Incorporation of Hybrid Nanomaterial in Dental Porcelains: Antimicrobial, Chemical, and Mechanical Properties
Abstract
:1. Introduction
2. Results
2.1. Surface Characteristics and Chemical Composition
2.2. Antimicrobial Activity
2.3. Silver and Vanadium Ions Release
2.4. Mechanical Tests
3. Discussion
4. Materials and Methods
4.1. Specimen Preparation
4.2. Surface Characteristics and Chemical Composition
4.3. Antimicrobial Activity
4.4. Silver and Vanadium Ions Release
4.5. Mechanical Tests
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alkahtani, R.N. The implications and applications of nanotechnology in dentistry: A review. Saudi Dent. J. 2018, 30, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Holtz, R.D.; Souza Filho, A.G.; Brocchi, M.; Martins, D.; Durán, N.; Alves, O.L. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 2010, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Holtz, R.D.; Lima, B.A.; Souza Filho, A.G.; Brocchi, M.; Alves, O.L. Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 935–940. [Google Scholar] [CrossRef] [PubMed]
- De Castro, D.T.; Holtz, R.D.; Alves, O.L.; Watanabe, E.; Valente, M.L.D.C.; Da Silva, C.H.L.; Dos Reis, A.C. Development of a novel resin with antimicrobial properties for dental application. J. Appl. Oral. Sci. 2014, 22, 442–449. [Google Scholar] [CrossRef] [Green Version]
- De Castro, D.T.; Valente, M.L.; Agnelli, J.A.M.; Silva-Lovato, C.H.; Watanabe, E.; Siqueira, R.L.; Alves, O.L.; Holtz, R.D.; Dos Reis, A.C. In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. J. Prosthet. Dent. 2016, 115, 238–246. [Google Scholar] [CrossRef]
- De Castro, D.T.; Valente, M.L.; Da Silva, C.H.; Watanabe, E.; Siqueira, R.L.; Schiavon, M.A.; Alves, O.L.; Dos Reis, A.C. Evaluation of antibiofilm and mechanical properties of new nanocomposites based on acrylic resins and silver vanadate nanoparticles. Arch. Oral. Biol. 2016, 67, 46–53. [Google Scholar] [CrossRef]
- Kreve, S.; Oliveira, V.C.; Bachmann, L.; Alves, O.L.; Reis, A.C. Influence of AgVO3 incorporation on antimicrobial properties, hardness, roughness and adhesion of a soft denture liner. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Castro, D.T.; Kreve, S.; Oliveira, V.C.; Alves, O.L.; Reis, A.C. Development of an impression material with antimicrobial properties for dental application. J. Prosthodont. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Teixeira, A.B.V.; Vidal, C.L.; Castro, D.T.; Oliveira-Santos, C.; Schiavon, M.A.; Reis, A.C. Incorporating antimicrobial nanomaterial and its effect on the antimicrobial activity, flow and radiopacity of endodontic sealers. Eur. Endod. J. 2017, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.B.V.; Vidal, C.L.; Albiasetti, T.; Castro, D.T.; Reis, A.C. Influence of adding nanoparticles of silver vanadate on antibacterial effect and physicochemical properties of endodontic sealers. Iran Endod. J. 2019, 14, 7–13. [Google Scholar] [CrossRef]
- Oliscovicz, N.F.; Castro, D.T.; Valente, M.L.C.; Watanabe, E.; Lepri, C.P.; Reis, A.C. Surface treatment of implant materials with antimicrobial nanoparticles. Gen. Dent. 2018, 66, 66–73. [Google Scholar] [PubMed]
- Ferreira, I.; Vidal, C.L.; Botelho, A.L.; Ferreira, P.S.; Valente, M.L.D.C.; Schiavon, M.A.; Alves, O.L.; Dos Reis, A.C. Effect of nanomaterial incorporation on the mechanical and microbiological properties of dental porcelain. J. Prosthet. Dent. 2020, 123. [Google Scholar] [CrossRef] [PubMed]
- Amaral, G.S.; Negrini, T.; Maltz, M.; Arthur, R.A. Restorative materials containing antimicrobial agents: Is there evidence for their antimicrobial and anticaries effects? A systematic review. Aust. Dent. J. 2016, 61, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abduo, J.; Sambrook, R.J. Longevity of ceramic onlays: A systematic review. J. Esthet. Restor. Dent. 2018, 30, 193–215. [Google Scholar] [CrossRef] [PubMed]
- Araujo, N.S.; Moda, M.D.; Silva, E.A.; Zavanelli, A.C.; Mazaro, Q.; Vitor, J. Survival of all-ceramic restorations after a minimum follow-up of five years: A systematic review. Quintessence Int. 2016, 47, 395–405. [Google Scholar] [CrossRef]
- Castillo-Oyagüe, R.; Sancho-Esper, R.; Lynch, C.D.; Suárez-García, M.J. All-ceramic inlay-retained fixed dental prostheses for replacing posterior missing teeth: A systematic review. J. Prosthodont. Res. 2018, 62, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Zafar, N.; Ghani, F. Common post-fitting complications in tooth-supported fixed-fixed design metal-ceramic fixed dental prostheses. Pak. J. Med. Sci. 2014, 30, 619–625. [Google Scholar] [CrossRef]
- Melo, F.; Nascimento, C.; Souza, D.O.; Albuquerque, R.F., Jr. Identification of oral bacteria on titanium implant surfaces by 16S rDNA sequencing. Clin. Oral. Implant. Res. 2017, 28, 697–703. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, S.W.; Lim, H.P.; Park, C.; Yun, K.D. Biocompatibility evaluation of feldspathic porcelain with nano-sized silver ion particles. J. Nanosci. Nanotechnol. 2018, 18, 1237–1240. [Google Scholar] [CrossRef]
- Xu, K.; Liu, Y.; Liu, S.; Liu, A.; Liu, P.; Liu, L.; Li, L. Microorganism adhesion inhibited by silver doped yttria-stabilized zirconia ceramics. Ceram. Int. 2011, 37, 2109–2115. [Google Scholar] [CrossRef]
- Llama-Palacios, A.; Sánchez, M.; Díaz, L.; Cabal, B.; Suárez, M.; Moya, J.; Torrecillas, R.; Figuero, E.; Sanz, M.; Herrera, D. In vitro biofilm formation on different ceramic biomaterial surfaces: Coating with two bactericidal glasses. Dent. Mater. 2019, 35, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Saravia, S.G.G.; Rastelli, S.E.; Ortega-Avilés, M.; González-Morán, C.O.; Rocha-Rangel, E.; Miranda-Hernández, J.G. Physical, mechanical properties and antimicrobial analysis of a novel CaO· Al2O3 compound reinforced with Al or Ag particles. J. Mech. Behav. Biomed. Mater. 2019, 97, 385–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, H.; Abe, H.; Taguri, T.; Ohashi, F.; Fujino, S.; Kajiwara, T. Antimicrobial effect of porcelain glaze with silver-clay antimicrobial agent. J. Ceram. Soc. Jpn. 2010, 118, 571–574. [Google Scholar] [CrossRef] [Green Version]
- Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against Gram-positive and Gram-negative bacteria: A preliminary study. J. Nanomater. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Oda, Y.; Hayashi, F.; Wakita, A.; Nagatani, Y.; Okada, M. Five-year longitudinal study of dental caries risk associated with Streptococcus mutans and Streptococcus sobrinus in individuals with intellectual disabilities. J. Oral. Sci. 2016, 59, 39–46. [Google Scholar] [CrossRef] [PubMed]
- De Soet, J.; Van Loveren, C.; Lammens, A.; Pavičić, M.; Homburg, C.; Cate, J.T.; De Graaff, J. Differences in cariogenicity between fresh isolates of Streptococcus sobrinus and Streptococcus mutans. Caries Res. 1991, 25, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Caufield, P.W.; Emanuelsson, I.R.; Thornqvist, E. Differentiation of Streptococcus mutans and Streptococcus sobrinus via genotypic and phenotypic profiles from three different populations. Oral. Microbiol. Immunol. 2001, 16, 16–23. [Google Scholar] [CrossRef]
- Akrivopoulou, C.; Green, I.M.; Donos, N.; Nair, S.P.; Ready, D. Aggregatibacter actinomycetemcomitans serotype prevalence and antibiotic resistance in a UK population with periodontitis. J. Glob. Antimicrob. Resist. 2017, 10, 54–58. [Google Scholar] [CrossRef]
- Herbert, B.A.; Novince, C.M.; Kirkwood, K.L. Aggregatibacter actinomycetemcomitans, a potent immunoregulator of the periodontal host defense system and alveolar bone homeostasis. Mol. Oral. Microbiol. 2016, 31, 207–227. [Google Scholar] [CrossRef] [Green Version]
- Souto, R.; Silva-Boghossian, C.M.; Colombo, A.P.V. Prevalence of Pseudomonas aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with chronic periodontal infection. Braz. J. Microbiol. 2014, 45, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Grzech-Leśniak, K.; Matys, J.; Dominiak, M. Comparison of the clinical and microbiological effects of antibiotic therapy in periodontal pockets following laser treatment: An in vivo study. Adv. Clin. Exp. Med. 2018, 27, 1263–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, D.T.; Valente, M.L.C.; Aires, C.P.; Alves, O.L.; Reis, A.C. Elemental ion release and cytotoxicity of antimicrobial acrylic resins incorporated with nanomaterial. Gerodontology 2017, 34, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.B.V.; Castro, D.T.; Schiavon, M.A.; Reis, A.C. Cytotoxicity and release ions of endodontic sealers incorporated with a silver and vanadium base nanomaterial. Odontology 2020, 108, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Anami, L.C.; Pereira, C.A.; Guerra, E.; Souza, R.O.D.A.; Jorge, A.O.C.; Bottino, M.A. Morphology and bacterial colonization of tooth/ceramic restoration interface after different cement excess removal techniques. J. Dent. 2012, 40, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnaiah, R.; Alkheraif, A.; Divakar, D.; Matinlinna, J.; Vallittu, P. The effect of hydrofluoric acid etching duration on the surface micromorphology, roughness, and wettability of dental ceramics. Int. J. Mol. Sci. 2016, 17, 822.1–822.17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayad, M.F.; Fahmy, N.Z.; Rosenstiel, S.F. Effect of surface treatment on roughness and bond strength of a heat-pressed ceramic. J. Prosthet. Dent. 2008, 99, 123–130. [Google Scholar] [CrossRef]
- Chang, H.H.; Cheng, C.L.; Huang, P.J.; Lin, S.Y. Application of scanning electron microscopy and X-ray microanalysis: FE-SEM, ESEM-EDS, and EDS mapping for studying the characteristics of topographical microstructure and elemental mapping of human cardiac calcified deposition. Anal. Bioanal. Chem. 2014, 406, 359–366. [Google Scholar] [CrossRef]
- Uçar, Y.; Aysan Meriç, İ.; Ekren, O. Layered manufacturing of dental ceramics: Fracture mechanics, microstructure, and elemental composition of lithography-sintered ceramic. J. Prosthodont. 2019, 28, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Rizkalla, A.S.; Jones, D.W. Indentation fracture toughness and dynamic elastic moduli for commercial feldspathic dental porcelain materials. Dent. Mater. 2014, 20, 198–206. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 6th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2003. [Google Scholar]
Microorganisms | MIC of β-AgVO3 (µg/mL) | Group | Metabolic Activity (Absorbance) | CFU/mL (Log10) | ||
---|---|---|---|---|---|---|
IPS Inline | Ex-3 Noritake | IPS Inline | Ex-3 Noritake | |||
250 | Control | 0.91 [0.77; 1.16] Aa | 0.24 [0.19; 0.49] Ba | 7.60 [7.25; 7.88] Aa | 6.78 [6.58; 7.23] Ba | |
Streptococcus mutans | 2.5% | 0.67 [0.47; 0.95] a | 0.55 [0.45; 0.79] b | 5.71 [3.50; 7.16] ab | 7.40 [6.18; 7.95] a | |
5% | 0.12 [0.06; 0.22] b | 0.22 [0.12; 0.30] a | 5.13 [4.03; 5.98] Ab | 7.04 [6.31; 7.24] Ba | ||
250 | Control | 1.04 [0.82; 1.21] a | 0.97 [0.86; 1.08] a | 8.21 [7.74; 8.44] a | 8.14 [7.63; 8.69] | |
Streptococcus sobrinus | 2.5% | 1.17 [0.77; 1.40] Aa | 0.97 [0.70; 1.16] Ba | 8.19 [5.22; 9.02] ab | 7.82 [7.61; 8.28] | |
5% | 1.06 [0.76; 1.29] Aa | 0.82 [0.57; 1.01] Bb | 7.03 [4.45; 7.90] Ab | 7.89 [6.81; 8.47] B | ||
250 | Control | 1.10 [1.06; 1.12] Aa | 1.17 [1.14; 1.24] Ba | 7.30 [7.03; 7.35] a | 7.17 [7.10; 7.27] ab | |
Aggregatibacter actinomycetemcomitans | 2.5% | 1.00 [0.98; 1.05] Ab | 1.20 [1.16; 1.30] Ba | 7.37 [7.25; 7.48] ab | 7.44 [7.17; 7.55] a | |
5% | 1.12 [1.03; 1.23] ab | 1.18 [1.16; 1.20] a | 7.39 [7.27; 7.47] Ab | 7.14 [7.03; 7.23] Bb | ||
31.25 | Control | 0.23 [0.13; 0.41] a | 0.09 [0.06; 0.18] a | 6.82 [6.29; 7.61] | 6.37 [6.11; 7.59] | |
Pseudomonas aeruginosa | 2.5% | 0.50 [0.35; 0.94] b | 0.92 [0.53; 1.14] b | 7.44 [6.63; 8.14] | 7.19 [6.70; 8.07] | |
5% | 0.31 [0.28; 0.41] Aab | 0.58 [0.39; 0.75] Bc | 6.46 [6.11; 8.31] | 6.17 [5.27; 7.59] |
Ag+ | V4+/V5+ | ||||||
---|---|---|---|---|---|---|---|
Porcelain | Group | 7 Days | 30 Days | 120 Days | 7 Days | 30 Days | 120 Days |
Ex-3 Noritake | Control | 0 Aa | 0 Aa | 0 Aa | 0 Aa | 0 Aa | 0 Aa |
2.5% | 0.22 [0.07; 0.43] Abc | 0.23 [0.10; 0.39] Abc | 0.25 [−0.14; 0.75] Abc | 14.65 [−1.44; 25.68] Ab | 10.92 [6.67; 14.49] Ab | 2.64 [0.63; 4.25] Ab | |
5% | 0.26 [−0.05; 0.54] Abc | 0.12 [−0.04; 0.33] Abc | 0.16 [−0.13; 0.53] Abc | 2.52 [1.18; 4.47] Ac | 1.98 [−0.27; 4.82] Ab | 3.99 [0.58; 7.67] Ab | |
IPS Inline | Control | 0 Aab | 0 Aab | 0 Aab | 0 Aa | 0 Aa | 0 Aa |
2.5% | 0.32 [−0.56; 0.60] Abc | 0.08 [−0.40; 0.83] Abc | 0.08 [−0.21; 0.46] Abc | 4.79 [0.61; 7.53] Abc | 4.24 [−4.70; 16.20] Ab | 5.33 [−2.87; 13.11] Ab | |
5% | 0.45 [−0.06; 1.20] Ac | 0.41 [0.02; 0.81] Ac | 0.53 [−0.25; 1.24] Ac | 5.95 [−6.06; 22.27] Abc | 12.71 [2.11; 20.13] Ab | 1.31 [−2.41; 6.93] Ab |
Porcelain | Group | Roughness (µm) | Microhardness (Kgf/cm2) | Fracture Toughness (MPa·m1/2) |
---|---|---|---|---|
Ex-3 Noritake | Control | 1.74 (1.44) a | 609.50 (62.07) a | 0.18 (0.41) a |
2.5% | 3.04 (1.30) ab | 497.20 (65.55) b | 0.20 (0.41) a | |
5% | 3.56 (2.01) b | 571.50 (86.04) a | 0.19 (0.65) a | |
IPS Inline | Control | 1.76 (0.72) a | 542.46 (23.96) a | 0.19 (0.03) a |
2.5% | 3.37 (1.35) ab | 503.10 (48.60) b | 1.86 (0.25) b | |
5% | 3.51 (2.09) b | 535.83 (36.93) a | 2.40 (0.49) c |
Specimens Size | Groups | SEM/EDS | CFU/mL and Metabolic Activity | Qualitative Analysis of Biofilm | Ions Release | Roughness Microhardness Fracture Toughness |
---|---|---|---|---|---|---|
8 mm diameter × 2 mm thick | IPS Inline control | n = 2 | n = 10 | n = 2 | n = 3 | n = 10 |
IPS Inline with 2.5% β-AgVO3 | ||||||
IPS Inline with 5% β-AgVO3 Ex-3 Noritake control Ex-3 Noritake with 2.5% β-AgVO3 Ex-3 Noritake with 5% β-AgVO3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal, C.L.; Ferreira, I.; Ferreira, P.S.; Valente, M.L.C.; Teixeira, A.B.V.; Reis, A.C. Incorporation of Hybrid Nanomaterial in Dental Porcelains: Antimicrobial, Chemical, and Mechanical Properties. Antibiotics 2021, 10, 98. https://doi.org/10.3390/antibiotics10020098
Vidal CL, Ferreira I, Ferreira PS, Valente MLC, Teixeira ABV, Reis AC. Incorporation of Hybrid Nanomaterial in Dental Porcelains: Antimicrobial, Chemical, and Mechanical Properties. Antibiotics. 2021; 10(2):98. https://doi.org/10.3390/antibiotics10020098
Chicago/Turabian StyleVidal, Carla L., Izabela Ferreira, Paulo S. Ferreira, Mariana L. C. Valente, Ana B. V. Teixeira, and Andréa C. Reis. 2021. "Incorporation of Hybrid Nanomaterial in Dental Porcelains: Antimicrobial, Chemical, and Mechanical Properties" Antibiotics 10, no. 2: 98. https://doi.org/10.3390/antibiotics10020098
APA StyleVidal, C. L., Ferreira, I., Ferreira, P. S., Valente, M. L. C., Teixeira, A. B. V., & Reis, A. C. (2021). Incorporation of Hybrid Nanomaterial in Dental Porcelains: Antimicrobial, Chemical, and Mechanical Properties. Antibiotics, 10(2), 98. https://doi.org/10.3390/antibiotics10020098