Antibiotic Resistance and Genotypes of Nosocomial Strains of Acinetobacter baumannii in Kazakhstan
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Sources of Bacterial Isolates
3.2. Species Identification and Storage of Isolates
3.3. Determination of Sensitivity to Antibiotics
3.4. Identification of Carbapenemase Genes
3.5. Molecular Genotyping of A. baumannii
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antunes, L.C.S.; Visca, P.; Towner, K.J. Acinetobacter baumannii: Evolution of a Global Pathogen. Pathog. Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, D.H.; Kim, Y.C.; Kim, E.J.; Jung, I.Y.; Jeong, S.J.; Kim, S.Y.; Park, M.S.; Kim, A.; Lee, J.G.; Paik, H.C. Multidrug-Resistant Acinetobacter baumannii Infection in Lung Transplant Recipients: Risk Factors and Prognosis. Infect. Dis. 2019, 51, 493–501. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ (accessed on 30 December 2020).
- Hu, Y.; He, L.; Tao, X.; Meng, F.; Zhang, J. Biofilm May Not Be Necessary for the Epidemic Spread of Acinetobacter baumannii. Sci. Rep. 2016, 6, 32066. [Google Scholar] [CrossRef] [PubMed]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [Green Version]
- Grisold, A.J.; Luxner, J.; Bedenić, B.; Diab-Elschahawi, M.; Berktold, M.; Wechsler-Fördös, A.; Zarfel, G.E. Diversity of Oxacillinases and Sequence Types in Carbapenem-Resistant Acinetobacter baumannii from Austria. Int. J. Environ. Res. Public Health 2021, 18, 2171. [Google Scholar] [CrossRef]
- Hu, F.P.; Guo, Y.; Zhu, D.M.; Wang, F.; Jiang, X.F.; Xu, Y.C.; Zhang, X.J.; Zhang, C.X.; Ji, P.; Xie, Y.; et al. Resistance Trends among Clinical Isolates in China Reported from CHINET Surveillance of Bacterial Resistance, 2005–2014. Clin. Microbiol. Infect. 2016, 22, S9–S14. [Google Scholar] [CrossRef] [Green Version]
- Shek, E.A.; Sukhorukova, M.V.; Edelstein, M.V.; Skleenova, E.Y.; Ivanchik, N.V.; Shajdullina, E.R.; Kuzmenkov, A.Y.; Dekhnich, A.V.; Kozlov, R.S.; Semyonova, N.V.; et al. Antimicrobial Resistance, Carbapenemase Production, and Genotypes of Nosocomial Acinetobacter spp. Isolates in Russia: Results of Multicenter Epidemiological Study ”MARATHON 2015–2016”. Clin. Microbiol. Antimicrob. Chemother. 2019, 21, 171–180. [Google Scholar] [CrossRef]
- Khurshid, M.; Rasool, M.H.; Ashfaq, U.A.; Aslam, B.; Waseem, M.; Xu, Q.; Zhang, X.; Guo, Q.; Wang, M. Dissemination of blaOXA-23-Harbouring Carbapenem-Resistant Acinetobacter baumannii Clones in Pakistan. J. Glob. Antimicrob. Resist. 2020, 21, 357–362. [Google Scholar] [CrossRef]
- Nowak, J.; Zander, E.; Stefanik, D.; Higgins, P.G.; Roca, I.; Vila, J.; McConnell, M.J.; Cisneros, J.M.; Seifert, H.; Garnacho-Montero, J.; et al. High Incidence of Pandrug-Resistant Acinetobacter baumannii Isolates Collected from Patients with Ventilator-Associated Pneumonia in Greece, Italy and Spain as Part of the MagicBullet Clinical Trial. J. Antimicrob. Chemother. 2017, 72, 3277–3282. [Google Scholar] [CrossRef]
- Qureshi, Z.A.; Hittle, L.E.; O’Hara, J.A.; Rivera, J.I.; Syed, A.; Shields, R.K.; Pasculle, A.W.; Ernst, R.K.; Doi, Y. Colistin-Resistant Acinetobacter baumannii: Beyond Carbapenem Resistance. Clin. Infect. Dis. 2015, 60, 1295–1303. [Google Scholar] [CrossRef] [Green Version]
- Tavares, L.C.B.; De Vasconcellos, F.M.; De Sousa, W.V.; Rocchetti, T.T.; Mondelli, A.L.; Ferreira, A.M.; Montelli, A.C.; Sadatsune, T.; Tiba-Casas, M.R.; Camargo, C.H. Emergence and Persistence of High-Risk Clones among MDR and XDR A. baumannii at a Brazilian Teaching Hospital. Front. Microbiol. 2019, 10, 2898. [Google Scholar] [CrossRef] [Green Version]
- Giannouli, M.; Tomasone, F.; Agodi, A.; Vahaboglu, H.; Daoud, Z.; Triassi, M.; Tsakris, A.; Zarrilli, R. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Strains in Intensive Care Units of Multiple Mediterranean Hospitals. J. Antimicrob. Chemother. 2009, 63, 828–830. [Google Scholar] [CrossRef] [Green Version]
- Diancourt, L.; Passet, V.; Nemec, A.; Dijkshoorn, L.; Brisse, S. The Population Structure of Acinetobacter baumannii: Expanding Multiresistant Clones from an Ancestral Susceptible Genetic Pool. PLoS ONE 2010, 5, e10034. [Google Scholar] [CrossRef] [Green Version]
- Nemec, A.; Dijkshoorn, L.; Van Der Reijden, T.J.K. Long-Term Predominance of Two Pan-European Clones among Multi-Resistant Acinetobacter baumannii Strains in the Czech Republic. J. Med. Microbiol. 2004, 53, 147–153. [Google Scholar] [CrossRef]
- Karah, N.; Sundsfjord, A.; Towner, K.; Samuelsen, Ø. Insights into the Global Molecular Epidemiology of Carbapenem Non-Susceptible Clones of Acinetobacter baumannii. Drug Resist. Updat. 2012, 15, 237–247. [Google Scholar] [CrossRef]
- Hamidian, M.; Nigro, S.J. Emergence, Molecular Mechanisms and Global Spread of Carbapenem-Resistant Acinetobacter baumannii. Microb. Genom. 2019, 5. [Google Scholar] [CrossRef]
- Jolley, K.A.; Maiden, M.C.J. Using MLST to Study Bacterial Variation: Prospects in the Genomic Era. Future Microbiol. 2014, 9, 623–630. [Google Scholar] [CrossRef]
- Kim, M.H.; Jeong, H.; Sim, Y.M.; Lee, S.; Yong, D.; Ryu, C.M.; Choi, J.Y. Using Comparative Genomics to Understand Molecular Features of Carbapenem-Resistant Acinetobacter baumannii from South Korea Causing Invasive Infections and Their Clinical Implications. PLoS ONE 2020, 15. [Google Scholar] [CrossRef] [Green Version]
- Bartual, S.G.; Seifert, H.; Hippler, C.; Luzon, M.A.D.; Wisplinghoff, H.; Rodríguez-Valera, F. Development of a Multilocus Sequence Typing Scheme for Characterization of Clinical Isolates of Acinetobacter baumannii. J. Clin. Microbiol. 2005, 43, 4382–4390. [Google Scholar] [CrossRef] [Green Version]
- Gaiarsa, S.; Batisti Biffignandi, G.; Esposito, E.P.; Castelli, M.; Jolley, K.A.; Brisse, S.; Sassera, D.; Zarrilli, R. Comparative Analysis of the Two Acinetobacter baumannii Multilocus Sequence Typing (MLST) Schemes. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Ramírez, S.; Graña-Miraglia, L. Inaccurate Multilocus Sequence Typing of Acinetobacter baumannii. Emerg. Infect. Dis. 2019, 25, 186–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Belkum, A.; Tassios, P.T.; Dijkshoorn, L.; Haeggman, S.; Cookson, B.; Fry, N.K.; Fussing, V.; Green, J.; Feil, E.; Gerner-smidt, P.; et al. Guidelines for the Validation and Application of Typing Methods for Use in Bacterial Epidemiology. Clin. Microbiol. Infect. 2007, 13, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Pournaras, S.; Gogou, V.; Giannouli, M.; Dimitroulia, E.; Dafopoulou, K.; Tsakris, A.; Zarrilli, R. Single-Locus-Sequence-Based Typing of blaOXA-51-like Genes for Rapid Assignment of Acinetobacter baumannii Clinical Isolates to International Clonal Lineages. J. Clin. Microbiol. 2014, 52, 1653–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gundi, V.A.K.B.; Dijkshoorn, L.; Burignat, S.; Raoult, D.; La Scola, B. Validation of Partial rpoB Gene Sequence Analysis for the Identification of Clinically Important and Emerging Acinetobacter Species. Microbiology 2009, 155, 2333–2341. [Google Scholar] [CrossRef] [Green Version]
- Higgins, P.G.; Lehmann, M.; Wisplinghoff, H.; Seifert, H. gyrB Multiplex PCR to Differentiate between Acinetobacter calcoaceticus and Acinetobacter Genomic Species 3. J. Clin. Microbiol. 2010, 48, 4592–4594. [Google Scholar] [CrossRef] [Green Version]
- Turton, J.F.; Gabriel, S.N.; Valderrey, C.; Kaufmann, M.E.; Pitt, T.L. Use of Sequence-Based Typing and Multiplex PCR to Identify Clonal Lineages of Outbreak Strains of Acinetobacter baumannii. Clin. Microbiol. Infect. 2007, 13, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Hosoba, E.; Matsui, M.; Arakawa, Y. New PCR-Based Open Reading Frame Typing Method for Easy, Rapid, and Reliable Identification of Acinetobacter baumannii International Epidemic Clones without Performing Multilocus Sequence Typing. J. Clin. Microbiol. 2014, 52, 2925–2932. [Google Scholar] [CrossRef] [Green Version]
- Sousa, C.; Silva, L.; Grosso, F.; Lopes, J.; Peixe, L. Development of a FTIR-ATR Based Model for Typing Clinically Relevant Acinetobacter baumannii Clones Belonging to ST98, ST103, ST208 and ST218. J. Photochem. Photobiol. B Biol. 2014, 133, 108–114. [Google Scholar] [CrossRef]
- Sheck, E.; Fedintsev, A.; Skleenova, E.; Martinovich, A.; Edelstein, M. Development of a High-Throughput Single Nucleotide Polymorphism Typing Method for Acinetobacter baumannii (SNPTAb). In Proceedings of the 25th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Copenhagen, Denmark, 25–28 April 2015. [Google Scholar]
- Jean, S.S.; Hsueh, P.R. High Burden of Antimicrobial Resistance in Asia. Int. J. Antimicrob. Agents 2011, 37, 291–295. [Google Scholar] [CrossRef]
- Karaiskos, I.; Giamarellou, H. Multidrug-Resistant and Extensively Drug-Resistant Gram-Negative Pathogens: Current and Emerging Therapeutic Approaches. Expert Opin. Pharmacother. 2014, 15, 1351–1370. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoints–Breakpoints and Guidance. Ver. 11.0. 2021. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 12 March 2021).
- Zarrilli, R.; Pournaras, S.; Giannouli, M.; Tsakris, A. Global Evolution of Multidrug-Resistant Acinetobacter baumannii Clonal Lineages. Int. J. Antimicrob. Agents 2013, 41, 11–19. [Google Scholar] [CrossRef]
- Nascimento, M.; Sousa, A.; Ramirez, M.; Francisco, A.P.; Carriço, J.A.; Vaz, C. PHYLOViZ 2.0: Providing Scalable Data Integration and Visualization for Multiple Phylogenetic Inference Methods. Bioinformatics 2017, 33, 128–129. [Google Scholar] [CrossRef]
- Poirel, L.; Nordmann, P. Genetic Structures at the Origin of Acquisition and Expression of the Carbapenem-Hydrolyzing Oxacillinase Gene blaOXA-58 in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2006, 50, 1442–1448. [Google Scholar] [CrossRef] [Green Version]
- Evans, B.A.; Amyes, S.G.B. OXA β-Lactamases. Clin. Microbiol. Rev. 2014, 27, 241–263. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Marqué, S.; Héritier, C.; Segonds, C.; Chabanon, G.; Nordmann, P. OXA-58, a Novel Class D β-Lactamase Involved in Resistance to Carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2005, 49, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Nordmann, P. Carbapenem Resistance in Acinetobacter baumannii: Mechanisms and Epidemiology. Clin. Microbiol. Infect. 2006, 12, 826–836. [Google Scholar] [CrossRef] [Green Version]
- Wybo, I.; Blommaert, L.; De Beer, T.; Soetens, O.; De Regt, J.; Lacor, P.; Piérard, D.; Lauwers, S. Outbreak of Multidrug-Resistant Acinetobacter baumannii in a Belgian University Hospital after Transfer of Patients from Greece. J. Hosp. Infect. 2007, 67, 374–380. [Google Scholar] [CrossRef]
- Mendes, R.E.; Spanu, T.; Deshpande, L.; Castanheira, M.; Jones, R.N.; Fadda, G. Clonal Dissemination of Two Clusters of Acinetobacter baumannii Producing OXA-23 or OXA-58 in Rome, Italy. Clin. Microbiol. Infect. 2009, 15, 588–592. [Google Scholar] [CrossRef] [Green Version]
- Karampatakis, T.; Antachopoulos, C.; Tsakris, A.; Roilides, E. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii in Greece: An Extended Review (2000–2015). Future Microbiol. 2017, 12, 801–815. [Google Scholar] [CrossRef]
- Merkier, A.K.; Catalano, M.; Ramírez, M.S.; Quiroga, C.; Orman, B.; Ratier, L.; Famiglietti, A.; Vay, C.; Di Martino, A.; Kaufman, S.; et al. Polyclonal Spread of bla(OXA-23) and bla(OXA-58) in Acinetobacter baumannii Isolates from Argentina. J. Infect. Dev. Ctries. 2008, 2, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.Z.; Chahine, M.A.; Frye, J.G.; Cash, D.M.; Lesho, E.P.; Craft, D.W.; Lindler, L.E.; Nikolich, M.P. Molecular Analysis of Imipenem-Resistant Acinetobacter baumannii Isolated from US Service Members Wounded in Iraq, 2003–2008. Epidemiol. Infect. 2012, 140, 2302–2307. [Google Scholar] [CrossRef] [Green Version]
- Lopes, B.S.; Al-Hassan, L.; Amyes, S.G.B. ISAba825 Controls the Expression of the Chromosomal blaOXA-51-like and the Plasmid Borne blaOXA-58 Gene in Clinical Isolates of Acinetobacter baumannii Isolated from the USA. Clin. Microbiol. Infect. 2012, 18, E446–E451. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-T.; Huang, L.-Y.; Chiang, D.-H.; Chen, C.-P.; Chen, T.-L.; Wang, F.-D.; Fung, C.-P.; Siu, L.-K.; Cho, W.-L. Differences in Phenotypic and Genotypic Characteristics among Imipenem-Non-Susceptible Acinetobacter Isolates Belonging to Different Genomic Species in Taiwan. Int. J. Antimicrob. Agents 2009, 34, 580–584. [Google Scholar] [CrossRef]
- Koh, T.H.; Tan, T.T.; Khoo, C.T.; Ng, S.Y.; Tan, T.Y.; Hsu, L.Y.; Ooi, E.E.; Van Der Reijden, T.J.K.; Dijkshoorn, L. Acinetobacter calcoaceticus-Acinetobacter baumannii Complex Species in Clinical Specimens in Singapore. Epidemiol. Infect. 2012, 140, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Tan, P.; Zeng, J.; Yu, X.; Cai, Y.; Liao, K.; Guo, P.; Chen, Y.; Wu, Z.; Qu, P.; et al. Impact of an Intervention to Control Imipenem-Resistant Acinetobacter baumannii and Its Resistance Mechanisms: An 8-Year Survey. Front. Microbiol. 2021, 11. [Google Scholar] [CrossRef]
- Kuzmenkov, A.Y.; Trushin, I.V.; Vinogradova, A.G.; Avramenko, A.A.; Sukhorukova, M.V.; Malhotra-Kumar, S.; Dekhnich, A.V.; Edelstein, M.V.; Kozlov, R.S. AMRmap: An Interactive Web Platform for Analysis of Antimicrobial Resistance Surveillance Data in Russia. Front. Microbiol. 2021, 12, 377. [Google Scholar] [CrossRef]
- Tafreshi, N.; Babaeekhou, L.; Ghane, M. Antibiotic Resistance Pattern of Acinetobacter baumannii from Burns Patients: Increase in Prevalence of blaOXA-24-like and blaOXA-58-like Genes. Iran. J. Microbiol. 2019, 11, 502–509. [Google Scholar] [CrossRef]
- Li, S.; Duan, X.; Peng, Y.; Rui, Y. Molecular Characteristics of Carbapenem-Resistant Acinetobacter Spp. From Clinical Infection Samples and Fecal Survey Samples in Southern China. BMC Infect. Dis. 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Zarrilli, R.; Bagattini, M.; Migliaccio, A.; Esposito, E.P.; Triassi, M. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii in Italy. Ann. Di Ig Med. Prev. E Di Comunità 2020. [Google Scholar] [CrossRef]
- Silva, L.; Grosso, F.; Rodrigues, C.; Ksiezarek, M.; Ramos, H.; Peixe, L. The Success of Particular Acinetobacter baumannii Clones: Accumulating Resistance and Virulence inside a Sugary Shield. J. Antimicrob. Chemother. 2021, 76, 305–311. [Google Scholar] [CrossRef]
- Nakamura, R.K.; Tompkins, E. Nosocomial Infections. Compend. Contin. Educ. Vet. 2012, 34, E1–E10. [Google Scholar] [PubMed]
- Hughes, J.M. Nosocomial Infection Surveillance in the United States: Historical Perspective. Infect. Control. 1987, 8, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Myakishev, M.V.; Khripin, Y.; Hu, S.; Hamer, D.H. High-Throughput SNP Genotyping by Allele-Specific PCR with Universal Energy-Transfer-Labeled Primers. Genome Res. 2001, 11, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedintsev, A.; Sheck, E.; Trushin, I.; Avramenko, A.; Edelstein, M. Development of an Online Database and Web Application for Analysis of SNP Typing Data of Acinetobacter baumannii. Proccedings of 26th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Amsterdam, The Netherlands, 9–12 April 2016. [Google Scholar]
Name of Antibiotic | % of Isolates and MIC Value, mg/L | % of Isolates by Category | MIC, mg/L | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | ≥256 | S | I | R | 50% | 90% | |
Amikacin | 3.6 | 1.8 | 4.5 | 6.7 | 3.6 | 8.0 | 20.1 | 20.1 | 8.5 | 23.2 | 20.1 | 79.9 | 64 | ≥256 | ||||
Gentamicin | 0.4 | 8.9 | 5.4 | 8.0 | 12.1 | 11.6 | 11.6 | 17.9 | 7.1 | 3.6 | 13.4 | 34.8 | 65.2 | 16 | ≥256 | |||
Imipenem | 13.4 | 4.9 | 0.4 | 2.2 | 21.4 | 29.9 | 22.8 | 3.1 | 1.8 | 18.3 | 0.5 | 81.3 | 32 | 64 | ||||
Meropenem | 0.4 | 15.2 | 3.6 | 0.4 | 1.8 | 32.6 | 28.6 | 13.8 | 1.8 | 1.8 | 19.6 | 1.8 | 78.6 | 16 | 64 | |||
Netilmicin | 7.1 | 11.2 | 18.8 | 15.6 | 8.0 | 14.7 | 11.2 | 5.4 | 1.8 | 6.3 | ND | ND | ND | 4 | 64 | |||
Ciprofloxacin | 6.3 | 4.5 | 2.2 | 0.4 | 0.4 | 0.4 | 0.0 | 3.6 | 2.2 | 79.9 | 0.0 | 10.7 | 89.3 | ≥256 | ≥256 | |||
Tigecycline | 32.6 | 62.1 | 0.9 | 2.7 | 1.8 | ND | ND | ND | ≤0.06 | 0.125 | ||||||||
Colistin | 18.3 | 79.9 | 1.8 | 100.0 | 0.0 | 1 | 1 |
Name of Antibiotic | % of Isolates and MIC Value, mg/L | % of Isolates by Category | MIC, mg/L | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | ≥256 | S | I | R | 50% | 90% | |
Amikacin | 1.1 | 0.5 | 2.2 | 3.8 | 2.7 | 8.7 | 23.9 | 22.8 | 10.3 | 23.9 | 10.3 | 89.7 | 64 | ≥256 | ||||
Gentamicin | 0.5 | 4.3 | 3.3 | 9.2 | 13.0 | 13.6 | 13.6 | 19.0 | 7.1 | 2.7 | 13.6 | 30.4 | 69.6 | 16 | ≥256 | |||
Imipenem | 2.7 | 2.2 | 0.5 | 26.1 | 36.4 | 26.6 | 3.3 | 2.2 | 4.9 | 0.0 | 95.1 | 32 | 64 | |||||
Meropenem | 0.5 | 3.3 | 0.5 | 2.2 | 39.1 | 34.2 | 16.3 | 1.6 | 2.2 | 4.4 | 2.2 | 93.5 | 32 | 64 | ||||
Netilmicin | 4.9 | 8.2 | 20.1 | 15.2 | 8.7 | 16.3 | 11.4 | 6.5 | 1.6 | 7.1 | ND | ND | ND | 8 | 64 | |||
Ciprofloxacin | 1.6 | 1.1 | 1.1 | 0.5 | 0.5 | 3.3 | 2.2 | 89.7 | 0.0 | 2.7 | 97.3 | ≥256 | ≥256 | |||||
Tigecycline | 39.7 | 54.3 | 1.1 | 3.3 | 1.6 | ND | ND | ND | ≤0.06 | 0.125 | ||||||||
Colistin | 13.6 | 84.8 | 1.6 | 100.0 | 0.0 | 1 | 1 |
Antibiotic | CG208(92)OXF/CG2PAS | CG231(109)OXF/CG1PAS | CG184OXF/CG218PAS | Minor Genotypes | ||||
---|---|---|---|---|---|---|---|---|
% of R | 95% CI | % of R | 95% CI | % of R | 95% CI | % of R | 95% CI | |
Imipenem | 93.9 | 89.5–96.6 | 100.0 | 51.0–100.0 | 12.5 | 2.2–47.1 | 22.6 | 11.4–39.8 |
Meropenem | 93.4 | 88.8–96.2 | 75.0 | 30.1–95.4 | 0.0 | 0.0–32.4 | 12.9 | 5.1–28.9 |
Amikacin | 91.7 | 86.8–94.9 | 50.0 | 15.0–85.0 | 37.5 | 13.7–69.4 | 25.8 | 13.7–43.3 |
Gentamicin | 68.5 | 61.4–74.8 | 100.0 | 51.0–100.0 | 100.0 | 67.6–100.0 | 32.3 | 18.6–49.9 |
Ciprofloxacin | 100.0 | 97.9–100.0 | 100.0 | 51.0–100.0 | 37.5 | 13.7–69.4 | 38.7 | 23.7–56.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavrinenko, A.; Sheck, E.; Kolesnichenko, S.; Azizov, I.; Turmukhambetova, A. Antibiotic Resistance and Genotypes of Nosocomial Strains of Acinetobacter baumannii in Kazakhstan. Antibiotics 2021, 10, 382. https://doi.org/10.3390/antibiotics10040382
Lavrinenko A, Sheck E, Kolesnichenko S, Azizov I, Turmukhambetova A. Antibiotic Resistance and Genotypes of Nosocomial Strains of Acinetobacter baumannii in Kazakhstan. Antibiotics. 2021; 10(4):382. https://doi.org/10.3390/antibiotics10040382
Chicago/Turabian StyleLavrinenko, Alyona, Eugene Sheck, Svetlana Kolesnichenko, Ilya Azizov, and Anar Turmukhambetova. 2021. "Antibiotic Resistance and Genotypes of Nosocomial Strains of Acinetobacter baumannii in Kazakhstan" Antibiotics 10, no. 4: 382. https://doi.org/10.3390/antibiotics10040382
APA StyleLavrinenko, A., Sheck, E., Kolesnichenko, S., Azizov, I., & Turmukhambetova, A. (2021). Antibiotic Resistance and Genotypes of Nosocomial Strains of Acinetobacter baumannii in Kazakhstan. Antibiotics, 10(4), 382. https://doi.org/10.3390/antibiotics10040382