The Glomerular Filtration Rate Estimators in the Pharmacokinetic Modelling in Acute Kidney Injury: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethical Statement
2.3. Drug Analysis
2.4. The Individual PK Models Based on the Single-Dose Intermittent Infusion (SDII) Model
2.5. Statistical Analysis
2.6. Populiation PK Model Development
3. Results
Population PK Model Assessment
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
× 0.993 Age × 1.018 (if female).
Appendix B
Appendix B.1. Supplementary Study in Patients with Endocarditis
Appendix B.2. Methods
Appendix B.3. Results
Appendix B.4. Bibliography
- Fresenius Kabi USA L (per D (2013) Product Information: gentamicin intramuscular injection solution, intravenous injection solution, gentamicin intramuscular injection solution, intravenous injection solution. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/062366s033lbl.pdf (accessed on 25 July 2019).
- Barza, M.; Brown, R.B.; Shen, D.; Gibaldi, M.; Weinstein, L. Predictability of blood levels of gentamicin in man. J. Infect. Dis. 1975, 132, 165–174.
- Kaye, D.; Levison, M.E.; Labovitz, E.D. The unpredictability of serum concentrations of gentamicin: pharmacokinetics of gentamicin in patients with normal and abnormal renal function. J. Infect. Dis. 1974, 130, 150–154.
References
- Eppenga, W.L.; Kramers, C.; Derijks, H.J.; Wensing, M.; Wetzels, J.F.; De Smet, P.A. Drug therapy management in patients with renal impairment: How to use creatinine-based formulas in clinical practice. Eur. J. Clin. Pharmacol. 2016, 72, 1433–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, L.A.; Schmid, C.H.; Greene, T.; Zhang, Y.L.; Beck, G.J.; Froissart, M.; Hamm, L.L.; Lewis, J.B.; Mauer, M.; Navis, G.J.; et al. Comparative Performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study Equations for Estimating GFR Levels Above 60 mL/min/1.73 m2. Am. J. Kidney Dis. 2010, 56, 486–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zitta, S.; Schrabmair, W.; Reibnegger, G.; Meinitzer, A.; Wagner, D.; Estelberger, W.; Rosenkranz, A.R. Glomerular Filtration Rate (GFR) determination via individual kinetics of the inulin-like polyfructosan sinistrin versus creatinine-based population-derived regression formulae. BMC Nephrol. 2013, 14, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Stevens, L.A.; Padala, S.; Levey, A.S. Advances in glomerular filtration rate-estimating equations. Curr. Opin. Nephrol. Hypertens. 2010, 19, 298–307. [Google Scholar] [CrossRef]
- Shafi, T.; Matsushita, K.; Selvin, E.; Sang, Y.; Astor, B.C.; Inker, L.A.; Coresh, J. Comparing the association of GFR estimated by the CKD-EPI and MDRD study equations and mortality: The third national health and nutrition examination survey (NHANES III). BMC Nephrol. 2012, 13, 42. [Google Scholar] [CrossRef] [Green Version]
- de Geus, H.R.; Fortrie, G.; Betjes, M.G.; van Schaik, R.H.; Groeneveld, A.J. Time of injury affects urinary biomarker predictive values for acute kidney injury in critically ill, non-septic patients. BMC Nephrol. 2013, 14, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jelliffe, R. Estimation of Creatinine Clearance in Patients with Unstable Renal Function, without a Urine Specimen. Am. J. Nephrol. 2002, 22, 320–324. [Google Scholar] [CrossRef]
- Yashiro, M.; Ochiai, M.; Fujisawa, N.; Kadoya, Y.; Kamata, T. Evaluation of estimated creatinine clearance before steady state in acute kidney injury by creatinine kinetics. Clin. Exp. Nephrol. 2012, 16, 570–579. [Google Scholar] [CrossRef]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P. Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care (Lond. Engl.) 2004, 8, 1–9. [Google Scholar]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A. Acute kidney injury network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, 1–8. Available online: https://doi.org/10.1186/cc5713 (accessed on 12 October 2018). [CrossRef] [PubMed] [Green Version]
- Khwaja, A. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Xiong, J.; Tang, X.; Hu, Z.; Nie, L.; Wang, Y.; Zhao, J. The RIFLE versus AKIN classification for incidence and mortality of acute kidney injury in critical ill patients: A meta-analysis. Sci. Rep. 2015, 5, 17917. [Google Scholar] [CrossRef] [Green Version]
- Rahn, K.H.; Heidenreich, S.; Brückner, D. How to assess glomerular function and damage in humans. J. Hypertens. 1999, 17, 309–317. [Google Scholar] [CrossRef]
- Stevens, L.A.; Levey, A.S. Measured GFR as a Confirmatory Test for Estimated GFR. J. Am. Soc. Nephrol. 2009, 20, 2305–2313. [Google Scholar] [CrossRef] [Green Version]
- Bragadottir, G.; Redfors, B.; Ricksten, S.-E. Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury--true GFR versus urinary creatinine clearance and estimating equations. Crit. Care 2013, 17, R108. [Google Scholar] [CrossRef] [Green Version]
- Rule, A.D.; Bergstralh, E.J.; Slezak, J.M.; Bergert, J.; Larson, T.S. Glomerular filtration rate estimated by cystatin C among different clinical presentations. Kidney Int. 2006, 69, 399–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsh, J.; Seth, M.; Aronow, H.; Dixon, S.; Heung, M.; Mehran, R.; Gurm, H.S. Choice of Estimated Glomerular Filtration Rate Equation Impacts Drug-Dosing Recommendations and Risk Stratification in Patients with Chronic Kidney Disease Undergoing Percutaneous Coronary Interventions. J. Am. Coll. Cardiol. 2015, 65, 2714–2723. [Google Scholar] [CrossRef] [Green Version]
- Molitoris, B.A. Measuring glomerular filtration rate in the intensive care unit: No substitutes please. Crit. Care 2013, 17, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, F.; Schröppel, B.; Ludwig, U. Pharmacokinetic and pharmacodynamic considerations of antimicrobial drug therapy in cancer patients with kidney dysfunction. World J. Nephrol. 2015, 4, 330. [Google Scholar] [CrossRef]
- Udy, A.A.; Roberts, J.A.; Lipman, J.; Blot, S. The effects of major burn related pathophysiological changes on the pharmacokinetics and pharmacodynamics of drug use: An appraisal utilizing antibiotics. Adv. Drug Deliv. Rev. 2018, 123, 65–74. [Google Scholar] [CrossRef]
- Jelliffe, R.W.; Jelliffe, S.M. A computer program for estimation of creatinine clearance from unstable serum creatinine levels, age, sex, and weight. Math. Biosc.i 1972, 14, 17–24. [Google Scholar] [CrossRef]
- Bouchard, J.; Macedo, E.; Soroko, S.; Chertow, G.M.; Himmelfarb, J.; Ikizler, T.A.; Paganini, E.P.; Mehta, R.L. Comparison of methods for estimating glomerular filtration rate in critically ill patients with acute kidney injury. Nephrol. Dial. Transplant. 2010, 25, 102–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pianta, T.J.; Endre, Z.H.; Pickering, J.W.; Buckley, N.A.; Peake, P.W. Kinetic Estimation of GFR Improves Prediction of Dialysis and Recovery after Kidney Transplantation. PLoS ONE 2015, 10, e0125669. [Google Scholar] [CrossRef]
- Chen, S. Retooling the Creatinine Clearance Equation to Estimate Kinetic GFR when the Plasma Creatinine Is Changing Acutely. J. Am. Soc. Nephrol. 2013, 24, 877–888. [Google Scholar] [CrossRef] [Green Version]
- Marsot, A.; Boulamery, A.; Bruguerolle, B.; Simon, N. Vancomycin. Clin. Pharmacokinet. 2012, 51, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Declaration of Helsinki. World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- LeGatt, D.F.; Blakney, G.B.; Higgins, T.N.; Schnabl, K.L.; Shalapay, C.E.; Dias, V.C.; Wesenberg, J.C. The Effect of Paraproteins and Rheumatoid Factor on Four Commercial Immunoassays for Vancomycin. Ther. Drug Monit. 2012, 34, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Vancomycin. In Applied Clinical Pharmacokinetics; Bauer, L.A. (Ed.) McGraw-Hill: New York, NY, USA, 2015; Available online: http://accesspharmacy.mhmedical.com/content.aspx?bookid=1374§ionid=74719961 (accessed on 18 May 2018).
- Troncoso Skidmore, S.; Thompson, B. Bias and precision of some classical ANOVA effect sizes when assumptions are violated. Behav. Res. Methods 2013, 45, 536–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konishi, H.; Sumi, M.; Minouchi, T.; Yamaji, A.; Sumi, M.; Shibata, N.; Takada, K. Influence of intravenous methylprednisolone pulse treatment on the disposition of ciclosporin and hepatic CYP3A activity in rats. J. Pharm. Pharmacol. 2004, 56, 477–483. [Google Scholar] [CrossRef]
- Lin, W.W.; Wu, W.; Jiao, Z.; Lin, R.F.; Jiang, C.Z.; Huang, P.F.; Liu, Y.W.; Wang, C.L. Population pharmacokinetics of vancomycin in adult Chinese patients with post-craniotomy meningitis and its application in individualised dosage regimens. Eur. J. Clin. Pharmacol. 2016, 72, 29–37. [Google Scholar] [CrossRef]
- Aljutayli, A.; Marsot, A.; Nekka, F. An Update on Population Pharmacokinetic Analyses of Vancomycin, Part I: In Adults. Clin. Pharmacokinet. 2020, 59, 671–698. [Google Scholar] [CrossRef]
- Owen, J.S.; Fiedler-Kelly, J. Introduction to Population Pharmacokinetic/Pharmacodynamic Analysis with Nonlinear Mixed Effects Models; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Buelga, D.S.; de Gatta, M.D.; Herrera, E.V.; Dominguez-Gil, A.; García, M.J. Population pharmacokinetic analysis of vancomycin in patients with hematological malignancies. Antimicrob. Agents Chemother. 2005, 49, 4934–4941. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.; Inker, L. Assessment of Glomerular Filtration Rate in Health and Disease: A State of the Art Review. Clin. Pharmacol. Ther. 2017, 102, 405–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, S.; Cruz, D.N.; Finkelstein, F.O. Understanding acute kidney injury in low resource settings: A step forward. BMC Nephrol. 2015, 16, 5. [Google Scholar] [CrossRef]
- De Velde, F.; Mouton, J.W.; de Winter, B.C.; van Gelder, T.; Koch, B.C. Clinical applications of population pharmacokinetic models of antibiotics: Challenges and perspectives. Pharmacol. Res. 2018, 134, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Brändström, E.; Grzegorczyk, A.; Jacobsson, L.; Friberg, P.; Lindahl, A.; Aurell, M. GFR measurement with iohexol and 51Cr-EDTA. A comparison of the two favoured GFR markers in Europe. Nephrol. Dial. Transplant. 1998, 13, 1176–1182. [Google Scholar] [CrossRef]
- Lum, G.; Gambino, S.R. A Comparison of Serum versus Heparinized Plasma for Routine Chemistry Tests. Am. J. Clin. Pathol. 1974, 61, 108–113. [Google Scholar] [CrossRef]
- Drug Dosing in Special Populations: Renal and Hepatic Disease, Dialysis, Heart Failure, Obesity, and Drug Interactions|Applied Clinical Pharmacokinetics, 3e|AccessPharmacy|McGraw-Hill Medical. Available online: https://accesspharmacy.mhmedical.com/content.aspx?bookid=1374§ionid=74719619 (accessed on 18 September 2018).
- Levey, A.S.; Coresh, J.; Greene, T.; Marsh, J.; Stevens, L.A.; Kusek, J.W.; Van Lente, F. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin. Chem. 2007, 53, 766–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, I.I.I.A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Macias, W.L.; Mueller, B.A.; Scarim, S.K. Vancomycin pharmacokinetics in acute renal failure: Preservation of nonrenal clearance. Clin. Pharmacol. Ther. 1991, 50, 688–694. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean (SD) |
---|---|
Age in years | 62.19 (15.61) |
Height in cm | 172.76 (9.10) |
Weight in kg | 87.65 (25.91) |
Creatinine level in µmol/L | 263.91 (204.73) |
CG | 41.77 (27.19) |
MDRD | 30.35 (22.27) |
CKDEPI | 30.48 (21.84) |
CKEGFR | 29.34 (19.92) |
YKEGFR | 25.42 (16.63) |
JJGFR | 44.36 (30.71) |
Variable | N | Mean | Std Dev | Median |
---|---|---|---|---|
MC | 34 | 9.31 | 4.17 | 8.65 |
C (CG) | 34 | 17.17 | 10.74 | 13.47 |
C (MDRD) | 34 | 22.12 | 13.35 | 20.02 |
C (CKD-EPI) | 34 | 22.08 | 13.19 | 20.24 |
C (CKEGFR) | 34 | 24.07 | 15.30 | 19.67 |
C (YKEGFR) | 34 | 24.39 | 13.27 | 23.68 |
C (JJGFR) | 34 | 16.23 | 9.66 | 14.77 |
MC | C (CG) | C (MDRD) | C (CKD-EPI) | C(KEGFR) | C(YKEGFR) | C (JJGFR) | |
---|---|---|---|---|---|---|---|
MC | 1.00 | −0.20 | −0.38 | −0.35 | −0.29 | −0.34 | −0.20 |
0.25 | 0.03 | 0.04 | 0.09 | 0.05 | 0.26 | ||
C (CG) | 1.00 | 0.92 | 0.94 | 0.88 | 0.91 | 0.96 | |
sig. | sig. | sig. | sig. | sig. | |||
C (MDRD) | 1.00 | 0.99 | 0.91 | 0.96 | 0.88 | ||
sig. | sig. | sig. | sig. | ||||
C (CKDEPI) | 1.00 | 0.91 | 0.96 | 0.90 | |||
sig. | sig. | sig. | |||||
C(KEGFR) | 1.00 | 0.85 | 0.83 | ||||
sig. | sig. | ||||||
C(YKEGFR) | 1.00 | 0.93 | |||||
sig. | |||||||
C (JJGFR) | 1.00 | ||||||
0.94 |
Population Model | Negative Log Likelihood | −2 Log Likelihood | AIC | Pop. Clearance (L/min) | SE | p | Pop. Volume of Distribution (L) | SE | p |
---|---|---|---|---|---|---|---|---|---|
Base model | 128.94 | 257.9 | 267.9 | 0.007 | 0.002 | 0.001 | 32.81 | 32.81 | 0.706 |
Model with CG | 125.55 | 251.1 | 263.1 | 0.004 | 0.002 | 0.021 | 17.29 | 7.24 | 0.024 |
Model with MDRD | 126.58 | 253.2 | 265.2 | 0.007 | 0.003 | 0.007 | 22.62 | 9.26 | 0.021 |
Model with CKDEPI | 126.60 | 253.2 | 265.2 | 0.007 | 0.003 | 0.009 | 22.66 | 9.36 | 0.022 |
Model with CKEGFR | 126.57 | 253.1 | 265.1 | 0.007 | 0.002 | 0.005 | 22.55 | 9.27 | 0.022 |
Model with YKEGFR | 126.48 | 253.0 | 265.0 | 0.008 | 0.003 | 0.009 | 22.16 | 8.86 | 0.018 |
Model with JJGFR | 126.38 | 252.8 | 264.8 | 0.005 | 0.003 | 0.075 | 19.25 | 9.55 | 0.054 |
Model with 2 random effects based on CG | 140.98 | 282.0 | 298.0 | 0.091 | <0.001 | 0.001 | 7.91 | 0.002 | <0.001 |
Pop PK Models | MC Mean (SD) | PC Mean (SD) | Pearson’s Correlation r | p |
---|---|---|---|---|
Base model | 13.64 (6.38) | 13.13 (3.94) | −0.15 | 0.336 |
Model with CG | 13.64 (6.38) | 13.14 (4.65) | 0.63 | <0.001 |
Model with MDRD | 13.64 (6.38) | 13.20 (4.13) | 0.15 | 0.342 |
Model with CKDEPI | 13.64 (6.38) | 13.23 (4.09) | 0.15 | 0.345 |
Model with CKEGFR | 13.64 (6.38) | 13.21 (4.13) | 0.16 | 0.339 |
Model with YKEGFR | 13.64 (6.38) | 13.16 (4.25) | 0.15 | 0.342 |
Model with JJGFR | 13.64 (6.38) | 13.14 (4.65) | 0.55 | <0.001 |
Model with 2 random effects and CG | 13.64 (6.38) | 14.07 (11.69) | −0.17 | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramavicius, S.; Galaune, V.; Tunaityte, A.; Vitkauskiene, A.; Gumbrevicius, G.; Radzeviciene, A.; Maciulaitis, R. The Glomerular Filtration Rate Estimators in the Pharmacokinetic Modelling in Acute Kidney Injury: An Observational Study. Antibiotics 2021, 10, 158. https://doi.org/10.3390/antibiotics10020158
Abramavicius S, Galaune V, Tunaityte A, Vitkauskiene A, Gumbrevicius G, Radzeviciene A, Maciulaitis R. The Glomerular Filtration Rate Estimators in the Pharmacokinetic Modelling in Acute Kidney Injury: An Observational Study. Antibiotics. 2021; 10(2):158. https://doi.org/10.3390/antibiotics10020158
Chicago/Turabian StyleAbramavicius, Silvijus, Vaidotas Galaune, Agile Tunaityte, Astra Vitkauskiene, Gintautas Gumbrevicius, Aurelija Radzeviciene, and Romaldas Maciulaitis. 2021. "The Glomerular Filtration Rate Estimators in the Pharmacokinetic Modelling in Acute Kidney Injury: An Observational Study" Antibiotics 10, no. 2: 158. https://doi.org/10.3390/antibiotics10020158
APA StyleAbramavicius, S., Galaune, V., Tunaityte, A., Vitkauskiene, A., Gumbrevicius, G., Radzeviciene, A., & Maciulaitis, R. (2021). The Glomerular Filtration Rate Estimators in the Pharmacokinetic Modelling in Acute Kidney Injury: An Observational Study. Antibiotics, 10(2), 158. https://doi.org/10.3390/antibiotics10020158