Real Life Clinical Impact of Antimicrobial Stewardship Actions on the Blood Culture Workflow from a Microbiology Laboratory
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goff, D.A.; Jankowski, C.; Tenover, F.C. Using rapid diagnostic tests to optimize antimicrobial selection in antimicrobial stewardship programs. Pharmacotherapy 2012, 32, 677–687. [Google Scholar] [CrossRef]
- Cantón, R.; de la Pedrosa, E.G.G. Economic impact of rapid diagnostic methods in Clinical Microbiology: Price of the test or overall clinical impact. Enferm. Infecc. Microbiol. Clin. 2017, 35, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, S.; Abbott, A.; Campeau, S.; Zimmer, B.L.; Weinstein, M.; Thrupp, L.; Hejna, J.; Walker, L.; Ammann, T.; Kirn, T.; et al. Direct-from-blood-culture disk diffusion to determine antimicrobial susceptibility of gram-negative bacteria: Preliminary report from the clinical and Laboratory Standards Institute Methods Development and Standardization Working Group. J. Clin. Microbiol. 2018, 56, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Åkerlund, A.; Jonasson, E.; Matuschek, E.; Serrander, L.; Sundqvist, M.; Kahlmeter, G.; Dzajic, E.; Hansen, D.S.; Agergaard, C.N.; Pätäri-Sampo, A.; et al. EUCAST rapid antimicrobial susceptibility testing (RAST) in blood cultures: Validation in 55 european laboratories. J. Antimicrob. Chemother. 2020, 75, 3230–3238. [Google Scholar] [CrossRef] [PubMed]
- Descours, G.; Desmurs, L.; Hoang, T.L.T.; Ibranosyan, M.; Baume, M.; Ranc, A.G.; Fuhrmann, C.; Dauwalder, O.; Salka, W.; Vandenesch, F. Evaluation of the Accelerate PhenoTM system for rapid identification and antimicrobial susceptibility testing of Gram-negative bacteria in bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1573–1583. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, T.S.; Jung, H.G.; Kang, C.K.; Jun, K.I.; Han, S.; Kim, D.Y.; Kwon, S.; Song, K.H.; Choe, P.G.; et al. Prospective evaluation of a rapid antimicrobial susceptibility test (QMAC-dRAST) for selecting optimal targeted antibiotics in positive blood culture. J. Antimicrob. Chemother. 2019, 74, 2255–2260. [Google Scholar] [CrossRef]
- Korber, F.; Zeller, I.; Grünstäudl, M.; Willinger, B.; Apfalter, P.; Hirschl, A.M.; Makristathis, A. SeptiFast versus blood culture in clinical routine—A report on 3 years experience. Wien. Klin. Wochenschr. 2017, 129, 427–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa-de-Oliveira, S.; Teixeira-Santos, R.; Silva, A.P.; Pinho, E.; Mergulhão, P.; Silva-Dias, A.; Marques, N.; Martins-Oliveira, I.; Rodrigues, A.G.; Paiva, J.A.; et al. Potential impact of flow cytometry antimicrobial susceptibility testing on the clinical management of gram-negative bacteremia using the FASTinov® kit. Front. Microbiol. 2017, 8, 2445. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.H.; Tzeng, Y.L.; Dickson, R.M. FAST: Rapid determinations of antibiotic susceptibility phenotypes using label-free cytometry. Cytom. Part A 2018, 93, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Silva-Dias, A.; Pérez-Viso, B.; Martins-Oliveira, I.; Gomes, R.; Rodrigues, A.G.; Cantón, R.; Pina-Vaz, C. Evaluation of FASTinov Ultrarapid Flow Cytometry Antimicrobial Susceptibility Testing Directly from Positive Blood Cultures. J. Clin. Microbiol. 2021, 59, e0054421. [Google Scholar] [CrossRef] [PubMed]
- Novais, Â.; Freitas, A.R.; Rodrigues, C.; Peixe, L. Fourier transform infrared spectroscopy: Unlocking fundamentals and prospects for bacterial strain typing. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 427–448. [Google Scholar] [CrossRef]
- Kragh, K.N.; Gijón, D.; Maruri, A.; Antonelli, A.; Coppi, M.; Kolpen, M.; Crone, S.; Tellapragada, C.; Hasan, B.; Radmer, S.; et al. Effective antimicrobial combination in vivo treatment predicted with microcalorimetry screening. J. Antimicrob. Chemother. 2021, 76, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Caen, O.; Vrignon, J.; Zonta, E.; El Harrak, Z.; Nizard, P.; Baret, J.C.; Taly, V. High throughput single cell counting in droplet-based microfluidics. Sci. Rep. 2017, 7, 1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, E.H.; Sherman, G.; Ward, S.; Fraser, V.J.; Kollef, M.H. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000, 118, 146–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerremans, J.J.; Verboom, P.; Stijnen, T.; Hakkaart-van Roijen, L.; Goessens, W.; Verbrugh, H.A.; Vos, M.C. Rapid identification and antimicrobial susceptibility testing reduce antibiotic use and accelerate pathogen-directed antibiotic use. J. Antimicrob. Chemother. 2008, 61, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- British Society for Antimicrobial Chemotherapy. Antimicrobial Stewardship: From Principles to Practice; British Society for Antimicrobial Chemotherapy: Birmingham, UK, 2018. [Google Scholar]
- López-Pintor, J.M.; Francisco, C.N.-S.; Sánchez-López, J.; García-Caballero, A.; de Bobadilla, E.L.F.; Morosini, M.I.; Cantón, R. Direct antimicrobial susceptibility testing from the blood culture pellet obtained for MALDI-TOF identification of Enterobacterales and Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Seddon, M.M.; Bookstaver, P.B.; Justo, J.A.; Kohn, J.; Rac, H.; Haggard, E.; Mediwala, K.N.; Dash, S.; Al-Hasan, M.N. Role of Early De-escalation of Antimicrobial Therapy on Risk of Clostridioides difficile Infection following Enterobacteriaceae Bloodstream Infections. Clin. Infect. Dis. 2018, 69, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Owens, R.C.; Ambrose, P.G. Antimicrobial stewardship and the role of pharmacokinetics–pharmacodynamics in the modern antibiotic era. Diagn. Microbiol. Infect. Dis. 2007, 57, S77–S83. [Google Scholar] [CrossRef] [PubMed]
- Retamar, P.; Portillo, M.M.; López-Prieto, M.D.; Rodríguez-López, F.; De Cueto, M.; García, M.V.; Gómez, M.J.; Del Arco, A.; Muñoz, A.; Sánchez-Porto, A.; et al. Impact of inadequate empirical therapy on the mortality of patients with bloodstream infections: A propensity score-based analysis. Antimicrob. Agents Chemother. 2012, 56, 472–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pouwels, K.B.; Van Kleef, E.; Vansteelandt, S.; Batra, R.; Edgeworth, J.D.; Smieszek, T.; Robotham, J.V. Does appropriate empiric antibiotic therapy modify intensive care unit-acquired Enterobacteriaceae bacteraemia mortality and discharge? J. Hosp. Infect. 2017, 96, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Battle, S.E.; Brandon Bookstaver, P.; Justo, J.A.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Association between inappropriate empirical antimicrobial therapy and hospital length of stay in Gram-negative bloodstream infections: Stratification by prognosis. J. Antimicrob. Chemother. 2017, 72, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Montero, J.; Gutiérrez-Pizarraya, A.; Escoresca-Ortega, A.; Corcia-Palomo, Y.; Fernández-Delgado, E.; Herrera-Melero, I.; Ortiz-Leyba, C.; Márquez-Vácaro, J.A. De-Escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensiv. Care Med. 2014, 40, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Ramasco, F.; Figuerola, A.; Mendez, R.; Rodríguez Serrano, D.; von Wernitz, A.; Hernández-Aceituno, A.; Sáez, C.; Cardeñoso, L.; Martin, E.; García-Vázquez, N.; et al. Initial clinical outcomes and prognostic variables in the implementation of a Code Sepsis in a high complexity University Hospital. Rev. Esp. Quimioter. 2019, 32, 238–245. [Google Scholar] [PubMed]
- Rules, E. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 9.0 ed; The European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2019; Available online: http://www.eucast.org (accessed on 1 December 2021).
- Wang, H.; Wang, H.; Yu, X.; Zhou, H.; Li, B.; Chen, G.; Ye, Z.; Wang, Y.; Cui, X.; Zheng, Y.; et al. Impact of antimicrobial stewardship managed by clinical pharmacists on antibiotic use and drug resistance in a Chinese hospital, 2010–2016: A retrospective observational study. BMJ Open 2019, 9, e026072. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Control Group (n = 125) | Intervention Group (n = 188) | p | |
---|---|---|---|---|
Comorbidities | Median Age | 69.8 (66.5–73.1) | 72.7 (70.2–75.1) | 0.906 |
Gender male | 65 (52.0%) | 109 (58.0%) | 0.324 | |
Diabetes mellitus | 31 (24.8%) | 42 (22.3%) | 0.645 | |
Chronic renal insufficiency | 29 (23.4%) | 58 (30.8%) | 0.153 | |
Chronic pulmonary disease | 20 (16.0%) | 40 (21.3%) | 0.258 | |
Heart failure and cardiovascular diseases | 80 (64.0%) | 124 (66.0%) | 0.720 | |
Immunosuppression | 24 (19.2%) | 28 (14.9%) | 0.324 | |
Neoplasia | 44 (35.2%) | 73 (38.8%) | 0.524 | |
Neutropenia | 7 (5.6%) | 10 (5.3%) | 0.919 | |
Organ transplant | 7 (5.6%) | 4 (2.1%) | 0.104 | |
Suspected source of bacteraemia | Urinary | 74 (59.2%) | 102 (54.3%) | 0.393 |
Abdominal | 33 (26.4%) | 45 (23.9%) | 0.623 | |
Respiratory | 10 (8.0%) | 20 (10.6%) | 0.447 | |
Catheter | 4 (3.2%) | 11 (5.9%) | 0.420 | |
Skin and soft tissue | 3 (2.4%) | 7 (3.7%) | 0.755 | |
Other | 1 (0.8%) | 3 (1.6%) | 0.923 | |
Microorganisms isolated | E. coli | 87 (69.6%) | 107 (56.9%) | 0.023 |
ESBL E. coli | 10 (8.0%) | 14 (7.5%) | 0.866 | |
K. pneumoniae | 18 (14.4%) | 25 (13.3%) | 0.785 | |
ESBL K. pneumoniae | 0 (0%) | 4 (2.1%) | 0.262 | |
P. aeruginosa | 2 (1.6%) | 4 (2.1%) | 0.936 | |
Others | 8 (6.4%) | 34 (18.1%) | 0.003 |
Global | Control Group | n | Intervention Group | n | p |
---|---|---|---|---|---|
General | 2.00 [2.00–3.00] | 125 | 1.00 [1.00–2.00] | 188 | <0.001 |
Category 1 | 4.00 [4.00–4.00] | 1 | 2.00 [1.00–3.00] | 12 | 0.166 |
Category 2 | 2.00 [2.00–2.00] | 79 | 1.00 [1.00–1.00] | 120 | <0.001 |
Category 3 | 3.50 [3.00–4.00] | 2 | 1.50 [1.00–2.00] | 10 | 0.092 |
Category 4 | 4.00 [3.00–5.00] | 36 | 2.50 [2.00–3.00] | 34 | <0.001 |
Category 5 | 2.00 [2.00–3.00] | 7 | 1.50 [1.00–3.00] | 12 | 0.329 |
Medical ward | 2.00 [2.00–3.00] | 84 | 1.00 [1.00–2.00] | 121 | <0.001 |
Category 1 | -- | 0 | 1.50 [1.00–3.00] | 6 | -- |
Category 2 | 2.00 [2.00–2.00] | 51 | 1.00 [1.00–1.00] | 78 | <0.001 |
Category 3 | 3.50 [3.00–4.00] | 2 | 2.00 [1.00–2.00] | 5 | 0.073 |
Category 4 | 3.00 [3.00–5.00] | 26 | 3.00 [2.00–3.00] | 23 | 0.015 |
Category 5 | 2.00 [2.00–3.00] | 5 | 2.00 [1.00–3.00] | 9 | 0.445 |
Surgical ward | 2.00 [2.00–2.00] | 18 | 1.00 [1.00–2.00] | 38 | <0.001 |
Category 1 | -- | 0 | 2.00 [2.00–8.00] | 3 | -- |
Category 2 | 2.00 [2.00–2.00] | 12 | 1.00 [1.00–1.00] | 23 | <0.001 |
Category 3 | -- | 0 | 5.00 [2.00–8.00] | 2 | -- |
Category 4 | 4.00 [3.00–4.00] | 5 | 2.00 [1.50–3.50] | 8 | 0.05 |
Category 5 | 2.00 [2.00–2.00] | 1 | 2.00 [1.00–3.00] | 2 | 1 |
Infectious diseases | 2.50 [2.00–3.00] | 14 | 1.00 [1.00–1.00] | 17 | <0.001 |
Category 1 | 4.00 [4.00–4.00] | 1 | 2.00 [1.00–3.00] | 2 | 0.221 |
Category 2 | 2.00 [2.00–3.00] | 11 | 1.00 [1.00–1.00] | 14 | <0.001 |
Category 3 | -- | 0 | -- | 0 | -- |
Category 4 | 5.50 [4.00–7.00] | 2 | -- | 0 | -- |
Category 5 | -- | 0 | 1.00 [1.00–1.00] | 1 | -- |
ICU | 2.00 [2.00–3.00] | 9 | 1.00 [1.00–1.50] | 12 | 0.101 |
Category 1 | -- | 0 | 2.00 [2.00–2.00] | 1 | -- |
Category 2 | 2.00 [2.00–2.00] | 5 | 1.00 [1.00–1.00] | 5 | <0.001 |
Category 3 | -- | 0 | 1.00 [1.00–1.00] | 3 | -- |
Category 4 | 4.00 [3.00–5.00] | 3 | 1.00 [1.00–5.00] | 3 | -- |
Category 5 | 2.00 [2.00–2.00] | 1 | -- | 0 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Pintor, J.M.; Sánchez-López, J.; Navarro-San Francisco, C.; Sánchez-Díaz, A.M.; Loza, E.; Cantón, R. Real Life Clinical Impact of Antimicrobial Stewardship Actions on the Blood Culture Workflow from a Microbiology Laboratory. Antibiotics 2021, 10, 1511. https://doi.org/10.3390/antibiotics10121511
López-Pintor JM, Sánchez-López J, Navarro-San Francisco C, Sánchez-Díaz AM, Loza E, Cantón R. Real Life Clinical Impact of Antimicrobial Stewardship Actions on the Blood Culture Workflow from a Microbiology Laboratory. Antibiotics. 2021; 10(12):1511. https://doi.org/10.3390/antibiotics10121511
Chicago/Turabian StyleLópez-Pintor, Jose Maria, Javier Sánchez-López, Carolina Navarro-San Francisco, Ana Maria Sánchez-Díaz, Elena Loza, and Rafael Cantón. 2021. "Real Life Clinical Impact of Antimicrobial Stewardship Actions on the Blood Culture Workflow from a Microbiology Laboratory" Antibiotics 10, no. 12: 1511. https://doi.org/10.3390/antibiotics10121511
APA StyleLópez-Pintor, J. M., Sánchez-López, J., Navarro-San Francisco, C., Sánchez-Díaz, A. M., Loza, E., & Cantón, R. (2021). Real Life Clinical Impact of Antimicrobial Stewardship Actions on the Blood Culture Workflow from a Microbiology Laboratory. Antibiotics, 10(12), 1511. https://doi.org/10.3390/antibiotics10121511