Isothiazolinones as Novel Candidate Insecticides for the Control of Hemipteran Insects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Chemicals
2.3. Analysis of Insecticidal Activity of Tetramycin and Kathon against Whiteflies via Oral Route
2.4. Liquid Chromatography-Mass Spectrometry (LC-MS)
2.5. Analysis of Insecticidal Activity of Kathon against Whiteflies via Spraying
2.6. Insecticidal Activity of CMIT and MIT against MEAM1 Whitefly
2.7. Insecticidal Activity of Kathon against the Green Peach Aphid
2.8. Insecticidal Activity of Kathon against the Rice Brown Planthopper
2.9. Insecticidal Activity of BIT and OIT against the MEAM1 Whitefly and the Green Peach Aphid
2.10. Analysis of Relative Endosymbiont Density Following Kathon Treatment
2.11. Statistical Analysis
3. Results
3.1. Effects of Tetramycin Treatment on the Survival of MEAM1 Whitefly via Oral Route and Identification of Bioactive Constituents
3.2. Effects of Kathon on the Survival of Three Species of Whiteflies
3.3. Effects of CMIT and MIT on the Survival of MEAM1 Whitefly Adults
3.4. Effects of Kathon on the Survival of the Green Peach Aphid
3.5. Effects of Kathon on the Survival of the Rice Brown Planthopper
3.6. Efficacy of BIT and OIT against Adults of the MEAM1 Whitefly and the Green Peach Aphid
3.7. Effects of Kathon Treatment on the Density of Endosymbionts in Whitefly
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chávez-Dulanto, P.N.; Thiry, A.A.; Glorio-Paulet, P.; Vögler, O.; Carvalho, F.P. Increasing the impact of science and technology to provide more people with healthier and safer food. Food Energy Secur. 2020, 10, e259. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogenhout, S.A.; Ammar, E.D.; Whitfield, A.E.; Redinbaugh, M.G. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 2008, 46, 327–359. [Google Scholar] [CrossRef] [Green Version]
- Lefeuvre, P.; Martin, D.P.; Elena, S.F.; Shepherd, D.N.; Roumagnac, P.; Varsani, A. Evolution and ecology of plant viruses. Nat. Rev. Microbiol. 2019, 17, 632–644. [Google Scholar] [CrossRef]
- De Barro, P.J.; Liu, S.S.; Boykin, L.M.; Dinsdale, A.B. Bemisia tabaci: A statement of species stauts. Annu. Rev. Entomol. 2011, 56, 1–19. [Google Scholar] [CrossRef]
- Kanakala, S.; Ghanim, M. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE 2019, 14, e0213946. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.R.V.; Henneberry, T.J.; Anderson, P. History, current status, and collaborative research projects for Bemisia tabaci. Crop. Protect. 2001, 20, 709–723. [Google Scholar] [CrossRef] [Green Version]
- Fiallo-Olivé, E.; Pan, L.L.; Liu, S.S.; Navas-Castillo, J. Transmission of begomoviruses and other whitefly-borne viruses: Dependence on the vector species. Phytopathology. 2020, 110, 10–17. [Google Scholar] [CrossRef]
- Wang, X.W.; Blanc, S. Insect transmission of plant single-stranded DNA viruses. Annu. Rev. Entomol. 2021, 66, 389–405. [Google Scholar] [CrossRef] [PubMed]
- Dedryver, C.; Ralec, A.L.; Fabre, F. The conflicting relationships between aphids and men: A review of aphid damage and control strategies. Comptes Rendus Biol. 2020, 333, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Heong, K.L.; Hardy, B. Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia; International Rice Research Institute: Los Banos, Philippines, 2009; ISBN 978-971-22-0251-3. [Google Scholar]
- Foster, S.P.; Denholm, I.; Devonshire, A.L. The ups and down of insecticides resistance in peach-potato aphids (Myzus persicae) in the UK. Crop. Protect. 2000, 19, 873–879. [Google Scholar] [CrossRef]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 2011, 59, 2897–2908. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C. Insecticide discovery: An evaluation and analysis. Pestic. Biochem. Physiol. 2013, 107, 8–17. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ding, Y.; Wu, Q.; Chen, M.; Zhao, S.; Zhang, J.; Wei, X.; Zhang, Y.; Bai, J.; Mo, S. Identification of the potential biological preservative tetramycin a-producing strain and enhancing its production. Front. Microbiol. 2020, 10, 2925. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.Y.; He, L.F.; Li, X.X.; Lin, J.; Mu, W.; Liu, F. Toxicity and biochemical action of the antibiotic fungicide tetramycin on Colletotrichum scovillei. Pestic. Biochem. Physiol. 2018, 147, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Kim, K.; Lee, J.Y.; Kwack, S.J.; Kwon, Y.C.; Kang, J.S.; Kim, H.S.; Lee, B. Risk assessment of 5-Chloro-2-Methylisothiazol-3(2H)-One/2-Methylisothiazol-3(2H)-One (CMIT/MIT) used as a preservative in cosmetics. Toxicol. Res. 2019, 35, 103–117. [Google Scholar] [CrossRef]
- Xue, J.; Zhou, X.; Zhang, C.X.; Yu, L.L.; Fan, H.W.; Wang, Z.; Xu, H.-J.; Xi, Y.; Zhu, Z.-R.; Zhou, W.-W.; et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol. 2014, 15, 521. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.L.; Chen, Q.F.; Zhao, J.J.; Guo, T.; Wang, X.W.; Hariton-Shalev, A.; Czosnek, H.; Liu, S.S. Clathrin-mediated endocytosis is involved in Tomato yellow leaf curl virus transport across the midgut barrier of its whitefly vector. Virology 2017, 502, 152–159. [Google Scholar] [CrossRef]
- Chen, J.H.; Wu, H.J.; Xu, C.H.; Liu, X.C.; Huang, Z.; Chang, S.; Wang, W.; Han, G.; Kuang, T.; Shen, J.R.; et al. Architecture of the photosynthetic complex from a green sulfur bacterium. Science 2020, 370, eabb6350. [Google Scholar] [CrossRef]
- Morita, M.; Ueda, T.; Yoneda, T.; Koyanagi, T.; Haga, T. Flonicamid, a novel insecticide with a rapid inhibitory effect on aphid feeding. Pest. Manag. Sci. 2007, 63, 969–973. [Google Scholar] [CrossRef]
- Roditakis, E.; Stavrakaki, M.; Grispou, M.; Achimastou, A.; Waetermeulen, M.; Nauen, R.; Tsagkarakou, A. Flupyradifurone effectively manages whitefly Bemisia tabaci MED (Hemiptera: Aleyrodidae) and tomato yellow leaf curl virus in tomato. Pest. Manag. Sci. 2017, 7, 1574–1584. [Google Scholar] [CrossRef]
- Sparks, T.C.; Riley, D.G.; Simmons, A.M.; Guo, L.Z. Comparison of toxicological bioassays for whiteflies. Insects 2020, 11, 789. [Google Scholar] [CrossRef] [PubMed]
- Shan, H.W.; Luan, J.B.; Liu, Y.Q.; Douglas, A.E.; Liu, S.S. The inherited bacterial symbiont Hamiltonella influences the sex ratio of an insect host. Proc. R. Soc. B 2019, 286, 20191677. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.; Silva, C.; Soares, P.; Garrido, E.M.; Borges, F.; Garrido, J. Isothiazolinone biocides: Chemistry, biological, and toxicity profiles. Molecules 2020, 25, 991. [Google Scholar] [CrossRef] [Green Version]
- Ozkaya, E.; Sayar, S.K.; Kobaner, G.B.; Pehlivan, G. Methylchloroisothiazolinone/methylisothiazolinone and methylisothiazolinone contact allergy: A 24-year, single-center, retrospective cohort study from Turkey. Contact Dermat. 2021, 84, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, A.R.; Ghanim, M.; Roditakis, E.; Nauen, R.; Ishaaya, I. Insecticide resistance and its management in Bemisia tabaci species. J. Pest. Sci. 2020, 93, 893–910. [Google Scholar] [CrossRef]
- Collier, P.J.; Ramsey, A.J.; Austin, P.; Gilbert, P. Growth inhibitory and biocidal activity of some isothiazolone biocides. J. Appl. Bacteriol. 1990, 69, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Fuller, S.J.; Denyer, S.P.; Hugo, W.B.; Pemberton, D.; Woodcock, P.M.; Buckley, A.J. The mode of action of 1,2-benzisothiazolin-3-one on Staphylococcus aureus. Lett. Appl. Microbiol. 1985, 1, 13–15. [Google Scholar] [CrossRef]
- Chapman, J.S.; Diehl, M.A. Methylchloroisothiazolone-induced growth inhibition and lethality in Escherichia coli. J. Appl. Microbiol. 1995, 78, 134–141. [Google Scholar] [CrossRef]
- Williams, T. The mechanism of action of isothiazolinone biocides. PowerPlant Chem. 2007, 9, 14–22. [Google Scholar]
- Shan, H.W.; Zhang, C.R.; Yan, T.T.; Tang, H.Q.; Wang, X.W.; Liu, S.S.; Liu, Y.Q. Temporal changes of symbiont density and host fitness after rifampicin treatment in a whitefly of the Bemisia tabaci species complex. Insect Sci. 2016, 23, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.R.; Shan, H.W.; Xiao, N.; Zhang, F.D.; Wang, X.W.; Liu, Y.Q.; Liu, S.S. Differential temporal changes of primary and secondary bacterial symbionts and whitefly host fitness following antibiotic treatments. Sci. Rep. 2015, 5, 15898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ettorre, A.; Andreassi, M.; Anselmi, C.; Neri, P.; Andreassi, L.; Stefano, A.D. Involvement of oxidative stress in apoptosis induced by a mixture of isothiazolinones in normal human keratinocytes. J. Investig. Dermatol. 2003, 121, 328–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Pan, L.; Han, W.; Wang, X. Isothiazolinones as Novel Candidate Insecticides for the Control of Hemipteran Insects. Antibiotics 2021, 10, 436. https://doi.org/10.3390/antibiotics10040436
He W, Pan L, Han W, Wang X. Isothiazolinones as Novel Candidate Insecticides for the Control of Hemipteran Insects. Antibiotics. 2021; 10(4):436. https://doi.org/10.3390/antibiotics10040436
Chicago/Turabian StyleHe, Wenze, Lilong Pan, Wenhao Han, and Xiaowei Wang. 2021. "Isothiazolinones as Novel Candidate Insecticides for the Control of Hemipteran Insects" Antibiotics 10, no. 4: 436. https://doi.org/10.3390/antibiotics10040436
APA StyleHe, W., Pan, L., Han, W., & Wang, X. (2021). Isothiazolinones as Novel Candidate Insecticides for the Control of Hemipteran Insects. Antibiotics, 10(4), 436. https://doi.org/10.3390/antibiotics10040436