Occurrence of Multidrug Resistant Escherichia coli in Raw Meat and Cloaca Swabs in Poultry Processed in Slaughter Slabs in Dar es Salaam, Tanzania
Abstract
:1. Introduction
2. Results
2.1. Prevalence of E. coli in Raw Chicken Meat and Cloaca in Broiler and Spent Layers
2.2. Antibiotic Resistance Rates in E. coli Isolates
2.3. Extended Spectrum Beta Lactamase (ESBL) Producing E. coli
2.4. Detection of CTX-M, TEM, SHV and PMQR Genes (qnrA, qnrB, qnrS and aac(6′)-lb-cr)
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Study Design
4.3. Sampling Technique
4.4. Specimen Collection
4.5. Isolation and Identification of Enterobacteria
4.6. Screening and Confirmation of ESBL Production
4.7. Antimicrobial Susceptibility Testing
4.8. Polymerase Chain Reaction (PCR)
4.8.1. DNA Extraction
4.8.2. Molecular Detection of CTX-M Genes
4.8.3. Detection of TEM and SHV Genes
4.8.4. Detection of PMQR Genes (qnrA, qnrB and qnrS)
4.8.5. Detection of aac(6′)-lb-cr Gene
4.9. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- United Republic of Tanzania Ministry of Livestock and Fisheries and International Livestock Research Institute. Tanzania Livestock Master Plan; Ministry of Livestock and Fish Development: Dar es Salaam, Tanzania, 2018; pp. 1–104.
- Hounmanou, Y.M.G.; Mdegela, R.H. Current situation for antimicrobial use, antimicrobial resistance and antimicrobial residues in the food and agriculture sectors in Tanzania: A review. Tanz. Vet. J. 2017, 35, 58–62. [Google Scholar]
- Tanzania National Bureau of Statistics (NBS). Population and Housing Census, Population Distribution by Administrative Areas; National Bureau of Statistics, Ministry of Finance: Dar es Salaam, Tanzania, 2012; p. 56. [Google Scholar]
- Kimera, Z.I.; Mshana, S.E.; Rweyemamu, M.M.; Mboera, L.E.G.; Matee, M.I.N. Antimicrobial use and resistance in food-producing animals and the environment: An African perspective. Antimicrob. Resist. Infect. Control 2020, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezekiel, P.M.; Francis, S.; Martin, E.K.; Joram, J.B. Antimicrobial use in the poultry industry in Dar-es-Salaam, Tanzania and public health implications. Am. J. Resear. Commun. 2014, 2, 51–63. [Google Scholar]
- Rugumisa, B.T.; Call, D.R.; Mwanyika, G.O.; Mrutu, R.I.; Luanda, C.M.; Lyimo, B.M.; Subbiah, M.; Buza, J.J. Prevalence of Antibiotic-Resistant Fecal Escherichia coli Isolates from Penned Broiler and Scavenging Local Chickens in Arusha, Tanzania. J. Food Prot. 2016, 79, 1424–1429. [Google Scholar] [CrossRef] [PubMed]
- Founou, L.L.; Amoako, D.G.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in Food Animals in Africa: A Systematic Review and Meta-Analysis. Microb. Drug Resist. 2018, 24, 648–665. [Google Scholar] [CrossRef]
- Haritova, A.; Urumova, V.; Lutckanov, M.; Petrov, V.; Lashev, L. Pharmacokinetic-pharmacodynamic indices of enrofloxacin in Escherichia coli O78/H12 infected chickens. Food Chem. Toxicol. 2011, 49, 1530–1536. [Google Scholar] [CrossRef]
- Shobrak, M.Y.; Abo-Amer, A.E. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris. Braz. J. Microbiol. 2014, 45, 1199–1209. [Google Scholar] [CrossRef] [Green Version]
- Sindato, C.; Mboera, L.E.G.; Katale, B.Z.; Frumence, G.; Kimera, S.; Clark, T.G.; Legido-Quigley, H.; Mshana, S.E.; Rweyemamu, M.M.; Matee, M. Knowledge, attitudes and practices regarding antimicrobial use and resistance among communities of Ilala, Kilosa and Kibaha districts of Tanzania. Antimicrob. Resist. Infect. Control 2020, 9, 194. [Google Scholar] [CrossRef]
- Kimera, Z.I.; Frumence, G.; Mboera, L.E.G.; Rweyemamu, M.; Mshana, S.E.; Matee, M.I.N. Assessment of Drivers of Antimicrobial Use and Resistance in Poultry and Domestic Pig Farming in the Msimbazi River Basin in Tanzania. Antibiotics 2020, 9, 838. [Google Scholar] [CrossRef]
- Agunos, A.; Léger, D.F.; Carson, C.A.; Gow, S.P.; Bosman, A.; Irwin, R.J.; Reid-Smith, R.J. Antimicrobial use surveillance in broiler chicken flocks in Canada, 2013–2015. PLoS ONE 2017, 12, e0179384. [Google Scholar] [CrossRef] [PubMed]
- Kissinga, D.H.; Mwombeki, F.; Said, K.; Katakweba, A.A.S.; Nonga, H.E.; Muhairwa, A.P. Antibiotic susceptibilities of indicator bacteria Escherichia coli and Enterococci spp. isolated from ducks in Morogoro Municipality, Tanzania. BMC Res. Notes 2018, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Duan, G.; Zhu, J.; Zhang, W.; Xi, Y.; Fan, Q. Prevalence and characterization of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes among Shigella isolates from Henan, China, between 2001 and 2008. Int. J. Antimicrob. Agents 2013, 42, 173–177. [Google Scholar] [CrossRef]
- Chishimba, K.; Hang’ombe, B.M.; Muzandu, K.; Mshana, S.E.; Matee, M.I.; Nakajima, C.; Suzuki, Y. Detection of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Market-Ready Chickens in Zambia. Int. J. Microbiol. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Davis, G.S.; Waits, K.; Nordstrom, L.; Grande, H.; Weaver, B.; Papp, K.; Horwinski, J.; Koch, B.; Hungate, B.A.; Liu, C.M.; et al. Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC Microbiol. 2018, 18, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Saud, B.; Paudel, G.; Khichaju, S.; Bajracharya, D.; Dhungana, G.; Awasthi, M.S.; Shrestha, V. Multidrug-Resistant Bacteria from Raw Meat of Buffalo and Chicken, Nepal. Vet. Med. Inter. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Hamis, Z.; Tuntufye, H.; Shahada, F. Antimicrobial Resistance Phenotypes of Escherichia coli Isolated from Tropical Free-Range Chickens. Int. J. Sci. Res. 2014, 3, 34–37. [Google Scholar]
- Lupindu, A.M.; Dalsgaard, A.; Msoffe, P.L.; Ngowi, H.A.; Mtambo, M.M.; Olsen, J.E. Transmission of antibiotic-resistant Escherichia coli between cattle, humans and the environment in peri-urban livestock keeping communities in Morogoro, Tanzania. Prev. Vet. Med. 2014, 118, 477–482. [Google Scholar] [CrossRef]
- Caudell, M.A.; Quinlan, M.B.; Subbiah, M.; Call, D.R.; Roulette, C.J.; Roulette, J.W.; Roth, A.; Matthews, L.; Quinlan, R.J. Antimicrobial Use and Veterinary Care among Agro-Pastoralists in Northern Tanzania. PLoS ONE 2017, 12, e0170328. [Google Scholar]
- Katakweba, A.A.S.; Mtambo, M.M.A.; Olsen, J.E.; Muhairwa, A.P. Awareness of human health risks associated with the use of antimicrobials among livestock keepers and factors that contribute to selection of antibiotic resistance bacteria within livestock in Tanzania. Livestock Rural Res. Dev. 2012, 24, 1–14. [Google Scholar]
- Graham, D.W.; Bergeron, G.; Bourassa, M.W.; Dickson, J.; Gomes, F.; Howe, A.; Kahn, L.H.; Morley, P.S.; Scott, H.M.; Simjee, S.; et al. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann. N. Y. Acad. Sci. 2019, 1441, 17–30. [Google Scholar] [CrossRef]
- Abdel Rahman, M.; Roshdy, H.; Samir, A.H.; Hamed, E.A. Antibiotic resistance and extended-spectrum β-lactamase in Escherichia coli isolates from imported 1-day-old chicks, ducklings, and turkey poultry. Vet. World 2020, 13, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Poirel, L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J. Antimicrob. Chemother. 2005, 56, 463–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacoby, G.A.; Strahilevitz, J.; Hooper, D.C. Plasmid-mediated quinolone resistance. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Jacoby, G.A.; Walsh, K.E.; Mills, D.M.; Walker, V.J.; Oh, H.; Robicsek, A.; Hooper, D.C. qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob. Agents Chemother. 2006, 50, 1178–1182. [Google Scholar] [CrossRef] [Green Version]
- Robicsek, A.; Jacoby, G.A.; Hooper, D.C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 2006, 6, 629–640. [Google Scholar] [CrossRef]
- Moumouni, A.; Diagbouga, S.; Nadembèga, C.; Metuor Dabire, A.; Salah, F.; Obiri-Yeboah, D.; Soubéiga, S.T.; Ouattara, A.K.; Zohoncon, T.; Djigma, F. Quinolone Resistance (qnr) genes in fecal carriage of extended Spectrum beta-lactamases producing Enterobacteria isolated from children in Niger. Curr. Res. Microbiol. Biotechnol. 2017, 5, 953–957. [Google Scholar]
- Salah, F.D.; Soubeiga, S.T.; Ouattara, A.K.; Sadji, A.Y.; Metuor-Dabire, A.; Obiri-Yeboah, D.; Banla-Kere, A.; Karou, S.; Simpore, J. Distribution of quinolone resistance gene (qnr) in ESBL-producing Escherichia coli and Klebsiella spp. in Lomé, Togo. Antimicrob. Resist. Infect. Control 2019, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Sidjabat, H.E.; Townsend, K.M.; Lorentzen, M.; Gobius, K.S.; Fegan, N.; Chin, J.J.; Bettelheim, K.A.; Hanson, N.D.; Bensink, J.C.; Trott, D.J. Emergence and spread of two distinct clonal groups of multidrug-resistant Escherichia coli in a veterinary teaching hospital in Australia. J. Med. Microbiol. 2006, 55, 1125–1134. [Google Scholar] [CrossRef]
- Ben Sallem, R.; Ben Slama, K.; Rojo-Bezares, B.; Porres-Osante, N.; Jouini, A.; Klibi, N.; Boudabous, A.; Sáenz, Y.; Torres, C. IncI1 plasmids carrying bla (CTX-M-1) or bla (CMY-2) genes in Escherichia coli from healthy humans and animals in Tunisia. Microb. Drug Resist. 2014, 20, 495–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI Supplement M100; Wayne, P.A., Ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Valat, C.; Forest, K.; Billet, M.; Polizzi, C.; Saras, E.; Madec, J.Y.; Haenni, M. Absence of co-localization between patho var-associated virulence factors and extended-spectrum β-lactamase (bla CTX-M) genes on a single plasmid. Veter. Microbiol. 2016, 192, 163–166. [Google Scholar] [CrossRef]
- Reich, F.; Atanassova, V.; Klein, G. Extended-Spectrum ß-Lactamase and AmpC-Producing Enterobacteria in Healthy Broiler Chickens, Germany. Emerg. Infect. Dis. 2013, 9, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Moawad, A.A.; Hotzel, H.; Awad, O.; Tomaso, H.; Neubauer, H.; Hafez, H.M.; El-Adawy, H. Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathog. 2017, 9, 57–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.H.; Robicsek, A.; Jacoby, G.A.; Sahm, D.; Hooper, D.C. Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 2006, 50, 3953–3955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, K.T.; Yasin, R.; Yeo, C.C.; Puthucheary, S.; Thong, K.-L. Characterization of Multidrug Resistant ESBL-Producing Escherichia coli Isolates from Hospitals in Malaysia. BioMed Res. Int. 2009, 2009. [Google Scholar] [CrossRef] [Green Version]
Poultry Slabs | MDR | Not MDR | ||
---|---|---|---|---|
n | % | n | % | |
Stereo | 18 | 94.7 | 1 | 5.3 |
Manzese | 28 | 70.0 | 12 | 30.0 |
Mtambani | 14 | 70.0 | 6 | 30.0 |
Shekilango | 37 | 86.0 | 6 | 14.0 |
Kisutu | 50 | 55.6 | 40 | 44.4 |
Total | 147 | 69.3 | 65 | 30.7 |
MDR E. coli Isolates | Classes of Antibiotics | ||||
---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | |
147 | 72(49) | 49(33.3) | 21(14.3) | 4(2.7) | 1(0.7) |
Antibiotic Combination | Number of Isolates | % | Number of Antibiotics Classes |
---|---|---|---|
TE, CN, CIP | 1 | 0.7 | 3 |
TE, CN, SXT | 1 | 0.7 | 3 |
TE, CIP, SXT | 17 | 11.6 | 3 |
TE, CN, AMP | 1 | 0.7 | 3 |
TE, IMP, SXT | 3 | 2.0 | 3 |
TE, CIP, AMP | 8 | 5.4 | 3 |
TE, CN, CIP, SXT | 3 | 2.0 | 4 |
TE, IMP, AMP | 1 | 0.7 | 3 |
TE, SXT, AMP | 39 | 26.5 | 3 |
TE, CIP, IMP, SXT | 1 | 0.7 | 4 |
CIP, SXT, AMP | 1 | 0.7 | 3 |
TE, CN, SXT, AMP | 4 | 2.7 | 4 |
TE, CIP, IMP, AMP | 1 | 0.7 | 4 |
TE, CIP, SXT, AMP | 29 | 19.7 | 4 |
TE, IMP, SXT, AMP | 1 | 0.7 | 4 |
TE, CN, CIP, IMP, AMP | 1 | 0.7 | 5 |
TE, IMP, CTX, AMP | 1 | 0.7 | 4 |
TE, CN, CIP, SXT, AMP | 4 | 2.7 | 5 |
TE, SXT, CTX, AMP | 9 | 6.1 | 4 |
TE, CIP, IMP, SXT, AMP | 3 | 2.0 | 5 |
TE, CN, SXT, CTX, AMP | 3 | 2.0 | 5 |
TE, CIP, SXT, CTX, AMP | 9 | 6.1 | 5 |
TE, CN, CIP, IMP, SXT, AMP | 2 | 1.4 | 6 |
TE, IMP, SXT, CTX, AMP | 1 | 0.7 | 5 |
TE, CN, CIP, SXT, CTX, AMP | 2 | 1.4 | 6 |
TE, CN, CIP, IMP, SXT, CTX, AMP | 1 | 0.7 | 7 |
Chicken Category | |||||||
---|---|---|---|---|---|---|---|
Antibiotic | Isolates (n) | % | Meat SL | Cloaca SL | Meat Br | Cloaca Br | Total |
TE | 9/10 | 90 | 3 | 4 | 1 | 1 | 9 |
CN | 0/10 | 0 | 0 | 0 | 0 | 0 | 0 |
CIP | 4/10 | 40 | 3 | 1 | 0 | 0 | 4 |
IMP | 1/10 | 10 | 1 | 0 | 0 | 0 | 1 |
SXT | 9/10 | 90 | 3 | 4 | 1 | 1 | 9 |
CTX | 10/10 | 100 | 4 | 4 | 1 | 1 | 10 |
AMP | 10/10 | 100 | 4 | 4 | 1 | 1 | 10 |
Detected Genes | E. coli No (%) | Spent Layers Meat | Spent Layers Cloaca | Broiler Meat | Broiler Cloaca |
---|---|---|---|---|---|
CTX-M | 2/10 (20) | 1 | 1 | 0 | 0 |
TEM | 0/10 (0.0) | 0 | 0 | 0 | 0 |
SHV | 0/10 (0.0) | 0 | 0 | 0 | 0 |
QnrA | 0/10 (0.0) | 0 | 0 | 0 | 0 |
QnrB | 0/10 (0.0) | 0 | 0 | 0 | 0 |
QnrS | 8/10 (80) | 4 | 2 | 1 | 1 |
aac(6′)-Ib-cr | 0/10 (0.0) | 0 | 0 | 0 | 0 |
Total | 10/10(100) | 5 | 3 | 1 | 1 |
Gene | Primer Set | Amplicon Size | Reference |
---|---|---|---|
CTX-M | F: SCSATGTGCAGYACCAGTAA R: ACCAGAAYVAGCGGBGC | 585 bp | [33,34] |
QnrA | F: TCAGCAAGAGGATTTCTCA R: GGCAGCACTATTACTCCCA | 627 bp | [35] |
QnrB | F: GGMATHGAAATTCGCCACTG R: TTTGCYGYYCGCCAGTCGAA | 264 bp | [35] |
QnrS | F: ATGGAAACCTACAATCATAC R: AAAAACACCTCGACTTAAGT | 467 bp | [35] |
aac(6′)-Ib-cr | F: TTGCGATGCTCTATGAGTGGCTA R: CTCGAATGCCTGGCGTGTTT | 482 bp | [34,36] |
TEM | F: ATGAGTATTCAACATTTCCG R: CTGACAGTTACCAATGCTTA | 867 bp | [37] |
SHV | F: GGTTATGCGTTATATTCGCC R: TTAGCGTTGCCAGTGCTC | 867 bp | [37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mgaya, F.X.; Matee, M.I.; Muhairwa, A.P.; Hoza, A.S. Occurrence of Multidrug Resistant Escherichia coli in Raw Meat and Cloaca Swabs in Poultry Processed in Slaughter Slabs in Dar es Salaam, Tanzania. Antibiotics 2021, 10, 343. https://doi.org/10.3390/antibiotics10040343
Mgaya FX, Matee MI, Muhairwa AP, Hoza AS. Occurrence of Multidrug Resistant Escherichia coli in Raw Meat and Cloaca Swabs in Poultry Processed in Slaughter Slabs in Dar es Salaam, Tanzania. Antibiotics. 2021; 10(4):343. https://doi.org/10.3390/antibiotics10040343
Chicago/Turabian StyleMgaya, Fauster X., Mecky I. Matee, Amandus P. Muhairwa, and Abubakar S. Hoza. 2021. "Occurrence of Multidrug Resistant Escherichia coli in Raw Meat and Cloaca Swabs in Poultry Processed in Slaughter Slabs in Dar es Salaam, Tanzania" Antibiotics 10, no. 4: 343. https://doi.org/10.3390/antibiotics10040343
APA StyleMgaya, F. X., Matee, M. I., Muhairwa, A. P., & Hoza, A. S. (2021). Occurrence of Multidrug Resistant Escherichia coli in Raw Meat and Cloaca Swabs in Poultry Processed in Slaughter Slabs in Dar es Salaam, Tanzania. Antibiotics, 10(4), 343. https://doi.org/10.3390/antibiotics10040343