Global Spread and Molecular Characterization of CTX-M-Producing Salmonella Typhimurium Isolates
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Blactx-M-Producing S. Typhimurium Identified from the Genome Database
2.2. Molecular Characterization of Blactx-M-Producing S. Typhimurium
2.3. Plasmid Analysis
2.4. Other ARGs
2.5. Virulence Factor
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
MLST | Multilocus sequence types |
WGS | Whole genome sequencing |
Inc | Incompatible |
ARGs | Antibiotic resistance genes |
WHO | World Health Organization |
ESBL | Extended-spectrum β-lactamase |
SPI | Salmonella pathogenicity island |
TTSS | Type III secretion system |
NCBI | National Center for Biotechnology Information |
References
- Xu, Z.; Wang, M.; Wang, C.; Zhou, C.; Liang, J.; Gu, G.; Wei, P. The emergence of extended-spectrum beta-lactamase (ESBL)-producing Salmonella London isolates from human patients, retail meats and chickens in southern China and the evaluation of the potential risk factors of Salmonella London. Food Control 2021, 128, 108187. [Google Scholar] [CrossRef]
- Mastrorilli, E.; Petrin, S.; Orsini, M.; Longo, A.; Cozza, D.; Luzzi, I.; Ricci, A.; Barco, L.; LoSasso, C. Comparative genomic analysis reveals high intra-serovar plasticity within Salmonella Napoli isolated in 2005–2017. BMC Genom. 2020, 21, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohl, M.E.; Miller, S.I. Salmonella: A Model for Bacterial Pathogenesis. Annu. Rev. Med. 2001, 52, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Haselbeck, A.H.; Panzner, U.; Im, J.; Baker, S.; Meyer, C.G.; Marks, F. Current perspectives on invasive nontyphoidal Salmonella disease. Curr. Opin. Infect. Dis. 2017, 30, 498–503. [Google Scholar] [CrossRef]
- Galán, J.E. Salmonella Typhimurium and inflammation: A pathogen-centric affair. Nat. Rev. Genet. 2021, 19, 716–725. [Google Scholar] [CrossRef]
- McCollister, B.; Kotter, C.V.; Frank, D.N.; Washburn, T.; Jobling, M.G. Whole-Genome Sequencing Identifies In Vivo Acquisition of a bla CTX-M-27 -Carrying IncFII Transmissible Plasmid as the Cause of Ceftriaxone Treatment Failure for an Invasive Salmonella enterica Serovar Typhimurium Infection. Antimicrob. Agents Chemother. 2016, 60, 7224–7235. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.-H.; Lin, X.-Y.; Xu, L.; Gu, X.-X.; Yang, L.; Li, W.; Ren, S.-Q.; Liu, Y.-H.; Zeng, Z.-L.; Jiang, H.-X. CTX-M-27 Producing Salmonella enterica Serotypes Typhimurium and Indiana Are Prevalent among Food-Producing Animals in China. Front. Microbiol. 2016, 7, 436. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Zhao, J.; Gan, X.; Wang, J.; Zhang, X.; Cui, S.; Xia, S.; Hu, Y.; Yan, S.; Wang, J.; et al. Emergence and Diversity of Salmonella enterica Serovar Indiana Isolates with Concurrent Resistance to Ciprofloxacin and Cefotaxime from Patients and Food-Producing Animals in China. Antimicrob. Agents Chemother. 2016, 60, 3365–3371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, S.A.; Paterson, D.L.; Ghilardi-Rodrigues, Â.C.; Adams-Haduch, J.M.; Tavechio, A.T.; Doi, Y. CTX-M-2–Producing Salmonella Typhimurium Isolated from Pediatric Patients and Poultry in Brazil. Microb. Drug Resist. 2009, 15, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Kozyreva, V.K.; Ilina, E.; Malakhova, M.V.; Carattoli, A.; Azizov, I.; Tapalski, D.; Kozlov, R.S.; Edelstein, M.V. Long-Term Dissemination of CTX-M-5-Producing Hypermutable Salmonella enterica Serovar Typhimurium Sequence Type 328 Strains in Russia, Belarus, and Kazakhstan. Antimicrob. Agents Chemother. 2014, 58, 5202–5210. [Google Scholar] [CrossRef] [Green Version]
- Thung, T.Y.; Radu, S.; Mahyudin, N.A.; Rukayadi, Y.; Zakaria, Z.; Mazlan, N.; Tan, B.H.; Lee, E.; Yeoh, S.L.; Chin, Y.Z.; et al. Prevalence, Virulence Genes and Antimicrobial Resistance Profiles of Salmonella Serovars from Retail Beef in Selangor, Malaysia. Front. Microbiol. 2018, 8, 2697. [Google Scholar] [CrossRef] [Green Version]
- Ben Hassena, A.; Haendiges, J.; Zormati, S.; Guermazi, S.; Gdoura, R.; Gonzalez-Escalona, N.; Siala, M. Virulence and resistance genes profiles and clonal relationships of non-typhoidal food-borne Salmonella strains isolated in Tunisia by whole genome sequencing. Int. J. Food Microbiol. 2021, 337, 108941. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Ray, S.; Ryan, D.; Sahu, B.; Suar, M. Identification of a novel gene in ROD9 island of Salmonella Enteritidis involved in the alteration of virulence-associated genes expression. Virulence 2018, 9, 348–362. [Google Scholar] [CrossRef] [Green Version]
- Dantas, S.T.A.; Camargo, C.H.; Tiba-Casas, M.R.; Vivian, R.C.; Pinto, J.P.; Pantoja, J.C.; Hernandes, R.T.; Júnior, A.F.; Rall, V.L. Environmental persistence and virulence of Salmonella spp. Isolated from a poultry slaughterhouse. Food Res. Int. 2020, 129, 108835. [Google Scholar] [CrossRef]
- Oueslati, W.; Rjeibi, M.R.; Mhadhbi, M.; Jbeli, M.; Zrelli, S.; Ettriqui, A. Prevalence, virulence and antibiotic susceptibility of Salmonella spp. strains, isolated from beef in Greater Tunis (Tunisia). Meat Sci. 2016, 119, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Xu, X.; Yan, M.; Chang, H.; Li, Y.; Kan, B.; Zeng, M. Salmonella Typhimurium and Salmonella Enteritidis Infections in Sporadic Diarrhea in Children: Source Tracing and Resistance to Third-Generation Cephalosporins and Ciprofloxacin. Foodborne Pathog. Dis. 2019, 16, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Leekitcharoenphon, P.; Feltrin, F.; Alba, P.; Cordaro, G.; Iurescia, M.; Tolli, R.; D’Incau, M.; Staffolani, M.; Di Giannatale, E.; et al. Emergence of a Clonal Lineage of Multidrug-Resistant ESBL-Producing Salmonella Infantis Transmitted from Broilers and Broiler Meat to Humans in Italy between 2011 and 2014. PLoS ONE 2015, 10, e0144802. [Google Scholar] [CrossRef] [Green Version]
- Cantón, R.; González-Alba, J.M.; Galán, J.C. CTX-M Enzymes: Origin and Diffusion. Front. Microbiol. 2012, 3, 110. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.-Z.; Ding, X.-M.; Lin, X.-L.; Sun, R.-Y.; Lu, Y.-W.; Cai, R.-M.; Webber, M.; Ding, H.-Z.; Jiang, H.-X. The Emergence of Chromosomally Located blaCTX-M-55 in Salmonella from Foodborne Animals in China. Front. Microbiol. 2019, 10, 1268. [Google Scholar] [CrossRef]
- Godbole, G.S.; Day, M.R.; Murthy, S.; Chattaway, M.; Nair, S. First Report of CTX-M-15 Salmonella Typhi from England. Clin. Infect. Dis. 2018, 66, 1976–1977. [Google Scholar] [CrossRef]
- Sparham, S.J.; Kwong, J.C.; Valcanis, M.; Easton, M.; Trott, D.J.; Seemann, T.; Stinear, T.P.; Howden, B.P. Emergence of multidrug resistance in locally-acquired human infections with Salmonella Typhimurium in Australia owing to a new clade harbouring bla CTX-M-9. Int. J. Antimicrob. Agents 2017, 50, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Wittum, T.E.; Mollenkopf, D.F.; Erdman, M.M. Detection of Salmonella enterica Isolates Producing CTX-M Cephalosporinase in U.S. Livestock Populations. Appl. Environ. Microbiol. 2012, 78, 7487–7491. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Rodríguez, I.; Baumann, B.; Guiral, E.; Beutin, L.; Schroeter, A.; Kaesbohrer, A.; Pfeifer, Y.; Helmuth, R.; Guerra, B. bla CTX-M-15-carrying Escherichia coli and Salmonella isolates from livestock and food in Germany. J. Antimicrob. Chemother. 2014, 69, 2951–2958. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wang, M.; Zhou, C.; Gu, G.; Liang, J.; Hou, X.; Wang, M.; Wei, P. Prevalence and antimicrobial resistance of retail-meat-borne Salmonella in southern China during the years 2009–2016: The diversity of contamination and the resistance evolution of multidrug-resistant isolates. Int. J. Food Microbiol. 2020, 333, 108790. [Google Scholar] [CrossRef]
- Biswas, S.; Li, Y.; Elbediwi, M.; Yue, M. Emergence and Dissemination of mcr-Carrying Clinically Relevant Salmonella Typhimurium Monophasic Clone ST34. Microorganisms 2019, 7, 298. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Xu, X.; Yang, C.; Hao, R.; Li, P. Salmonella enterica serovar Typhimurium ST34 co-expressing blaNDM-5 and blaCTX-M-55 isolated in China. Emerg. Microbes Infect. 2017, 6, e61. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, Y.; Liu, Y.; Shi, X.; Jiang, M.; Lin, Y.; Qiu, Y.; Zhang, Q.; Chen, Q.; Zhou, L.; et al. Clonal Expansion of Biofilm-Forming Salmonella Typhimurium ST34 with Multidrug-Resistance Phenotype in the Southern Coastal Region of China. Front. Microbiol. 2017, 8, 2090. [Google Scholar] [CrossRef] [Green Version]
- Seribelli, A.A.; da Silva, P.; da Cruz, M.F.; de Almeida, F.; Frazão, M.R.; Medeiros, M.I.C.; Rodrigues, D.D.P.; Kich, J.D.; Benevides, L.D.J.; Soares, S.D.C.; et al. Insights about the epidemiology of Salmonella Typhimurium isolates from different sources in Brazil using comparative genomics. Gut Pathog. 2021, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hammarlöf, D.L.; Kröger, C.; Owen, S.V.; Canals, R.; Lacharme-Lora, L.; Wenner, N.; Schager, A.E.; Wells, T.J.; Henderson, I.R.; Wigley, P.; et al. Role of a single noncoding nucleotide in the evolution of an epidemic African clade of Salmonella. Proc. Natl. Acad. Sci. 2018, 115, E2614–E2623. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A. Resistance Plasmid Families in Enterobacteriaceae. Antimicrob. Agents Chemother. 2009, 53, 2227–2238. [Google Scholar] [CrossRef] [Green Version]
- Nadimpalli, M.; Fabre, L.; Yith, V.; Sem, N.; Gouali, M.; Delarocque-Astagneau, E.; Sreng, N.; Le Hello, S.; Raheliarivao, B.T.; Randrianirina, F.; et al. CTX-M-55-type ESBL-producing Salmonella enterica are emerging among retail meats in Phnom Penh, Cambodia. J. Antimicrob. Chemother. 2018, 74, 342–348. [Google Scholar] [CrossRef]
- Wang, M.-G.; Zhang, R.-M.; Wang, L.-L.; Sun, R.-Y.; Bai, S.-C.; Han, L.; Fang, L.-X.; Sun, J.; Liu, Y.-H.; Liao, X.-P. Molecular epidemiology of carbapenemase-producing Escherichia coli from duck farms in south-east coastal China. J. Antimicrob. Chemother. 2021, 76, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Hawkey, J.; Hetland, M.A.K.; Fostervold, A.; Wick, R.R.; Judd, L.; Hamidian, M.; Howden, B.; Löhr, I.H.; Holt, K. Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. J. Antimicrob. Chemother. 2019, 74, 577–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, Y.; Li, J.; Wang, S.; Shen, J.; Shen, Z.; Wang, Y. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg. Microbes Infect. 2018, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.; Kumar, D.; Hussain, S.; Pathak, A.; Shukla, M.; Kumar, V.P.; Anisha, P.; Rautela, R.; Upadhyay, A.; Singh, S. Prevalence, antimicrobial resistance and virulence genes characterization of nontyphoidal Salmonella isolated from retail chicken meat shops in Northern India. Food Control 2019, 102, 104–111. [Google Scholar] [CrossRef]
- Ho, T.D.; Slauch, J.M. Characterization of grvA, an Antivirulence Gene on the Gifsy-2 Phage in Salmonella enterica Serovar Typhimurium. J. Bacteriol. 2001, 183, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Yang, S.; Sun, L.; Dong, K.; Li, Y.; Wu, S.; Huang, R. Salmonella effector SpvB aggravates dysregulation of systemic iron metabolism via modulating the hepcidin−ferroportin axis. Gut Microbes 2021, 13, 1849996. [Google Scholar] [CrossRef]
- Li, Q.; Yin, J.; Li, Z.; Li, Z.; Du, Y.; Guo, W.; Bellefleur, M.; Wang, S.; Shi, H. Serotype distribution, antimicrobial susceptibility, antimicrobial resistance genes and virulence genes of Salmonella isolated from a pig slaughterhouse in Yangzhou, China. AMB Express 2019, 9, 210. [Google Scholar] [CrossRef]
- Gulig, P.A.; Danbara, H.; Guiney, D.G.; Lax, A.J.; Norel, F.; Rhen, M. Molecular analysis of spv virulence genes of the salmonella virulence plasmids. Mol. Microbiol. 1993, 7, 825–830. [Google Scholar] [CrossRef]
- Hurtado-Escobar, G.A.; Grépinet, O.; Raymond, P.; Abed, N.; Velge, P.; Virlogeux-Payant, I. H-NS is the major repressor of Salmonella Typhimurium Pef fimbriae expression. Virulence 2019, 10, 849–867. [Google Scholar] [CrossRef]
- Mambu, J.; Virlogeux-Payant, I.; Holbert, S.; Grépinet, O.; Velge, P.; Wiedemann, A. An Updated View on the Rck Invasin of Salmonella: Still Much to Discover. Front. Cell. Infect. Microbiol. 2017, 7, 500. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Zhao, Y. Global Spread and Molecular Characterization of CTX-M-Producing Salmonella Typhimurium Isolates. Antibiotics 2021, 10, 1417. https://doi.org/10.3390/antibiotics10111417
Guo L, Zhao Y. Global Spread and Molecular Characterization of CTX-M-Producing Salmonella Typhimurium Isolates. Antibiotics. 2021; 10(11):1417. https://doi.org/10.3390/antibiotics10111417
Chicago/Turabian StyleGuo, Lili, and Yongda Zhao. 2021. "Global Spread and Molecular Characterization of CTX-M-Producing Salmonella Typhimurium Isolates" Antibiotics 10, no. 11: 1417. https://doi.org/10.3390/antibiotics10111417
APA StyleGuo, L., & Zhao, Y. (2021). Global Spread and Molecular Characterization of CTX-M-Producing Salmonella Typhimurium Isolates. Antibiotics, 10(11), 1417. https://doi.org/10.3390/antibiotics10111417