A Prediction Method for Animal-Derived Drug Resistance Trend Using a Grey-BP Neural Network Combination Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Data Sources
2.1.2. Data Preprocessing
2.2. Methods
2.2.1. Grey Model
2.2.2. BP Neural Network Model
2.2.3. GM(1,1)-BP Neural Network Model
3. Results and Discussion
3.1. Construction of Drug Resistance Trend Prediction Model
3.2. Drug Resistance Trend Prediction Model Results
4. Design of Drug Resistance Prediction System
4.1. Design Goals
4.2. System Module
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, X.; Wang, S. Antibiotic resistance in environment of animal farms. Chin. J. Biotechnol. 2018, 34, 1234–1245. [Google Scholar] [CrossRef]
- Tan, X.; Wang, P.; Li, R.; Chen, Y. Recent Advances in Understanding Antibiotic Resistance of Pathogens in Animal-Derived Foods. Food Sci. 2017, 38, 285–293. [Google Scholar] [CrossRef]
- Sharma, C.; Rokana, N.; Chandra, M.; Singh, B.P.; Gulhane, R.D.; Gill, J.P.S.; Ray, P.; Puniya, A.K.; Panwar, H. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front. Vet. Sci. 2018, 4, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, A.P.; Kumar, S.; Giri, B.S.; Kim, K.H. Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies. J. Clean. Prod. 2019, 234, 1484–1505. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Johnson, T.A.; Su, J.Q.; Qiao, M.; Guo, G.X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, M.J.; Fishbein, S.R.S.; Dantas, G. Antimicrobial resistance in enteric bacteria: Current state and next-generation solutions. Gut Microbes 2020, 12. [Google Scholar] [CrossRef]
- Tadesse, D.A.; Zhao, S.; Tong, E.; Ayers, S.; Singh, A.; Bartholomew, M.J.; McDermott, P.F. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg. Infect. Dis. 2012, 18, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Hammerum, A.M.; Heuer, O.E.; Emborg, H.; Bagger-skjøt, L.; Jensen, V.F.; Rogues, A.; Skov, R.L.; Agersø, Y.; Brandt, C.T.; Seyfarth, M.; et al. Danish Integrated Antimicrobial Resistance Monitoring and Research Program. Emerg. Infect. Dis. 2007, 13, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.M.; White, D.G.; McDermott, P.F. The US National Antimicrobial Resistance Monitoring System. Future Microbiol. 2007, 2, 493–500. [Google Scholar] [CrossRef]
- Okura, M.; Sato, M.; Noda, K. Overview of National Antimicrobial Resistance Monitoring System in Europe and the United States. J. Vet. Epidemiol. 2012, 16, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Conly, J.M. Antimicrobial resistance programs in Canada 1995-2010: A critical evaluation. Antimicrob. Resist. Infect. Control 2012, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Valentin, S.; Arsevska, E.; Falala, S.; De Goër, J.; Lancelot, R.; Mercier, A.; Rabatel, J.; Roche, M. PADI-web: A multilingual event-based surveillance system for monitoring animal infectious diseases. Comput. Electron. Agric. 2020, 169, 1–5. [Google Scholar] [CrossRef]
- Hababeh, I.; Khalil, I.; Khreishah, A. Designing High Performance Web-Based Computing Services to Promote Telemedicine Database Management System. IEEE Trans. Serv. Comput. 2015, 8, 47–64. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, J.; Zheng, B.; Zhao, L.; Li, S.; Li, L. Changes in Chinese Policies to Promote the Rational Use of Antibiotics. PLoS Med. 2013, 10, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Mack, S.G.; Turner, R.L.; Dwyer, D.J. Achieving a Predictive Understanding of Antimicrobial Stress Physiology through Systems Biology. Trends Microbiol. 2018, 26, 296–312. [Google Scholar] [CrossRef] [PubMed]
- Pesesky, M.W.; Hussain, T.; Wallace, M.; Patel, S.; Andleeb, S.; Burnham, C.A.D.; Dantas, G. Evaluation of machine learning and rules-based approaches for predicting antimicrobial resistance profiles in gram-negative bacilli from whole genome sequence data. Front. Microbiol. 2016, 7, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Sangthong, R.; McNeil, E.; Tang, R.; Chongsuvivatwong, V. Antibiotic use in chicken farms in northwestern China. Antimicrob. Resist. Infect. Control 2020, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakin, S.M.; Kuhnle, A.; Alipanahi, B.; Noyes, N.R.; Dean, C.; Muggli, M.; Raymond, R.; Abdo, Z.; Prosperi, M.; Belk, K.E.; et al. Hierarchical Hidden Markov models enable accurate and diverse detection of antimicrobial resistance sequences. Commun. Biol. 2019, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Deng, D.; Lu, H.; Sun, J.; Lv, L.; Li, S.; Peng, G.; Ma, X.; Li, J.; Li, Z.; et al. Evaluation of Machine Learning Models for Predicting Antimicrobial Resistance of Actinobacillus pleuropneumoniae From Whole Genome Sequences. Front. Microbiol. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- Maguire, F.; Rehman, M.A.; Carrillo, C.; Diarra, M.S.; Beiko, R.G. Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning. Msystems 2019, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kulshrestha, S.; Panda, S.; Nayar, D.; Dohe, V.; Jarali, A. Prediction of Antimicrobial Resistance for Disease-Causing Agents Using Machine Learning. In Proceedings of the 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 14–15 June 2019; pp. 972–975. [Google Scholar] [CrossRef]
- Elshayeb, A.A.; Ahmed, A.A.; El Siddig, M.A.; El Hussien, A.A. Prevalence of current patterns and predictive trends of multidrug-resistant Salmonella Typhi in Sudan. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatnagar, S.; Lal, V.; Gupta, S.D.; Gupta, O.P. Forecasting incidence of dengue in Rajasthan, using time series analyses. Indian J. Public Health 2012, 56, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zeng, D.; Chen, H. Prospective Infectious Disease Outbreak Detection Using Markov Switching Models. IEEE Trans. Knowl. Data Eng. 2010, 22, 565–577. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liang, B.; Xu, D.; Wu, C.; Li, J.; Zheng, Y. Antimicrobial resistance risk assessment models and database system for animal-derived pathogens. Antibiotics 2020, 9, 829. [Google Scholar] [CrossRef]
- Maldonado, N.A.; Múnera, M.I.; López, J.A.; Sierra, P.; Robledo, C.; Robledo, J.; Robledo, C.G.; Arroyave, L.B.; Giraldo, L.T.; Maldonado, N.A.; et al. Trends in antibiotic resistance in Medellín and municipalities of the Metropolitan Area between 2007 and 2012: Results of six years of surveillance. Biomedica 2014, 34, 433–446. [Google Scholar] [CrossRef] [Green Version]
- Wainberg, M.; Merico, D.; Delong, A.; Frey, B.J. Deep learning in biomedicine. Nat. Biotechnol. 2018, 36, 829–838. [Google Scholar] [CrossRef]
- Camacho, D.M.; Collins, K.M.; Powers, R.K.; Costello, J.C.; Collins, J.J. Next-Generation Machine Learning for Biological Networks. Cell 2018, 173, 1581–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.H.; Wright, S.N.; Hamblin, M.; McCloskey, D.; Alcantar, M.A.; Schrübbers, L.; Lopatkin, A.J.; Satish, S.; Nili, A.; Palsson, B.O.; et al. A White-Box Machine Learning Approach for Revealing Antibiotic Mechanisms of Action. Cell 2019, 177, 1649–1661.e9. [Google Scholar] [CrossRef] [PubMed]
- Fan, D. The Application of Fit and Presume in The Trend ofRes istance ofE.Coli to Ceftazidime by GM(1,1) Model. Chin. J. Pharmacovigil. 2010, 7, 713–715. [Google Scholar]
- Shen, X.; Ou, L.; Chen, X.; Zhang, X.; Tan, X. The Application of the Grey Disaster Model to Forecast Epidemic Peaks of Typhoid and Paratyphoid Fever in China. PLoS ONE 2013, 8, e60601. [Google Scholar] [CrossRef] [Green Version]
- Shu, L.; He, W. A novel algorithm to de fi ne trends in fi tting and predicting the resistance indexes of Klebsiella pneumoniae to aminoglycosides. Chin. J. Antibiot. 2013, 38, 540–543. [Google Scholar] [CrossRef]
- Hua, Z.; Huoying, S.; Zhenying, J.; Wei, L.; Xueqin, Y. Characterization and Antimicrobial Resistance Analysis of Salmonella pullorum Isolates from Jiangsu and Anhui Province from 2010 to 2012. China Poult. 2013, 35, 17–20. [Google Scholar] [CrossRef]
- Wei, Z. Simulation of the Missing Data Imputation Methods for the Regression Model. Master’s Thesis, Tianjing University of Finance and Economics, Tianjin, China, 2014. [Google Scholar]
- Ahmed, S.N.; Jhaj, R.; Sadasivam, B.; Joshi, R. Prediction of left ventricular mass index using electrocardiography in essential hypertension—A multiple linear regression model. Med. Devices Evid. Res. 2020, 13, 163–172. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Lin, S.; Long, L.L.; Cao, J.Y.; Luo, F.; Qin, W.C.; Sun, D.M.; Gregersen, H. Predicting the morbidity of chronic obstructive pulmonary disease based on multiple locally weighted linear regression model with K-means clustering. Int. J. Med. Inform. 2020, 139, 104141. [Google Scholar] [CrossRef]
- Liyan, G.; Xianjun, M.; Naiqiao, L.; Jinfeng, B. Evaluation of apple quality based on principal component and hierarchical cluster analysis. Trans. Chinese Soc. Agric. Eng. 2014, 30, 276–285. [Google Scholar] [CrossRef]
- Kayacan, E.; Ulutas, B.; Kaynak, O. Grey system theory-based models in time series prediction. Expert Syst. Appl. 2010, 37, 1784–1789. [Google Scholar] [CrossRef]
- Cui, J.; Liu, S.F.; Zeng, B.; Xie, N. ming A novel grey forecasting model and its optimization. Appl. Math. Model. 2013, 37, 4399–4406. [Google Scholar] [CrossRef]
- Ma, X.; Xie, M.; Wu, W.; Zeng, B.; Wang, Y.; Wu, X. The novel fractional discrete multivariate grey system model and its applications. Appl. Math. Model. 2019, 70, 402–424. [Google Scholar] [CrossRef]
- Huang, H.Y.; Liu, W.X.; Ding, Z.H. Sales Forecasting Based on Multi-dimensional Grey Model and Neural Network. Ruan Jian Xue Bao/J. Softw. 2019, 30, 1031–1044. [Google Scholar] [CrossRef]
- Li, X.; Dai, W.; Gao, H.; Xu, W.; Wei, X. Correlation between Grain Yield and Fertilizer Use Based on Back Propagation Neural Network. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2017, 48, 186–192. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, B.; Li, X.; Chen, H. Research and Application of Improved Gas Concentration Prediction Model Based on Grey Theory and BP Neural Network in Digital Mine. Procedia CIRP 2016, 56, 471–475. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, Y.J.; Wang, R.J.; Wei, Y.Y.; Gui, Y.M. Gray BP neural network based prediction of rice protein interaction network. Cluster Comput. 2019, 22, 4165–4171. [Google Scholar] [CrossRef]
2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Original value | 0.9684 | 0.9561 | 0.9437 | 0.9314 | 1.000 | 0.6250 | 0.9710 | 0.9910 | 0.8990 | 0.9778 | 0.8209 | 0.7222 |
GM(1,1) | 0.9684 | 0.9343 | 0.9292 | 0.9241 | 0.9190 | 0.9140 | 0.9090 | 0.9040 | 0.8990 | 0.8941 | 0.8892 | 0.8843 |
GM(1,N) | 0.9684 | 0.0054 | 0.8160 | 0.9254 | 0.9164 | 0.9580 | 0.8566 | 0.9744 | 0.9231 | 0.9399 | 0.8445 | 0.8507 |
BP | 0.9598 | 0.9710 | 0.9585 | 0.9517 | 0.9883 | 0.7920 | 0.9685 | 0.8740 | 0.9515 | 0.8564 | 0.8229 | 0.8451 |
GM(1,1)-BP | 0.9725 | 0.9321 | 0.9236 | 0.9457 | 0.9636 | 0.7080 | 0.8962 | 0.9364 | 0.9672 | 0.9582 | 0.8057 | 0.8226 |
Model | R2 | RMSE | Relative Error in 2014 |
---|---|---|---|
GM(1,1) | <0.5 | 0.1081 | 0.2244 |
GM(1,N) | <0.5 | 0.2987 | 0.1779 |
BP | 0.5147 | 0.0792 | 0.1701 |
GM(1,1)-BP | 0.7830 | 0.0527 | 0.1390 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, Z.; Xu, D.; Wu, C.; Li, J.; Zheng, Y. A Prediction Method for Animal-Derived Drug Resistance Trend Using a Grey-BP Neural Network Combination Model. Antibiotics 2021, 10, 692. https://doi.org/10.3390/antibiotics10060692
Li X, Zhang Z, Xu D, Wu C, Li J, Zheng Y. A Prediction Method for Animal-Derived Drug Resistance Trend Using a Grey-BP Neural Network Combination Model. Antibiotics. 2021; 10(6):692. https://doi.org/10.3390/antibiotics10060692
Chicago/Turabian StyleLi, Xinxing, Ziyi Zhang, Ding Xu, Congming Wu, Jianping Li, and Yongjun Zheng. 2021. "A Prediction Method for Animal-Derived Drug Resistance Trend Using a Grey-BP Neural Network Combination Model" Antibiotics 10, no. 6: 692. https://doi.org/10.3390/antibiotics10060692
APA StyleLi, X., Zhang, Z., Xu, D., Wu, C., Li, J., & Zheng, Y. (2021). A Prediction Method for Animal-Derived Drug Resistance Trend Using a Grey-BP Neural Network Combination Model. Antibiotics, 10(6), 692. https://doi.org/10.3390/antibiotics10060692