility testing system with predried panels. J. Clin. Microbiol. 1991, 29, 398–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okerman, L.; Van Hende, J.; De Zutter, L. Stability of frozen stock solutions of beta-lactam antibiotics, cephalosporins, tetracyclines and quinolones used in antibiotic residue screening and antibiotic susceptibility testing. Anal. Chim. Acta 2007, 586, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Voumard, R.; Van Neyghem, N.; Cochet, C.; Gardiol, C.; Decosterd, L.; Buclin, T.; de Valliere, S. Antibiotic stability related to temperature variations in elastomeric pumps used for outpatient parenteral antimicrobial therapy (OPAT). J. Antimicrob. Chemother. 2017, 72, 1462–1465. [Google Scholar] [CrossRef]
- Greulich, P.; Scott, M.; Evans, M.R.; Allen, R.J. Growth-dependent bacterial susceptibility to ribosome-targeting antibiotics. Mol. Syst. Biol. 2015, 11, 796. [Google Scholar] [CrossRef]
- Eng, R.H.; Padberg, F.T.; Smith, S.M.; Tan, E.N.; Cherubin, C.E. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob. Agent. Chemother. 1991, 35, 1824–1828. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xie, S.; Ahmed, S.; Wang, F.; Gu, Y.; Zhang, C.; Chai, X.; Wu, Y.; Cai, J.; Cheng, G. Antimicrobial activity and resistance: Influencing factors. Front. Pharmacol. 2017, 8, 364. [Google Scholar] [CrossRef] [Green Version]
- Ferran, A.A.; Toutain, P.L.; Bousquet-Melou, A. Comparison of the reduction in the antibacterial potency of a fluoroquinolone conferred by a single mutation in the quinolone resistance-determining region or by the inoculum size effect. Int. J. Antimicrob. Agents 2014, 44, 472–474. [Google Scholar] [CrossRef]
- Zbrun, M.V.; Rossler, E.; Olivero, C.R.; Soto, L.P.; Zimmermann, J.A.; Frizzo, L.S.; Signorini, M.L. Possible reservoirs of thermotolerant Campylobacter at the farm between rearing periods and after the use of enrofloxacin as a therapeutic treatment. Int. J. Food Microbiol. 2021, 340, 109046. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Langevin, A.M.; Dunlop, M.J. Antibiotic export by efflux pumps affects growth of neighboring bacteria. Sci. Rep. 2018, 8, 15120. [Google Scholar] [CrossRef]
- Frenkel, N.; Dover, R.S.; Titon, E.; Shai, Y.; Rom-Kedar, V. Bistable bacterial growth dynamics in the presence of antimicrobial agents. bioRxiv 2018. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.P.; Kirby, J.E. The inoculum effect in the era of multidrug resistance: Minor differences in inoculum have dramatic effect on MIC determination. Antimicrob. Agent. Chemother. 2018, 62, e00433-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Approved Method of Analysis of CLSI 10th ed. M07-A10. In Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2015. [Google Scholar]
Antibiotic | Abbreviation | Class | Target Site | Polarity | Spectrum | MIC (μg/mL) | |
---|---|---|---|---|---|---|---|
ASST | ARST | ||||||
Chloramphenicol | CHL | Amphenicol | Peptidyl transferase | Hydrophobic | Bacteriostatic | 4 | 4 |
Erythromycin | ERY | Macrolide | 50S ribosome | Hydrophobic | Bacteriostatic | 128 | 128 |
Tetracycline | TET | Tetracyclines | 30S ribosome | Hydrophobic | Bacteriostatic | 32 | 256 |
Cephalothin | CEP | β-lactam | Cell wall | Hydrophilic | Bactericidal | 8 | 64 |
Ciprofloxacin | CIP | Fluoroquinolone | DNA gyrase | Hydrophobic | Bactericidal | 0.0156 | 0.0312 |
Tobramycin | TOB | Aminoglycoside | 30S ribosome | Hydrophilic | Bactericidal | 8 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laure, N.N.; Dawan, J.; Ahn, J. Effects of Incubation Time and Inoculation Level on the Stabilities of Bacteriostatic and Bactericidal Antibiotics against Salmonella Typhimurium. Antibiotics 2021, 10, 1019. https://doi.org/10.3390/antibiotics10081019
Laure NN, Dawan J, Ahn J. Effects of Incubation Time and Inoculation Level on the Stabilities of Bacteriostatic and Bactericidal Antibiotics against Salmonella Typhimurium. Antibiotics. 2021; 10(8):1019. https://doi.org/10.3390/antibiotics10081019
Chicago/Turabian StyleLaure, Nana Nguefang, Jirapat Dawan, and Juhee Ahn. 2021. "Effects of Incubation Time and Inoculation Level on the Stabilities of Bacteriostatic and Bactericidal Antibiotics against Salmonella Typhimurium" Antibiotics 10, no. 8: 1019. https://doi.org/10.3390/antibiotics10081019
APA StyleLaure, N. N., Dawan, J., & Ahn, J. (2021). Effects of Incubation Time and Inoculation Level on the Stabilities of Bacteriostatic and Bactericidal Antibiotics against Salmonella Typhimurium. Antibiotics, 10(8), 1019. https://doi.org/10.3390/antibiotics10081019