Artificial Intelligence and Antibiotic Discovery
Abstract
:1. Introduction
2. Machine Learning and Deep Learning Technologies in Drug Development
3. Neural Networks and Antimicrobial Compounds
4. Antimicrobial Peptides and Artificial Intelligence
5. Specific Antibiotics for Specific Bacteria
6. Economic Impact
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. 2014. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 30 October 2021).
- Mohr, K.I. History of Antibiotics Research. Curr. Top. Microbiol. Immunol. 2016, 398, 237–272. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Available online: https://www.ecdc.europa.eu/en/publications-data/ecdcemea-joint-technical-report-bacterial-challenge-time-react (accessed on 11 October 2021).
- Bush, K.; Courvalin, P.; Dantas, G.; Davies, J.; Eisenstein, B.; Huovinen, P.; Jacoby, G.A.; Kishony, R.; Kreiswirth, B.N.; Kutter, E.; et al. Tackling antibiotic resistance. Nat. Rev. Microbiol. 2011, 9, 894–896. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat. Rev. Microbiol. 2010, 8, 260–271. [Google Scholar] [CrossRef]
- Prescott, J.F. The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology. Vet. Microbiol. 2014, 171, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C. Where will new antibiotics come from? Nat. Rev. Microbiol. 2003, 1, 65–70. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, K.M.; Hodgkinson, J.T.; Sore, H.F.; Welch, M.; Salmond, G.P.; Spring, D.R. Combating multidrug-resistant bacteria: Current strategies for the discovery of novel antibacterials. Angew. Chem. Int. Ed. Engl. 2013, 52, 10706–10733. [Google Scholar] [CrossRef] [PubMed]
- Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning, 2nd ed.; MIT Press: Cambridge, MA, USA, 2018; pp. 1–3. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; pp. 2–7. [Google Scholar]
- da Cunha, R.B.; Fonseca, L.P.; Calado, C.R.C. Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning. Appl. Microbiol. Biotechnol. 2021, 105, 1269–1286. [Google Scholar] [CrossRef]
- Zoffmann, S.; Vercruysse, M.; Benmansour, F.; Maunz, A.; Wolf, L.; Marti, R.B.; Heckel, T.; Ding, H.; Truong, H.H.; Prummer, M.; et al. Machine learning-powered antibiotics phenotypic drug discovery. Sci. Rep. 2019, 9, 5013. [Google Scholar] [CrossRef]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; et al. A Deep Learning Approach to Antibiotic Discovery. Cell 2020, 180, 688–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; et al. The Drug Repurposing Hub: A next-generation drug library and information resource. Nat. Med. 2017, 23, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Parvaiz, N.; Ahmad, F.; Yu, W.; MacKerell, A.D.J.; Azam, S.S. Discovery of beta-lactamase CMY-10 inhibitors for combination therapy against multi-drug resistant Enterobacteriaceae. PLoS ONE 2021, 16, e0244967. [Google Scholar] [CrossRef]
- Farrell, L.J.; Lo, R.; Wanford, J.J.; Jenkins, A.; Maxwell, A.; Piddock, L.J.V. Revitalizing the drug pipeline: AntibioticDB, an open access database to aid antibacterial research and development. J. Antimicrob. Chemother. 2018, 73, 2284–2297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ye, T.; Xi, H.; Juhas, M.; Li, J. Deep Learning Driven Drug Discovery: Tackling Severe Acute Respiratory Syndrome Coronavirus 2. Front. Microbiol. 2021, 12, 739684. [Google Scholar] [CrossRef]
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef]
- Yegnanarayana, B. Artificial Neural Networks; PHI Learning Pvt. Ltd.: New Delhi, India, 2009; pp. 15–35. [Google Scholar]
- Hamid, M.N.; Friedberg, I. Identifying antimicrobial peptides using word embedding with deep recurrent neural networks. Bioinformatics 2019, 35, 2009–2016. [Google Scholar] [CrossRef] [Green Version]
- Fields, F.R.; Freed, S.D.; Carothers, K.E.; Hamid, M.N.; Hammers, D.E.; Ross, J.N.; Kalwajtys, V.R.; Gonzalez, A.J.; Hildreth, A.D.; Friedberg, I.; et al. Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains. Drug Dev. Res. 2020, 81, 43–51. [Google Scholar] [CrossRef]
- Badura, A.; Krysiński, J.; Nowaczyk, A.; Buciński, A. Application of artificial neural networks to prediction of new substances with antimicrobial activity against Escherichia coli. J. Appl. Microbiol. 2021, 130, 40–49. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Feng, P.; Wang, Z.; Yu, X. Predicting Antimicrobial Peptides by Using Increment of Diversity with Quadratic Discriminant Analysis Method. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 16, 1309–1312. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Luo, L.; Zhang, L.; Chen, W.; Zhang, Y. Increment of diversity with quadratic discriminant analysis—an efficient tool for sequence pattern recognition in bioinformatics. Open Access Bioinform. 2010, 2, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Bhadra, P.; Yan, J.; Li, J.; Fong, S.; Siu, S.W.I. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci. Rep. 2018, 8, 1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alazmi, M.; Motwalli, O. Immuno-Informatics based Peptides: An Approach for Vaccine Development against Outer Membrane Proteins of Pseudomonas Genus. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 1, 1. [Google Scholar] [CrossRef]
- Azmi, F.; Al Hadi, A.A.F.; Skwarczynski, M.; Toth, I. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum. Vaccines Immunother. 2014, 10, 778–796. [Google Scholar] [CrossRef] [Green Version]
- Nagpal, G.; Chaudhary, K.; Agrawal, P.; Raghava, G.P.S. Computer-aided prediction of antigen presenting cell modulators for designing peptide-based vaccine adjuvants. J. Transl. Med. 2018, 16, 181. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Xu, J.; Yin, Y.; Quan, X.; Zhang, H. Antimicrobial peptide identification using multi-scale convolutional network. BMC Bioinform. 2019, 20, 730. [Google Scholar] [CrossRef] [Green Version]
- Pan, T.; Chen, J.; Xie, J.; Chang, Y.; Zhou, Z. Intelligent fault identification for industrial automation system via multi-scale convolutional generative adversarial network with partially labeled samples. ISA Trans. 2020, 101, 379–389. [Google Scholar] [CrossRef]
- Fjell, C.D.; Hancock, R.E.; Cherkasov, A. AMPer: A database and an automated discovery tool for antimicrobial peptides. Bioinformatics 2007, 23, 1148–1155. [Google Scholar] [CrossRef]
- Yoon, B.J. Hidden Markov Models and their Applications in Biological Sequence Analysis. Curr. Genomics 2009, 10, 402–415. [Google Scholar] [CrossRef] [Green Version]
- Cherkasov, A.; Hilpert, K.; Jenssen, H.; Fjell, C.D.; Waldbrook, M.; Mullaly, S.C.; Volkmer, R.; Hancock, R.E. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem. Biol. 2009, 4, 65–74. [Google Scholar] [CrossRef]
- Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Håkansson, J.; Hansen, P.R.; Svenson, J. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci. Rep. 2020, 10, 13206. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Monteagudo, M.; Borges, F.; Cordeiro, M.N. Jointly handling potency and toxicity of antimicrobial peptidomimetics by simple rules from desirability theory and chemoinformatics. J. Chem. Inf. Model. 2011, 51, 3060–3077. [Google Scholar] [CrossRef] [PubMed]
- Grafskaia, E.N.; Polina, N.F.; Babenko, V.V.; Kharlampieva, D.D.; Bobrovsky, P.A.; Manuvera, V.A.; Farafonova, T.E.; Anikanov, N.A.; Lazarev, V.N. Discovery of novel antimicrobial peptides: A transcriptomic study of the sea anemone Cnidopus japonicus. J. Bioinform. Comput. Biol. 2018, 16, 1840006. [Google Scholar] [CrossRef]
- Uzair, B.; Bint-E-Irshad, S.; Khan, B.A.; Azad, B.; Mahmood, T.; Rehman, M.U.; Braga, V.A. Scorpion Venom Peptides as a Potential Source for Human Drug Candidates. Protein Pept. Lett. 2018, 25, 702–708. [Google Scholar] [CrossRef]
- Primon-Barros, M.; José Macedo, A. Animal Venom Peptides: Potential for New Antimicrobial Agents. Curr. Top. Med. Chem. 2017, 17, 1119–1156. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Yang, J.; Duan, Z.; Jiang, L.; Liu, Z.; Liang, S. Molecular diversification of antimicrobial peptides from the wolf spider Lycosa sinensis venom based on peptidomic, transcriptomic, and bioinformatic analyses. Acta Biochim. Biophys. Sin. 2020, 52, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Macesic, N.; Bear Don’t Walk, O.J., IV; Pe’er, I.; Tatonetti, N.P.; Peleg, A.Y.; Uhlemann, A.C. Predicting Phenotypic Polymyxin Resistance in Klebsiella pneumoniae through Machine Learning Analysis of Genomic Data. Msystems 2020, 5, e00656-19. [Google Scholar] [CrossRef]
- Hancock, R.E. The Pseudomonas aeruginosa outer membrane permeability barrier and how to overcome it. Antibiot. Chemother. 1971, 36, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Mansbach, R.A.; Leus, I.V.; Mehla, J.; Lopez, C.A.; Walker, J.K.; Rybenkov, V.V.; Hengartner, N.W.; Zgurskaya, H.I.; Gnanakaran, S. Machine Learning Algorithm Identifies an Antibiotic Vocabulary for Permeating Gram-Negative Bacteria. J. Chem. Inf. Model. 2020, 60, 2838–2847. [Google Scholar] [CrossRef]
- Onay, M. A New and Fast Optimization Algorithm: Fox Hunting Algorithm (FHA). In Proceedings of the International Conference on Applied Mathematics, Simulation and Modelling, Beijing, China, 28–29 May 2016. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.M.; Lenhard, J.R.; Boissonneault, K.R.; Landersdorfer, C.B.; Bulitta, J.B.; Holden, P.N.; Forrest, A.; Nation, R.L.; Li, J.; Tsuji, B.T. Using machine learning to optimize antibiotic combinations: Dosing strategies for meropenem and polymyxin B against carbapenem-resistant Acinetobacter baumannii. Clin. Microbiol. Infect. 2020, 26, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.D.; Fetherston, J.D. Yersinia pestis—Etiologic agent of plague. Clin. Microbiol. Rev. 1997, 10, 35–66. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Prehna, G.; Stebbins, C.E. Targeting plague virulence factors: A combined machine learning method and multiple conformational virtual screening for the discovery of Yersinia protein kinase A inhibitors. J. Med. Chem. 2007, 50, 3980–3983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 2016, 47, 20–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, Y.J.; Hubbard-Lucey, V.M.; Tang, J. Immuno-oncology drug development goes global. Nat. Rev. Drug Discov. 2019, 18, 899–900. [Google Scholar] [CrossRef] [Green Version]
- Centers for Diseases Control and Prevention, Threat Report. 2013. Available online: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (accessed on 11 October 2021).
- Nelson, R.E.; Hatfield, K.M.; Wolford, H.; Samore, M.H.; Scott, R.D., II; Reddy, S.C.; Olubajo, B.; Paul, P.; Jernigan, J.A.; Baggs, J. National Estimates of Healthcare Costs Associated with Multidrug-Resistant Bacterial Infections Among Hospitalized Patients in the United States. Clin. Infect. Dis. 2021, 72, 17–26. [Google Scholar] [CrossRef]
- Barriere, S.L. Clinical, economic and societal impact of antibiotic resistance. Expert Opin. Pharmacother. 2015, 16, 151–153. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Available online: https://www.who.int/news/item/15-04-2021-global-shortage-of-innovative-antibiotics-fuels-emergence-and-spread-of-drug-resistance (accessed on 28 October 2021).
- Folgori, L.; Ellis, S.J.; Bielicki, J.A.; Heath, P.T.; Sharland, M.; Balasegaram, M. Tackling antimicrobial resistance in neonatal sepsis. Lancet Glob. Health 2017, 5, 1066–1068. [Google Scholar] [CrossRef] [Green Version]
Reference | Characteristics | Outcomes | Technology |
---|---|---|---|
da Cunha et al., 2021 | Detecting certain metabolic fingerprints through spectroscopy; using ML technology to analyze and further predict the mechanism of action and potency of different antibiotics | Successfully predicted the mechanism of action; accurate estimation of the antibiotic potency | ML + high-throughput Fourier-transform infrared spectroscopy |
Zoffman et al., 2019 | Searching, identifying, and predicting potency of compounds with a random forest model | Assess phenotypic changes and antibacterial potency; predicted the phenotypic changes in compounds with identical and different mechanism of action | ML-random forest model |
Stokes et al., 2020 | Using DL and NN to search databases and predict potential antimicrobial compounds, further empirically testing them | Successfully combined AI technologies and clinical investigation; halicin displayed strong antibacterial properties | DL + NN |
Parvaiz et al., 2021 | Using ML to search for and identify potential candidates possessing beta-lactamase inhibition quality | Identified 74 compounds, out of which one showed great promise and further used ML in order to search for compounds structurally similar, concluding that all of the 28 additionally returned results had antibacterial activity | ML-random forest model |
Hamid et al., 2019 | Used neural networks in order to distinguish between bacteriocin and con-bacteriocin sequences | The algorithm can successfully predict and classify bacteriocins based on their sequence | RNN |
Fields et al., 2020 | Used ML to design and test bacteriocin-derived compounds and further assess their antimicrobial activity | The study designed and empirically tested compounds returned by the ML algorithm, with significant results | ML |
Badura et al., 2021 | Used ANN to generate computational chemistry models and identify and classify compounds | Transformed chemical information into computational models used to further search and identify antimicrobial compounds | ANN |
Feng et al., 2019 | Used IDQD in order to analyze and search for patterns in certain sequences and predict further patterns in antibacterial peptides | The study used this type of ML to successfully identify antimicrobial agents based on certain features of the antibacterial peptides | ML-IDQD |
Bhadra et al., 2018 | Used ML to analyze the distribution pattern of amino acids in antibacterial peptides | The model grouped amino acids based on certain properties in different groups and further predicted and identified antimicrobial peptides | ML-random forest model |
Napgal et al., 2018 | Used ML to search, analyze and predict peptides based on certain features | Analyzed peptides capable of inducting response of the APCs and further used ML to predict such peptides based on their structure | ML |
Su et al., 2019 | Used NN trained on various datasets to achieve performance in feature selection and structure analysis | Analyzed the features and structure of amino acids and peptides in order to identify novel antimicrobial peptides | NN |
Fjell et al., 2007 | Used Hidden Markov models to construct an algorithm that enables recognition of individual classes of antimicrobial peptides | Constructed a database that functions as a discovery tool for antimicrobial peptides | NN-Hidden Markov models |
Cherkasov et al., 2009 | Used NN to search various databases and identify and further design antimicrobial peptides | Screened a large number of peptides and selected the most potent ones for in vitro testing, further concluding that two compounds exhibited strong antimicrobial effects | NN |
Cruz-Monteagudo et al., 2011 | Used ML to create and define classification rules for antimicrobial peptides | The study aimed to assess both the toxicity and potency of antimicrobial peptides | ML |
Grafskaia et al., 2018 | Used ML to create an algorithm for the identification of toxin-like that also acted as antimicrobial agents | The combined ML and proteomic technologies showed the potential of such research, even though the study returned a small number of candidate peptides | ML |
Macesic et al., 2020 | ML was used to assess and quantify both bacterial resistance and susceptibility to certain antibiotics | Used ML to predict phenotypic polymyxin resistance in Klebsiella pneumoniae and to assess antimicrobial susceptibility | ML |
Mansbach et al., 2020 | The study used ML to construct and design molecules capable of penetrating the membrane of Pseudomonas aeruginosa | The algorithm constructed and considered every possible fragment-based design, obtaining five compounds that were experimentally validated and showed good membrane penetration | ML-Hunting Fox Algorithm |
Smith et al., 2020 | The study used ML in combination with genetic algorithms to assess intrinsic activity and efficacy of compounds | The study aimed to optimize dosing regimens when using antibiotic combinations, particularly against A. baumannii, the algorithm returning six regimens capable of eradicating the bacteria; even though these were not empirically tested | ML |
Hu et al., 2007 | The study used ML and conventional methods to find new antimicrobial agents to counter the antimicrobial resistance of Yersinia spp. | The study combined ML and multiple conformational high-throughput docking in order to find YpkA inhibitors; the algorithm returned 7 compounds that were empirically tested and showed antimicrobial activity | ML |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, L.; Brata, A.M.; Mogosan, C.; Pop, C.; Czako, Z.; Muresan, L.; Ismaiel, A.; Dumitrascu, D.I.; Leucuta, D.C.; Stanculete, M.F.; et al. Artificial Intelligence and Antibiotic Discovery. Antibiotics 2021, 10, 1376. https://doi.org/10.3390/antibiotics10111376
David L, Brata AM, Mogosan C, Pop C, Czako Z, Muresan L, Ismaiel A, Dumitrascu DI, Leucuta DC, Stanculete MF, et al. Artificial Intelligence and Antibiotic Discovery. Antibiotics. 2021; 10(11):1376. https://doi.org/10.3390/antibiotics10111376
Chicago/Turabian StyleDavid, Liliana, Anca Monica Brata, Cristina Mogosan, Cristina Pop, Zoltan Czako, Lucian Muresan, Abdulrahman Ismaiel, Dinu Iuliu Dumitrascu, Daniel Corneliu Leucuta, Mihaela Fadygas Stanculete, and et al. 2021. "Artificial Intelligence and Antibiotic Discovery" Antibiotics 10, no. 11: 1376. https://doi.org/10.3390/antibiotics10111376
APA StyleDavid, L., Brata, A. M., Mogosan, C., Pop, C., Czako, Z., Muresan, L., Ismaiel, A., Dumitrascu, D. I., Leucuta, D. C., Stanculete, M. F., Iaru, I., & Popa, S. L. (2021). Artificial Intelligence and Antibiotic Discovery. Antibiotics, 10(11), 1376. https://doi.org/10.3390/antibiotics10111376