Searching for Small Molecules as Antibacterials: Non-Cytotoxic Diarylureas Analogues of Triclocarban
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antibacterial Studies
2.3. Cytotoxicity Studies
3. Materials and Methods
3.1. Chemistry
3.2. Antibacterial In Vitro Evaluation
3.3. Cell Cultures
3.4. Cell Viability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Halden, R.U.; Paull, D.H. Response to Comment On “Co-Occurrence of Triclocarban and Triclosan in U.S. Water Resources.” . Environ. Sci. Technol. 2005, 39, 6335–6336. [Google Scholar] [CrossRef]
- Halden, R.U.; Lindeman, A.E.; Aiello, A.E.; Andrews, D.; Arnold, W.A.; Fair, P.; Fuoco, R.E.; Geer, L.A.; Johnson, P.I.; Lohmann, R.; et al. The Florence Statement on Triclosan and Triclocarban. Environ. Health Perspect. 2017, 125, 064501. [Google Scholar] [CrossRef]
- Halden, R.U. On the Need and Speed of Regulating Triclosan and Triclocarban in the United States. Environ. Sci. Technol. 2014, 48, 3603–3611. [Google Scholar] [CrossRef] [PubMed]
- Catalano, A.; Iacopetta, D.; Sinicropi, M.S.; Franchini, C. Diarylureas as Antitumor Agents. Appl. Sci. 2021, 11, 374. [Google Scholar] [CrossRef]
- Catalano, A.; Iacopetta, D.; Pellegrino, M.; Aquaro, S.; Franchini, C.; Sinicropi, M. Diarylureas: Repositioning from Antitumor to Antimicrobials or Multi-Target Agents against New Pandemics. Antibiotics 2021, 10, 92. [Google Scholar] [CrossRef]
- Catalano, A. COVID-19: Could Irisin Become the Handyman Myokine of the 21st Century? Coronaviruses 2020, 1, 32–41. [Google Scholar] [CrossRef]
- Rochester, J.R.; Bolden, A.L.; Pelch, K.E.; Kwiatkowski, C.F. Potential Developmental and Reproductive Impacts of Triclocarban: A Scoping Review. J. Toxicol. 2017, 2017, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Musee, N. Environmental risk assessment of triclosan and triclocarban from personal care products in South Africa. Environ. Pollut. 2018, 242, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Taweetanawanit, P.; Ratpukdi, T.; Siripattanakul-Ratpukdi, S. Performance and kinetics of triclocarban removal by entrapped Pseudomonas fluorescens strain MC46. Bioresour. Technol. 2019, 274, 113–119. [Google Scholar] [CrossRef]
- Kor-Bicakci, G.; Abbott, T.; Ubay-Cokgor, E.; Eskicioglu, C. Occurrence and fate of antimicrobial triclocarban and its transformation products in municipal sludge during advanced anaerobic digestion using microwave pretreatment. Sci. Total. Environ. 2020, 705, 135862. [Google Scholar] [CrossRef]
- Silveira, R.S.; Rocha, B.A.; Rodrigues, J.L.; Barbosa, F. Rapid, sensitive and simultaneous determination of 16 endocrine-disrupting chemicals (parabens, benzophenones, bisphenols, and triclocarban) in human urine based on microextraction by packed sorbent combined with liquid chromatography tandem mass spectrometry (MEPS-LC-MS/MS). Chemosphere 2020, 240, 124951. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.-J.; Kannan, K. Phthalates, bisphenols, parabens, and triclocarban in feminine hygiene products from the United States and their implications for human exposure. Environ. Int. 2020, 136, 105465. [Google Scholar] [CrossRef]
- Liang, B.; Yun, H.; Kong, D.; Ding, Y.; Li, X.; Vangnai, A.S.; Wang, A. Bioaugmentation of triclocarban and its dechlorinated congeners contaminated soil with functional degraders and the bacterial community response. Environ. Res. 2020, 180, 108840. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.; Liang, B.; Kong, D.; Li, X.; Wang, A. Fate, risk and removal of triclocarban: A critical review. J. Hazard. Mater. 2020, 387, 121944. [Google Scholar] [CrossRef]
- Food and Drug Administration. Safety and effectiveness of consumer antiseptics: topical antimicrobial drug products for over-the-counter human use. Final rule. Fed. Regist. 2016, 81, 61106–61130. [Google Scholar]
- Brose, D.A.; Kumar, K.; Liao, A.; Hundal, L.S.; Tian, G.; Cox, A.; Zhang, H.; Podczerwinski, E.W. A reduction in triclosan and triclocarban in water resource recovery facilities’ influent, effluent, and biosolids following the U.S. Food and Drug Administration’s 2013 proposed rulemaking on antibacterial products. Water Environ. Res. 2019, 91, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Arifin, S.N.H.; Mohamed, R.; Al-Gheethi, A.; Lai, C.W.; Yashni, G. Heterogeneous photocatalysis of triclocarban and triclosan in greywater: a systematic and bibliometric review analysis. Int. J. Environ. Anal. Chem. 2021, 1–19. [Google Scholar] [CrossRef]
- Pujol, E.; Blanco-Cabra, N.; Julián, E.; Leiva, R.; Torrents, E.; Vázquez, S. Pentafluorosulfanyl-containing Triclocarban Analogs with Potent Antimicrobial Activity. Molecules 2018, 23, 2853. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Hao, S. Novel Trifluoromethylcoumarinyl Urea Derivatives: Synthesis, Characterization, Fluorescence, and Bioactivity. Molecules 2018, 23, 600. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubili-ty and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Catalano, A.; Carocci, A.; Corbo, F.; Franchini, C.; Muraglia, M.; Scilimati, A.; De Bellis, M.; De Luca, A.; Camerino, D.C.; Sinicropi, M.S.; et al. Constrained analogues of tocainide as potent skeletal muscle sodium channel blockers towards the development of antimyotonic agents. Eur. J. Med. Chem. 2008, 43, 2535–2540. [Google Scholar] [CrossRef]
- De Luca, A.; Talon, S.; De Bellis, M.; Desaphy, J.-F.; Franchini, C.; Lentini, G.; Catalano, A.; Corbo, F.; Tortorella, V.; Conte-Camerino, D. Inhibition of skeletal muscle sodium currents by mexiletine analogues: specific hydrophobic interactions rather than lipophilia per se account for drug therapeutic profile. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2003, 367, 318–327. [Google Scholar] [CrossRef]
- Bruno, C.; Carocci, A.; Catalano, A.; Cavalluzzi, M.M.; Corbo, F.; Franchini, C.; Lentini, G.; Tortorella, V. Facile, alternative route to Lubeluzole, its enantiomer, and the racemate. Chirality 2006, 18, 227–231. [Google Scholar] [CrossRef]
- Raimondi, M.V.; Presentato, A.; Petri, G.L.; Buttacavoli, M.; Ribaudo, A.; De Caro, V.; Alduina, R.; Cancemi, P. New Synthetic Nitro-Pyrrolomycins as Promising Antibacterial and Anticancer Agents. Antibiotics 2020, 9, 292. [Google Scholar] [CrossRef]
- Kaymakçioğlu, B.K.; Rollas, S.; Körceğez, E.; Aricioğlu, F.; Kaymakçıoğlu, B.K.; Arıcıoğlu, F. Synthesis and biological evaluation of new N-substituted-N′-(3,5-di/1,3,5-trimethylpyrazole-4-yl)thiourea/urea derivatives. Eur. J. Pharm. Sci. 2005, 26, 97–103. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved [document M7-A9], CLSI; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Pozzi, C.; Ferrari, S.; Cortesi, D.; Luciani, R.; Stroud, R.M.; Catalano, A.; Costi, M.P.; Mangani, S. The structure ofEnterococcus faecalisthymidylate synthase provides clues about folate bacterial metabolism. Acta Crystallogr. Sect. D Biol. Crystallogr. 2012, 68, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Catalano, A.; Luciani, R.; Carocci, A.; Cortesi, D.; Pozzi, C.; Borsari, C.; Ferrari, S.; Mangani, S. X-ray crystal structures of Enterococcus faecalis thymidylate synthase with folate binding site inhibitors. Eur. J. Med. Chem. 2016, 123, 649–664. [Google Scholar] [CrossRef] [Green Version]
- Kao, P.H.N.; Kline, K.A. Dr. Jekyll and Mr. Hide: How Enterococcus faecalis subverts the host immune response to cause infection. J. Mol. Biol. 2019, 431, 2932–2945. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Rhee, M. Microbicidal effects of plain soap vs triclocarban-based antibacterial soap. J. Hosp. Infect. 2016, 94, 276–280. [Google Scholar] [CrossRef]
- Zhu, T.-H.; Xu, X.-P.; Cao, J.-J.; Wei, T.-Q.; Wang, S.-Y.; Ji, S.-J. Cobalt(II)-Catalyzed Isocyanide Insertion Reaction with Amines under Ultrasonic Conditions: A Divergent Synthesis of Ureas, Thioureas and Azaheterocycles. Adv. Synth. Catal. 2014, 356, 509–518. [Google Scholar] [CrossRef]
- Malviya, B.K.; Jaiswal, P.K.; Verma, V.P.; Badsara, S.S.; Sharma, S. Electrochemical Synthesis of Carbodiimides via Metal/Oxidant-Free Oxidative Cross-Coupling of Amines and Isocyanides. Org. Lett. 2020, 22, 2323–2327. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Wang, Y.; Shen, M.; Li, S. Photocatalyzed synthesis of unsymmetrical ureas via the oxidative decarboxylation of oxamic acids with PANI-g-C3N4-TiO2 composite under visible light. Tetrahedron Lett. 2020, 61, 151962. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, N.; Sharma, R.; Bhargava, G.; Mahajan, D. Direct Conversion of Carboxylic Acids to Various Nitrogen-Containing Compounds in the One-Pot Exploiting Curtius Rearrangement. J. Org. Chem. 2019, 84, 11323–11334. [Google Scholar] [CrossRef]
- Mozaffari, M.; Nowrouzi, N. Palladium-Catalyzed Synthesis of Symmetrical and Unsymmetrical Ureas Using Chromium Hexacarbonyl as a Convenient and Safe Alternative Carbonyl Source. Eur. J. Org. Chem. 2019, 46, 7541–7544. [Google Scholar] [CrossRef]
- Kadam, S.A.; Haav, K.; Toom, L.; Haljasorg, T.; Leito, I. NMR Method for Simultaneous Host–Guest Binding Constant Measurement. J. Org. Chem. 2014, 79, 2501–2513. [Google Scholar] [CrossRef]
- Singh, A.S.; Agrahari, A.K.; Singh, S.K.; Yadav, M.S.; Tiwari, V.K. An Improved Synthesis of Urea Derivatives from N-Acylbenzotriazole via Curtius Rearrangement. Synthesis 2019, 51, 3443–3450. [Google Scholar] [CrossRef] [Green Version]
- Inaloo, I.D.; Majnooni, S. A Fe3O4 @SiO2 /Schiff Base/Pd Complex as an Efficient Heterogeneous and Recyclable Nanocatalyst for One-Pot Domino Synthesis of Carbamates and Unsymmetrical Ureas. Eur. J. Org. Chem. 2019, 2019, 6359–6368. [Google Scholar] [CrossRef]
- Khan, K.M.; Saeed, S.; Ali, M.; Gohar, M.; Zahid, J.; Khan, A.; Perveen, S.; Choudhary, M.I. Unsymmetrically disubstituted urea derivatives: A potent class of antiglycating agents. Bioorganic Med. Chem. 2009, 17, 2447–2451. [Google Scholar] [CrossRef]
- Bao, J.; Kuik, D.; Tranmer, G.K. An efficient one-pot synthesis of N, N′-disubstituted phenylureas and N-aryl carbamates using hydroxylamine-O-sulfonic acid. Tetrahedron 2018, 74, 5546–5553. [Google Scholar] [CrossRef]
- Chen, B.; Peng, J.-B.; Ying, J.; Qi, X.; Wu, X.-F. A Palladium-Catalyzed Domino Procedure for the Synthesis of Unsymmetrical Ureas. Adv. Synth. Catal. 2018, 360, 2820–2824. [Google Scholar] [CrossRef]
- Azarifar, D.; Golbaghi, M. Selective and facile oxidative desulfurization of thioureas and thiobarbituric acids with singlet molecular oxygen generated from trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane. J. Sulfur Chem. 2015, 37, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Anderson, M.; Weisman, J.L.; Lu, M.; Choy, C.J.; Boyd, V.A.; Price, J.; Sigal, M.; Clark, J.; Connelly, M.; et al. Evaluation of Diarylureas for Activity Against Plasmodium falciparum. ACS Med. Chem. Lett. 2010, 1, 460–465. [Google Scholar] [CrossRef]
- Yao, H.; Liu, F.; Chen, J.; Li, Y.; Cui, J.; Qiao, C. Antischistosomal activity of N,N′-arylurea analogs against Schistosoma japonicum. Bioorganic Med. Chem. Lett. 2016, 26, 1386–1390. [Google Scholar] [CrossRef]
- Sirignano, E.; Saturnino, C.; Botta, A.; Sinicropi, M.S.; Caruso, A.; Pisano, A.; Lappano, R.; Maggiolini, M.; Longo, P. Synthesis, characterization and cytotoxic activity on breast cancer cells of new half-titanocene derivatives. Bioorganic Med. Chem. Lett. 2013, 23, 3458–3462. [Google Scholar] [CrossRef]
- Iacopetta, D.; Grande, F.; Caruso, A.; Mordocco, R.A.; Plutino, M.R.; Scrivano, L.; Ceramella, J.; Muià, N.; Saturnino, C.; Puoci, F.; et al. New insights for the use of quercetin analogs in cancer treatment. Future Med. Chem. 2017, 9, 2011–2028. [Google Scholar] [CrossRef]
- Iacopetta, D.; Carocci, A.; Sinicropi, M.S.; Catalano, A.; Lentini, G.; Ceramella, J.; Curcio, R.; Caroleo, M.C. Old Drug Scaffold, New Activity: Thalidomide-Correlated Compounds Exert Different Effects on Breast Cancer Cell Growth and Progression. ChemMedChem 2017, 12, 381–389. [Google Scholar] [CrossRef]
- Ceramella, J.; Caruso, A.; Occhiuzzi, M.A.; Iacopetta, D.; Barbarossa, A.; Rizzuti, B.; Dallemagne, P.; Rault, S.; El-Kashef, H.; Saturnino, C.; et al. Benzothienoquinazolinones as new multi-target scaffolds: Dual inhibition of human Topoisomerase I and tubulin polymerization. Eur. J. Med. Chem. 2019, 181, 111583. [Google Scholar] [CrossRef]
- Tundis, R.; Iacopetta, D.; Sinicropi, M.; Bonesi, M.; Leporini, M.; Passalacqua, N.; Ceramella, J.; Menichini, F.; Loizzo, M. Assessment of antioxidant, antitumor and pro-apoptotic effects of Salvia fruticosa Mill. subsp. thomasii (Lacaita) Brullo, Guglielmo, Pavone & Terrasi (Lamiaceae). Food Chem. Toxicol. 2017, 106, 155–164. [Google Scholar] [CrossRef]
Microorganisms (MIC, µg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Gram-Positive | Gram-Negative | ||||||||
COMPD | clogP a | milogP b | S.a. 29213 | S.a. 6538 | S.a. 6538P | E.f. 29212 | E.c. 25922 | P. a. 27853 | K.p. 13883 |
1ab | 4.24 ± 0.30 | 3.46 | >256 | 16 | 16 | 32 | >256 | >256 | >256 |
1bc | 4.77 ± 0.33 | 3.69 | 256 | 16 | 16 | 32 | >256 | >256 | >256 |
1ad | 3.27 ± 0.32 | 3.65 | 128 | 32 | 32 | 128 | >256 | >256 | >256 |
1bd | 3.73 ± 0.32 | 3.06 | >256 | 32 | 16 | 128 | >256 | >256 | >256 |
1be | 5.68 ± 0.36 | 4.29 | 128 | 32 | 128 | 64 | >256 | >256 | >256 |
1af | 3.32 ± 0.29 | 3.59 | 128 | 64 | 128 | 64 | >256 | >256 | >256 |
1ag | 3.78 ± 0.30 | 3.99 | 256 | 128 | 256 | 128 | >256 | >256 | >256 |
1ce (TCC) | 5.75 ± 0.38 | 5.11 | 16 | 128 | 16 | 64 | 256 | 256 | 256 |
1ff (NCC) | 2.86 ± 0.29 | 3.14 | >256 | 128 | 64 | >256 | >256 | >256 | >256 |
1fg | 3.32 ± 0.29 | 3.54 | 256 | 32 | 16 | 64 | >256 | >256 | 256 |
1bf | 3.78 ± 0.30 | 3.01 | >256 | 16 | 16 | 64 | >256 | >256 | >256 |
1df | 2.81 ± 0.31 | 3.20 | 256 | 64 | 128 | 128 | >256 | 256 | >256 |
1gh | 3.83 ± 0.32 | 4.17 | 256 | 32 | 32 | 256 | >256 | >256 | >256 |
1ef | 4.75 ± 0.35 | 4.43 | 256 | 16 | 128 | 128 | >256 | 256 | >256 |
1cf (MCC) | 3.85 ± 0.32 | 3.82 | 128 | 64 | 128 | 64 | >256 | >256 | >256 |
1cc (DCC) | 4.84 ± 0.35 | 4.50 | 256 | 128 | 256 | 128 | >256 | >256 | >256 |
1eg | 5.22 ± 0.35 | 4.83 | 256 | 64 | 128 | 64 | >256 | >256 | >256 |
1gj | 4.16 ± 0.52 | 3.80 | >256 | 64 | 128 | 64 | >256 | >256 | >256 |
1gk | 4.91 ± 0.45 | 4.31 | 256 | 128 | 64 | 64 | - | 256 | 256 |
1gl | 3.28 ± 0.40 | 3.66 | 128 | 64 | 32 | 128 | >256 | >256 | >256 |
1fj | 3.70 ± 0.51 | 3.40 | 256 | 128 | 64 | 128 | - | 256 | 256 |
1ae | 5.22 ± 0.35 | 4.88 | 128 | 64 | 64 | 128 | >256 | >256 | >256 |
1de | 4.70 ± 0.37 | 4.48 | 128 | 64 | 64 | 64 | >256 | >256 | >256 |
NRF | - | - | 0.5–2 | - | - | 2–8 | 0.03–0.12 | 1–4 | 0.5–1 |
Cell Lines | IC50 (μg/mL) | ||
---|---|---|---|
1ab | 1bc | 1ce (TCC) | |
MDA-MB-231 | >200 | >200 | 0.89 ± 0.8 |
MCF-7 | >200 | >200 | 0.64 ± 0.5 |
HeLa | >200 | >200 | 1.01 ± 1.1 |
Ishikawa | >200 | >200 | 1.68 ± 0.9 |
A2058 | >200 | >200 | 0.89 ± 0.7 |
MCF-10A | >200 | >200 | 1.43 ± 0.7 |
Hek-293 | >200 | >200 | 1.60 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catalano, A.; Iacopetta, D.; Rosato, A.; Salvagno, L.; Ceramella, J.; Longo, F.; Sinicropi, M.S.; Franchini, C. Searching for Small Molecules as Antibacterials: Non-Cytotoxic Diarylureas Analogues of Triclocarban. Antibiotics 2021, 10, 204. https://doi.org/10.3390/antibiotics10020204
Catalano A, Iacopetta D, Rosato A, Salvagno L, Ceramella J, Longo F, Sinicropi MS, Franchini C. Searching for Small Molecules as Antibacterials: Non-Cytotoxic Diarylureas Analogues of Triclocarban. Antibiotics. 2021; 10(2):204. https://doi.org/10.3390/antibiotics10020204
Chicago/Turabian StyleCatalano, Alessia, Domenico Iacopetta, Antonio Rosato, Lara Salvagno, Jessica Ceramella, Francesca Longo, Maria Stefania Sinicropi, and Carlo Franchini. 2021. "Searching for Small Molecules as Antibacterials: Non-Cytotoxic Diarylureas Analogues of Triclocarban" Antibiotics 10, no. 2: 204. https://doi.org/10.3390/antibiotics10020204
APA StyleCatalano, A., Iacopetta, D., Rosato, A., Salvagno, L., Ceramella, J., Longo, F., Sinicropi, M. S., & Franchini, C. (2021). Searching for Small Molecules as Antibacterials: Non-Cytotoxic Diarylureas Analogues of Triclocarban. Antibiotics, 10(2), 204. https://doi.org/10.3390/antibiotics10020204