Potential Role of Vitamins A, B, C, D and E in TB Treatment and Prevention: A Narrative Review
Abstract
:1. Introduction
2. Results
2.1. Vitamin A
2.2. Vitamin B Complex
2.2.1. Vitamin B1 (Thiamine)
2.2.2. Vitamin B2 (Riboflavin)
2.2.3. Vitamin B5 (Pantothenic acid)
2.2.4. Vitamin B6 (Pyridoxine)
2.2.5. Vitamin B7 (Biotin)
2.2.6. Vitamin B12 (Cobalamin)
2.3. Vitamin C
2.4. Vitamin D
2.5. Vitamin E
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
VA: vitamin A |
TB: tuberculosis |
ATRA: all-trans retinoic acid |
ATT: antituberculosis treatment |
HIV: Human Immunodeficiency Virus |
VB1: vitamin B1 |
MTB: Mycobacterium tuberculosis |
VB5: vitamin B5 |
BMDMs: bone marrow-derived macrophages |
VB12: vitamin B12 |
VC: vitamin C |
PZA: pyrazinamide |
INH: isoniazid |
RIF: rifampicin |
MDR: multi drugs resistant |
hCAP-18: human cationic antimicrobial protein 18 |
IL-: interleukin |
INF-γ: interferon-γ |
LL-37: Leucine-Leucine 37 |
LTBI: latent tuberculosis infection |
MMPs: metalloproteinases |
RXR: retinoid X receptor |
TLR: toll-like receptor |
VD: vitamin D |
VDR: vitamin D receptor |
References
- World Health Organization (WHO). Global Tuberculosis Report 2021; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 2 November 2021).
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 2018, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Hood, M.L. A narrative review of recent progress in understanding the relationship between tuberculosis and protein energy malnutrition. Eur. J. Clin. Nutr. 2013, 67, 1122–1128. [Google Scholar] [CrossRef]
- Grobler, L.; Nagpal, S.; Sudarsanam, T.D.; Sinclair, D. Nutritional supplements for people being treated for active tuberculosis. Cochrane Database Syst Rev. 2016, 2016, CD006086. [Google Scholar] [CrossRef] [Green Version]
- Di Gennaro, F.; Vittozzi, P.; Gualano, G.; Musso, M.; Mosti, S.; Mencarini, P.; Pareo, C.; Di Caro, A.; Schininà, V.; Girardi, E.; et al. Active Pulmonary Tuberculosis in Elderly Patients: A 2016-2019 Retrospective Analysis from an Italian Referral Hospital. Antibiotics 2020, 9, 489. [Google Scholar] [CrossRef]
- Marotta, C.; Di Gennaro, F.; Pizzol, D.; Madeira, G.; Monno, L.; Saracino, A.; Putoto, G.; Casuccio, A.; Mazzucco, W. The At Risk Child Clinic (ARCC): 3 Years of Health Activities in Support of the Most Vulnerable Children in Beira, Mozambique. Int. J. Environ. Res. Public Health 2018, 15, 1350. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Puryear, M.; Humphrey, J.H.; West, K.P.; Aniol, K.; Mahoney, F.; Mahoney, J.; Keenum, D.G. Vitamin A deficiency and anemia among micronesian children. Nutr. Res. 1989, 9, 1007–1016. [Google Scholar]
- Stephensen, C.B. Vitamin A, Infection, and Immune Function. Annu. Rev. Nutr. 2001, 21, 167–192. [Google Scholar] [CrossRef]
- Aibana, O.; Franke, M.F.; Huang, C.-C.; Galea, J.T.; Calderon, R.; Zhang, Z.; Becerra, M.C.; Smith, E.R.; Ronnenberg, A.G.; Contreras, C.; et al. Impact of Vitamin A and Carotenoids on the Risk of Tuberculosis Progression. Clin. Infect. Dis. 2017, 65, 900–909. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, G.; Santha, T.; Garg, R.; Baskaran, D.; Iliayas, S.A.; Venkatesan, P.; Fathima, R.; Narayanan, P.R. Vitamin A levels in sputum-positive pulmonary tuberculosis patients in comparison with household contacts and healthy ‘normals’. Int. J. Tuberc. Lung Dis. 2004, 8, 1130–1133. [Google Scholar]
- Wheelwright, M.; Kim, E.W.; Inkeles, M.S.; De Leon, A.; Pellegrini, M.; Krutzik, S.R.; Liu, P.T. All-TransRetinoic Acid–Triggered Antimicrobial Activity againstMycobacterium tuberculosisIs Dependent on NPC2. J. Immunol. 2014, 192, 2280–2290. [Google Scholar]
- Karyadi, E.; West, C.E.; Schultink, W.; Nelwan, R.H.H.; Gross, R.; Amin, Z.; Dolmans, W.M.V.; Schlebusch, H.; Van Der Meer, J.W.M. A double-blind, placebo-controlled study of vitamin A and zinc supplementation in persons with tuberculosis in Indonesia: Effects on clinical response and nutritional status. Am. J. Clin. Nutr. 2002, 75, 720–727. [Google Scholar] [CrossRef]
- E Visser, M.; Grewal, H.M.; Swart, E.C.; Dhansay, M.A.; Walzl, G.; Swanevelder, S.; Lombard, C.; Maartens, G. The effect of vitamin A and zinc supplementation on treatment outcomes in pulmonary tuberculosis: A randomized controlled trial. Am. J. Clin. Nutr. 2010, 93, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Pakasi, T.A. Zinc and Vitamin A Supplementation in Tuberculosis. A Study in East Nusa Tenggara, Indonesia. Ph.D. Thesis, Radboud University, Nijmegen, The Netherlands, 2009; pp. 1–142. [Google Scholar]
- Hanekom, W.A.; Potgieter, S.; Hughes, E.; Malan, H.; Kessow, G.; Hussey, G.D. Vitamin A status and therapy in childhood pulmonary tuberculosis. J. Pediatr. 1997, 131, 925–927. [Google Scholar] [CrossRef]
- Range, N.; Andersen, A.B.; Magnussen, P.; Mugomela, A.; Friis, H. The effect of micronutrient supplementation on treatment outcome in patients with pulmonary tuberculosis: A randomized controlled trial in Mwanza, Tanzania. Trop Med. Int. Health 2005, 10, 826–832. [Google Scholar]
- Range, N.; Changalucha, J.; Krarup, H.; Magnussen, P.; Andersen, B.; Friis, H. The effect of multi-vitamin/mineral supplementation on mortality during treatment of pulmonary tuberculosis: A randomised two-by-two factorial trial in Mwanza, Tanzania. Br. J. Nutr. 2006, 95, 762–770. [Google Scholar] [CrossRef] [Green Version]
- Christian, P.; West, K.P., Jr. Interactions between zinc and vitamin A: An update. Am. J. Clin. Nutr. 1998, 68 (Suppl. 2), 435S–441S. [Google Scholar] [CrossRef] [Green Version]
- Van Lettow, M.; Harries, A.D.; Kumwenda, J.J.; Zijlstra, E.E.; Clark, T.D.; Taha, T.E.; Semba, R.D. Micronutrient malnutrition and wasting in adults with pulmonary tuberculosis with and without HIV co-infection in Malawi. BMC Infect. Dis. 2004, 4, 61. [Google Scholar] [CrossRef] [Green Version]
- Rwangabwoba, J.M.; Fischman, H.; Semba, R.D. Serum vitamin A levels during tuberculosis and human immunodeficiency virus infection. Int. J. Tuberc. Lung Dis. 1998, 2, 771–773. [Google Scholar]
- Chandra Nutrient Supplementation as Adjunct Therapy in Pulmonary Tuberculosis. Int. J. Vitam. Nutr. Res. 2004, 74, 144–146. [CrossRef]
- Mugusi, F.M.; Rusizoka, O.; Habib, N.; Fawzi, W. Vitamin A status of patients presenting with pulmonary tuberculosis and asymptomatic HIV-infected individuals, Dar es Salaam, Tanzania. Int. J. Tuberc. Lung Dis. 2003, 7, 804–807. [Google Scholar]
- Wiid, I.; Seaman, T.; Hoal, E.G.; Benade, A.J.; Van Helden, P.D. Total antioxidant levels are low during active TB and rise with anti-tuberculosis therapy. IUBMB Life 2004, 56, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; He, W.; Du, X.; Huang, Y.; Fu, Y.; Yang, Y.; Hu, C.; Li, S.; Wang, Q.; Wen, Q.; et al. Vitamin B1 Helps to Limit Mycobacterium tuberculosis Growth via Regulating Innate Immunity in a Peroxisome Proliferator-Activated Receptor-γ-Dependent Manner. Front. Immunol. 2018, 9, 1778. [Google Scholar] [CrossRef] [Green Version]
- Huang, S. Targeting Innate-Like T Cells in Tuberculosis. Front. Immunol. 2016, 7, 594. [Google Scholar] [CrossRef] [Green Version]
- Malka-Ruimy, C.; Ben Youssef, G.; Lambert, M.; Tourret, M.; Ghazarian, L.; Faye, A.; Caillat-Zucman, S.; Houdouin, V. Mucosal-Associated Invariant T Cell Levels Are Reduced in the Peripheral Blood and Lungs of Children with Active Pulmonary Tuberculosis. Front. Immunol. 2019, 10, 206. [Google Scholar] [CrossRef]
- Harale, B.; Kidwai, S.; Ojha, D.; Singh, M.; Chouhan, D.K.; Singh, R.; Khedkar, V.; Rode, A.B. Synthesis and evaluation of antimycobacterial activity of riboflavin derivatives. Bioorganic Med. Chem. Lett. 2021, 48, 128236. [Google Scholar] [CrossRef]
- Beggs, W.H.; Jenne, J.W. Mechanism for the Pyridoxal Neutralization of Isoniazid Action on Mycobacterium tuberculosis. J. Bacteriol. 1967, 94, 793–797. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Hu, S.; Du, X.; Wen, Q.; Zhong, X.-P.; Zhou, X.; Zhou, C.-Y.; Xiong, W.; Gao, Y.; Zhang, S.; et al. Vitamin B5 Reduces Bacterial Growth via Regulating Innate Immunity and Adaptive Immunity in Mice Infected with Mycobacterium tuberculosis. Front. Immunol. 2018, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Matxain, J.M.; Padro, D.; Ristila, M.; Strid, Å.; Eriksson, L.A. Evidence of High ∙OH Radical Quenching Efficiency by Vitamin B6. J. Phys. Chem. B 2009, 113, 9629–9632. [Google Scholar] [CrossRef]
- Dick, T.; Manjunatha, U.; Kappes, B.; Gengenbacher, M. Vitamin B6 biosynthesis is essential for survival and virulence of Mycobacterium tuberculosis. Mol. Microbiol. 2010, 78, 980–988. [Google Scholar] [CrossRef]
- Palmieri, F. Per il Gruppo di Lavoro Tubercolosi—INMI “L. Spallanzani” PDTA Sulla Gestione del Paziente con Infezione/Malattia Tubercolare. Per.Cli. n.26/20, Rev. n. 08 del 13 January 2020. Available online: https://www.inmi.it/wp-content/uploads/2018/12/Protocollo-Tubercolosi-Rev.-7_2017.pdf (accessed on 2 November 2021).
- Khare, G.; Kar, R.; Tyagi, A.K. Identification of Inhibitors against Mycobacterium tuberculosis Thiamin Phosphate Synthase, an Important Target for the Development of Anti-TB Drugs. PLoS ONE 2011, 6, e22441. [Google Scholar]
- Bose, M.; Tyagi, G.; Singh, P.; Varma-Basil, M. Role of Vitamins B, C, and D in the fight against tuberculosis. Int. J. Mycobacteriology 2017, 6, 328. [Google Scholar]
- Kitahara, T.; Hotta, K.; Yoshida, M.; Okami, Y. Biological studies on amiclenomycin. J. Antibiot. 1975, 28, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Salaemae, W.; Booker, G.W.; Polyak, S.W. The Role of Biotin in Bacterial Physiology and Virulence: A Novel Antibiotic Target for Mycobacterium tuberculosis. Microbiol. Spectr. 2016, 4, 797–822. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, K.; Moosa, A.; Mizrahi, V.; Warner, D.F. Vitamin B12 metabolism in Mycobacterium tuberculosis. Futur. Microbiol. 2013, 8, 1405–1418. [Google Scholar]
- Boritsch, E.C.; Supply, P.; Honoré, N.; Seemann, T.; Stinear, T.; Brosch, R. A glimpse into the past and predictions for the future: The molecular evolution of the tuberculosis agent. Mol. Microbiol. 2014, 93, 835–852. [Google Scholar] [CrossRef]
- Young, D.B.; Comas, I.; de Carvalho, L.P. Phylogenetic analysis of vitamin B12-related metabolism in Mycobacterium tuberculosis. Front. Mol. Biosci. 2015, 2, 6. [Google Scholar]
- Gebremicael, G.; Alemayehu, M.; Sileshi, M.; Geto, Z.; Gebreegziabxier, A.; Tefera, H.; Ashenafi, N.; Tadese, C.; Wolde, M.; Kassa, D. The serum concentration of vitamin B12 as a biomarker of therapeutic response in tuberculosis patients with and without human immunodeficiency virus (HIV) infection. Int. J. Gen. Med. 2019, 12, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Toosi, T.D.; Shahi, F.; Afshari, A.; Roushan, N.; Kermanshahi, M. Neuropathy caused by B12 deficiency in a patient with ileal tuberculosis: A case report. J. Med. Case Rep. 2008, 2, 90. [Google Scholar] [CrossRef] [Green Version]
- Mandl, J.; Szarka, A.; Bánhegyi, G. Vitamin C: Update on physiology and pharmacology. Br. J. Pharmacol. 2009, 157, 1097–1110. [Google Scholar] [CrossRef] [Green Version]
- Soh, A.Z.; Chee, C.B.E.; Wang, Y.T.; Yuan, J.M.; Koh, W.P. Dietary intake of antioxidant vitamins and carotenoids and risk of developing active tuberculosis in a prospective population-based cohort study. Am. J. Epidemiol. 2017, 186, 491–500. [Google Scholar] [CrossRef] [Green Version]
- Di Gennaro, F.; Gualano, G.; Timelli, L.; Vittozzi, P.; Di Bari, V.; Libertone, R.; Cerva, C.; Pinnarelli, L.; Nisii, C.; Ianniello, S.; et al. Increase in Tuberculosis Diagnostic Delay during First Wave of the COVID-19 Pandemic: Data from an Italian Infectious Disease Referral Hospital. Antibiotics 2021, 10, 272. [Google Scholar] [CrossRef]
- Xiong, K.; Wang, J.; Zhang, J.; Hao, H.; Wang, Q.; Cai, J.; Ma, A. Association of Dietary Micronutrient Intake with Pulmonary Tuberculosis Treatment Failure Rate: ACohort Study. Nutrients 2020, 12, 2491. [Google Scholar] [CrossRef]
- Andosca, J.B.; Foley, J.A. Calcium Ribonate and Vitamin C (Nu 240-10) in the Treatment of Tuberculosis. Dis. Chest 1948, 14, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Sarkar, D. Qualitative and quantitative proteomic analysis of Vitamin C induced changes in Mycobacterium smegmatis. Front. Microbiol. 2015, 6, 451. [Google Scholar] [CrossRef] [Green Version]
- Vilchèze, C.; Hartman, T.; Weinrick, B.; Jacobs, W.R.J. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat. Commun. 2013, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Newton, G.L.; Buchmeier, N.; La Clair, J.J.; Fahey, R.C. Evaluation of NTF1836 as an inhibitor of the mycothiol biosynthetic enzyme MshC in growing and non-replicating Mycobacterium tuberculosis. Bioorg. Med. Chem. 2011, 19, 3956–3964. [Google Scholar]
- Metaferia, B.B.; Fetterolf, B.J.; Shazad-Ul-Hussan, S.; Moravec, M.; Smith, J.A.; Ray, S.; Gutierrez-Lugo, M.T.; Bewley, C.A. Synthesis of natural product-inspired inhibitors of Mycobacterium tuberculosis mycothiol-associated enzymes: The first inhibitors of GlcNAc-Ins deacetylase. J. Med. Chem. 2007, 50, 6326–6336. [Google Scholar]
- Di Gennaro, F.; Marotta, C.; Antunes, M.; Pizzol, D. Diabetes in active tuberculosis in low-income countries: To test or to take care? Lancet Glob. Health 2019, 7, e707. [Google Scholar] [CrossRef] [Green Version]
- Sikri, K.; Duggal, P.; Kumar, C.; Batra, S.D.; Vashist, A.; Bhaskar, A.; Tripathi, K.; Sethi, T.; Singh, A.; Tyagi, J.S. Multifaceted remodeling by vitamin C boosts sensitivity of Mycobacterium tuberculosis subpopulations to combination treatment by anti-tubercular drugs. Redox Biol. 2018, 15, 452–466. [Google Scholar] [CrossRef]
- Syal, K.; Syal, K.; Bhardwaj, N.; Bhardwaj, N.; Chatterji, D.; Chatterji, D. Vitamin C targets (p)ppGpp synthesis leading to stalling of long-term survival and biofilm formation inMycobacterium smegmatis. FEMS Microbiol. Lett. 2016, 364, fnw282. [Google Scholar] [CrossRef] [Green Version]
- Taneja, N.K.; Dhingra, S.; Mittal, A.; Naresh, M.; Tyagi, J.S. Mycobacterium tuberculosis Transcriptional Adaptation, Growth Arrest and Dormancy Phenotype Development Is Triggered by Vitamin C. PLoS ONE 2010, 5, e10860. [Google Scholar] [CrossRef] [Green Version]
- Albeldas, C.; Ganief, N.; Calder, B.; Nakedi, K.C.; Garnett, S.; Nel, A.J.M.; Blackburn, J.M.; Soares, N.C. Global proteome and phosphoproteome dynamics indicate novel mechanisms of vitamin C induced dormancy in Mycobac-terium smegmatis. J. Proteom. 2017, 180, 1–10. [Google Scholar] [CrossRef]
- Vilchèze, C.; Kim, J.; Jacobs, W.R., Jr. Vitamin C potentiates the killing of Mycobacterium tuberculosis by the first-line tuberculosis drugs iso- niazid and rifampin in mice. Antimicrob. Agents Chemother. 2018, 62, e02165-17. [Google Scholar] [CrossRef] [Green Version]
- Vijayamalini, M.; Manoharan, S. Lipid peroxidation, vitamins C, E and reduced glutathione levels in patients with pulmonary tuberculosis. Cell Biochem. Funct. 2003, 22, 19–22. [Google Scholar]
- Madebo, T.; Lindtjorn, B.; Aukrust, P.; Berge, R.K. Circulating antioxidants and lipid peroxidation products in untreated tuberculosis patients in Ethiopia. Am. J. Clin. Nutr. 2003, 78, 117–122. [Google Scholar]
- Getz, H.R.; Long, E.R.; Henderson, H.J. A study of the relation of nutrition to the development of tuberculosis; influence of ascorbic acid and vitamin A. Am. Rev. Tuberc. 1951, 64, 381–393. [Google Scholar]
- Di Gennaro, F.; Pisani, L.; Veronese, N.; Pizzol, D.; Lippolis, V.; Saracino, A.; Monno, L.; Huson, M.A.; Copetti, R.; Putoto, G.; et al. Potential Diagnostic Properties of Chest Ultrasound in Thoracic Tuberculosis—A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 2235. [Google Scholar] [CrossRef] [Green Version]
- Goswami, T.; Bhattacharjee, A.; Babal, P.; Searle, S.; Moore, E.; Li, M.; Blackwell, J.M. Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter. Biochem. J. 2001, 354, 511–519. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Zhou, F.; Zhang, Y.; Lu, H.; Jin, Q.; Gao, L. SLC11A1 (NRAMP1) Polymorphisms and Tuberculosis Susceptibility: Updated Systematic Review and Meta-Analysis. PLoS ONE 2011, 6, e15831. [Google Scholar] [CrossRef] [Green Version]
- Eck, P.; Erichsen, H.C.; Taylor, J.G.; Yeager, M.; Hughes, A.L.; Levine, M.; Chanock, S.J. Comparison of the genomic structure and variation in the two human sodium-dependent vitamin C transporters, SLC23A1 and SLC23A2. Qual. Life Res. 2004, 115, 285–294. [Google Scholar] [CrossRef]
- Hathcock, J.N.; Azzi, A.; Blumberg, J.; Bray, T.; Dickinson, A.; Frei, B.; Jialal, I.; Johnston, C.S.; Kelly, F.J.; Kraemer, K.; et al. Vitamins E and C are safe across a broad range of intakes. Am. J. Clin. Nutr. 2005, 81, 736–745. [Google Scholar]
- Kulkarni, R.A.; Deshpande, A.R. Anti-inflammatory and antioxidant effect of ginger in tuberculosis. J. Complement. Integr. Med. 2016, 13, 201–206. [Google Scholar] [CrossRef]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar]
- Sancho-Vaello, E.; Gil-Carton, D.; François, P.; Bonetti, E.-J.; Kreir, M.; Pothula, K.R.; Zeth, K. The structure of the antimicrobial human cathelicidin LL-37 shows oligomerization and channel formation in the presence of membrane mimics. Sci. Rep. 2020, 10, 17356. [Google Scholar]
- Luong, K.; Nguyen, L.T.H. Impact of Vitamin D in the Treatment of Tuberculosis. Am. J. Med. Sci. 2011, 341, 493–498. [Google Scholar]
- Wu, H.-X.; Xiong, X.-F.; Zhu, M.; Wei, J.; Zhuo, K.-Q.; Cheng, D.-Y. Effects of vitamin D supplementation on the outcomes of patients with pulmonary tuberculosis: A systematic review and meta-analysis. BMC Pulm. Med. 2018, 18, 1–12. [Google Scholar] [CrossRef]
- Yuk, J.-M.; Shin, D.-M.; Lee, H.-M.; Yang, C.-S.; Jin, H.S.; Kim, K.-K. Vitamin D3 Induces Autophagy in Human Monocytes/Macrophages via Cathelicidin. Cell Host Microbe 2009, 6, 231–243. [Google Scholar]
- Shin, D.-M.; Yuk, J.-M.; Lee, H.-M.; Lee, S.-H.; Son, J.W.; Harding, C.V.; Kim, J.-M.; Modlin, R.L.; Jo, E.-K. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell. Microbiol. 2010, 12, 1648–1665. [Google Scholar]
- Rekha, R.S.; Jagadeeswara, R.M.; Min, W.; Rubhana, R.; Peter, B.; Susanna, B.; Gudmundur, H.; Birgitta, A. Phenylbutyrate induces LL-37-dependent autophagy and intracellular killing of Mycobacterium tuberculosis in human macrophages. Autophagy 2015, 11, 1688–1699. [Google Scholar]
- Mily, A.; Rekha, R.S.; Kamal, S.M.M.; Akhtar, E.; Sarker, P.; Rahim, Z.; Gudmundsson, G.H.; Agerberth, B.; Raqib, R. Oral intake of phenylbutyrate with or without vitamin D3 upregulates the cathelicidin LL-37 in human macrophages: A dose finding study for treatment of tuberculosis. BMC Pulm Med. 2013, 13, 23. [Google Scholar]
- Ganmaa, D.; Uyanga, B.; Zhou, X.; Gantsetseg, G.; Delgerekh, B.; Enkhmaa, D.; Khulan, D.; Ariunzaya, S.; Sumiya, E.; Bolortuya, B.; et al. Vitamin D Supplements for Prevention of Tuberculosis Infection and Disease. N. Engl. J. Med. 2020, 383, 359–368. [Google Scholar] [CrossRef]
- Mario, F.; Steffen, S.; Dong-Min, S.; Yuk, J.M.; Liu, P.T.; Realegeno, S.; Lee, H.M.; Krutzik, S.R.; Schenk, M.; Sieling, P.A.; et al. Vitamin D Is Required for IFN-γ–Mediated Antimicrobial Activity of Human Macrophages. Sci. Transl. Med. 2011, 3, 104ra102. [Google Scholar]
- Brighenti, S.; Bergman, P.; Martineau, A.R. Vitamin D and tuberculosis: Where next? (Review Symposium). J. Intern. Med. 2018, 284, 145–162. [Google Scholar]
- Coussens, A.; Timms, P.M.; Boucher, B.J. 1alpha,25-dihydroxyvitamin D3 inhibits matrix metalloproteinases induced by Mycobacterium tuberculosis infection. Immunology 2009, 127, 539–548. [Google Scholar]
- Gibson, C.C.; Davis, C.T.; Zhu, W.; Bowman-Kirigin, J.A.; Walker, A.E.; Tai, Z.; Thomas, K.R.; Donato, A.J.; Lesniewski, L.A.; Li, D.Y. Dietary Vitamin D and Its Metabolites Non-Genomically Stabilize the Endothelium. PLoS ONE 2015, 10, e0140370. [Google Scholar]
- Elsafi, S.S.M.; Nour, B.M.; Abakar, A.D.; Omer, I.H.; Almugadam, B.S. Vitamin D level and it is association with the severity of pulmonary tuberculosis in patients attended to Kosti Teaching Hospital, Sudan. AIMS Microbiol. 2020, 6, 65–74. [Google Scholar]
- Huang, S.J.; Wang, X.H.; Liu, Z.D.; Cao, W.L.; Han, Y.; Ma, A.G.; Xu, S.F. Vitamin D deficiency and the risk of tuberculosis: A meta-analysis. Drug Des. Dev. Ther. 2017, 11, 91–102. [Google Scholar]
- Venturini, E.; Facchini, L.; Martinez-Alier, N.; Novelli, V.; Galli, L.; De Martino, M.; Chiappini, E. Vitamin D and tuberculosis: A multicenter study in children. BMC Infect. Dis. 2014, 14, 652. [Google Scholar]
- Quaglio, G.; Tognon, F.; Finos, L.; Bome, D.; Sesay, S.; Kebbie, A.; Di Gennaro, F.; Camara, B.S.; Marotta, C.; Pisani, V.; et al. Impact of Ebola outbreak on reproductive health services in a rural district of Sierra Leone: A prospective observational study. BMJ Open 2019, 9, e029093. [Google Scholar] [CrossRef] [Green Version]
- Minardi, M.; Fato, I.; Di Gennaro, F.; Mosti, S.; Mastrobattista, A.; Cerva, C.; Libertone, R.; Saracino, A.; Goletti, D.; Girardi, E.; et al. Common and Rare Hematological Manifestations and Adverse Drug Events during Treatment of Active TB: A State of Art. Microorganisms 2021, 9, 1477. [Google Scholar] [CrossRef]
- Acen, E.L.; Biraro, I.A.; Worodria, W.; Joloba, M.L.; Nkeeto, B.; Musaazi, J.; Kateete, D.P. Impact of vitamin D status and cathelicidin antimicrobial peptide on adults with active pulmonary TB globally: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0252762. [Google Scholar] [CrossRef]
- Daley, P.; Jagannathan, V.; John, K.R.; Sarojini, J.; Latha, A.; Vieth, R.; Suzana, S.; Jeyaseelan, L.; Christopher, D.J.; Smieja, M.; et al. Adjunctive vitamin D for treatment of active tuberculosis in India: A randomised, double-blind, placebo-controlled trial. Lancet Infect. Dis. 2015, 15, 528–534. [Google Scholar]
- Aibana, O.; Huang, C.-C.; Aboud, S.; Arnedo-Pena, A.; Becerra, M.C.; Bellido-Blasco, J.B.; Bhosale, R.; Calderon, R.; Chiang, S.; Contreras, C.; et al. Vitamin D status and risk of incident tuberculosis disease: A nested case-control study, systematic review, and individual-participant data meta-analysis. PLoS Med. 2019, 16, e1002907. [Google Scholar]
- Torres-Juarez, F.; Cardenas-Vargas, A.; Montoya-Rosales, A.; Gonzalez-Curiel, I.; Garcia-Hernandez, M.H.; Enciso-Moreno, J.A. LL-37 immunomodulatory activity during mycobacterium tuberculosis infection in macrophages. Infect. Immun. 2015, 83, 4495–4503. [Google Scholar]
- Chesdachai, S.; Zughaier, S.M.; Hao, L.; Kempker, R.R.; Blumberg, H.M.; Ziegler, T.R.; Tangpricha, V. The effects of first-line anti-tuberculosis drugs on the actions of vitamin D in human macrophages. J. Clin. Transl. Endocrinol. 2016, 6, 23–29. [Google Scholar]
- Zhang, J.; Guo, M.; Huang, Z.-X.; Bao, R.; Yu, Q.; Dai, M.; Wang, X.; Rao, Y. Calcitriol enhances pyrazinamide treatment of murine tuberculosis. Chin. Med. J. 2019, 132, 2089–2095. [Google Scholar]
- Di Gennaro, F.; Marotta, C.; Pizzol, D.; Chhaganlal, K.; Monno, L.; Putoto, G.; Saracino, A.; Casuccio, A.; Mazzucco, W. Prevalence and Predictors of Malaria in Human Immunodeficiency Virus Infected Patients in Beira, Mozambique. Int. J. Environ. Res. Public Health 2018, 15, 2032. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, R.J.; Llewelyn, M.; Toossi, Z. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis amongst Gujarati Asians in West London: A case-control study. Lancet 2000, 355, 618–621. [Google Scholar]
- Roth, D.E.; Soto, G.; Arenas, F.; Bautista, C.; Ortiz, J.; Rodriguez, R.; Cabrera, L.; Gilman, R.H. Association between Vitamin D Receptor Gene Polymorphisms and Response to Treatment of Pulmonary Tuberculosis. J. Infect. Dis. 2004, 190, 920–927. [Google Scholar]
- Valdivielso, J.M.; Fernandez, E. Vitamin D receptor polymorphisms and diseases. Clin. Chim. Acta 2006, 371, 1–12. [Google Scholar]
- Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The Role of Vitamin E in Human Health and Some Diseases. Sultan Qaboos Univ. Med. J. 2014, 14, e157–e165. [Google Scholar]
- Burton, G.W.; Joyce, A.; Ingold, K.U. Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes? Arch. Biochem. Biophys. 1983, 221, 281–290. [Google Scholar]
- Pizzol, D.; Di Gennaro, F.; Chhaganlal, K.D.; Fabrizio, C.; Monno, L.; Putoto, G.; Saracino, A. Prevalence of diabetes mellitus in newly diagnosed pulmonary tuberculosis in Beira, Mozambique. Afr. Health Sci. 2017, 17, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.; Liang, H.; Wang, Q.; Ma, A. Vitamin A, vitamin E and beta-carotene nutritional status and antioxidase level analysis among tuberculosis patients. Wei Sheng Yan Jiu 2013, 42, 364–368. [Google Scholar]
- Iddir, M.; Brito, A.; Dingeo, G.; Del Campo, S.S.F.; Samouda, H.; La Frano, M.R.; Bohn, T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020, 12, 1562. [Google Scholar] [CrossRef]
- Lamsal, M.; Gautam, N.; Bhatta, N.; Toora, B.D.; Bhattacharya, S.K.; Baral, N. Evaluation of lipid peroxidation product, nitrite and antioxidant levels in newly diagnosed and two months follow-up patients with pulmonary tuberculosis. Southeast. Asian J. Trop Med. Public Health 2007, 38, 695–703. [Google Scholar]
- Dalvi, S.M.; Patil, V.W.; Ramraje, N.N.; Phadtare, J.M.; Gujarathi, S.U. Nitric Oxide, Carbonyl Protein, Lipid Peroxidation and Correlation Between Antioxidant Vitamins in Different Categories of Pulmonary and Extra Pulmonary Tuberculosis. Malays. J. Med. Sci. 2013, 20, 21–30. [Google Scholar]
- Hussain, M.I.; Ahmed, W.; Nasir, M.; Mushtaq, M.H.; Sheikh, A.A.; Shaheen, A.Y.; Mahmood, A. Immune boosting role of vitamin E against pulmonary tuberculosis. Control. Clin. Trial. Pak. J. Pharm. Sci. 2019, 32 (Suppl. 1), 269–276. [Google Scholar]
- Aibana, O.; Franke, M.; Huang, C.-C.; Galea, J.; Calderon, R.; Zhang, Z.; Becerra, M.C.; Smith, E.R.; Contreras, C.; Yataco, R.; et al. Vitamin E Status Is Inversely Associated with Risk of Incident Tuberculosis Disease among Household Contacts. J. Nutr. 2018, 148, 56–62. [Google Scholar] [CrossRef]
- Tayal, V.; Kalra, B.S.; Agarwal, S.; Khurana, N.; Gupta, U. Hepatoprotective effect of tocopherol against isoniazid and rifampicin induced hepatotoxicity in albino rabbits. Indian J. Exp. Biol. 2007, 45, 1031–1036. [Google Scholar]
- Awodele, O.; Akintonwa, A.; Osunkalu, V.O.; Coker, H.A. Modulatory activity of antioxidants against the toxicity of Rifampicin in vivo. Rev. Inst. Med. Trop. Sao Paulo 2010, 52, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Awodele, O.; Osunkalu, V.O.; Adejumo, I.A.; Odeyemi, A.A.; Ebuehi, O.A.; Akintonwa, A. Haematotoxic and reproductive toxicity of fixed dose combined anti-tuberculous agents: Protective role of antioxidants in rats. Nig Q J. Hosp. Med. 2013, 23, 17–21. [Google Scholar]
- Fitri, M.L.; Nurwidya, F.; Manikam, N.R.M.; Permadhi, I.; Sawitri, N.; Rahayu, B. Fat and vitamin E intake affect multidrug-resistant tuberculosis patients’ quality of life: A cross-sectional study. J. Pak. Med. Assoc. 2021, 71 (Suppl. 2), S53–S57. [Google Scholar]
- Di Gennaro, F.; Marotta, C.; Pisani, L.; Veronese, N.; Pisani, V.; Lippolis, V.; Pellizer, G.; Pizzol, D.; Tognon, F.; Bavaro, D.F.; et al. Maternal caesarean section infection (MACSI) in Sierra Leone: A case-control study. Epidemiol. Infect. 2020, 148, e40. [Google Scholar] [CrossRef] [Green Version]
- Grobler, L.; Durão, S.; Van Der Merwe, S.M.; Wessels, J.; Naude, C. Nutritional supplements for people being treated for active tuberculosis: A technical summary. South. Afr. Med. J. 2017, 108, 16–18. [Google Scholar] [CrossRef] [Green Version]
- Hemilä, H.; Kaprio, J. Vitamin E supplementation may transiently increase tuberculosis risk in males who smoke heavily and have high dietary vitamin C intake. Br. J. Nutr. 2008, 100, 896–902. [Google Scholar] [CrossRef]
- Ren, Z.; Zhao, F.; Chen, H.; Hu, D.; Yu, W.; Xu, X.; Lin, D.; Luo, F.; Fan, Y.; Wang, H.; et al. Nutritional intakes and associated factors among tuberculosis patients: A cross-sectional study in China. BMC Infect. Dis. 2019, 19, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; Jenita, X.; Kalaiselvi, P.; Muthu, V.; Chandrasekar, D.; Varalakshmi, P. Salubrious effect of vitamin E supplementation on renal stone forming risk factors in urogenital tuberculosis patients. Ren. Fail. 2004, 26, 135–140. [Google Scholar] [CrossRef]
- Srinivasan, S.; Pragasam, V.; Jenita, X.; Kalaiselvi, P.; Muthu, V.; Varalakshmi, P. Oxidative stress in urogenital tuberculosis patients: A predisposing factor for renal stone formation—amelioration by vitamin E supplementation. Clin. Chim. Acta 2004, 350, 57–63. [Google Scholar] [CrossRef]
Vitamin | Type of Vitamin | Physiopathology | Potential Role | Trial (Yes/No) | Results |
---|---|---|---|---|---|
A | Lipid-soluble | -Cellular differentiation -Integrity of the mucosal epithelia -Increased immune system responses (lymphocytes proliferation, macrophage activity, switch type 2/type 1 cytokines) | -Vitamin A deficiency predicted risk of incident TB disease in people exposed to M. tuberculosis. -No improvement in sputum smear conversion with vitamin A supplementation-Better sputum conversion with multivitamin–trace elements supplementation | [13,14,15,16,17,27] | Vitamin A did not significantly affect the time to smear conversion in patients with pulmonary TB |
B1 | Hydrosoluble | Promotes macrophage polarization into classically activated phenotypes with strong microbicidal activity and enhanced tumor necrosis factor-α and interleukin-6 expression, at least in part by promoting nuclear factor-κB signaling | Improve the protective immune response to reduce MTB survival inside macrophages and in vivo VB1 | [24] | Improve the mice’s protective immunological response during MTB infection. |
B2 | Hydrosoluble | It is indispensable for flavoenzymes, cofactors in redox reactions | Improve innate T cell response in early MTB infection | [25,27] | VB2 may protect on early stages of MTB infections |
B5 | Hydrosoluble | VB5 enhanced the phosphorylation of nuclear factor-κB (NF-κB), Protein kinase B (PKB), also known as Akt, and p38, while suppressing the early phosphorylation of ERK. TNF- and IL-6 protein levels were significantly higher in the VB5-treated BMDMs | Macrophage clearance of intracellular mycobacteria | [29] | No differences between group control and VB5 treated patients |
B6 | Hydrosoluble | antioxidant properties | Scavenge ROS | [31] | Essential for growth and survival of M. tuberculosis in culture |
B7 | Hydrosoluble | M. tuberculosis requires vitamin B7 (biotin). It acts as a cofactor in acyl CoA carboxylase and pyruvate carboxylase, two important enzymes involved in fatty acid production and anaplerosis. It has been claimed that M. tuberculosis requires de novo biotin production since it lacks biotin transporters, as evidenced by genetic research. | Cofactor in acyl CoA carboxylase and pyruvate carboxylase, enzymes involved in fatty acid production and anaplerosis | [33] | Exogenous B7 is required for M. tuberculosis virulence and pathogenicity. Enzymes for biotin biosynthesis could be a target for future treatment |
B12 | Hydrosoluble | ATP-binding cassette-type protein of MTB participates in VB12 production | M. tuberculosis regulates its core metabolic functions according to B12 availability, whether the acquisition of B12 via endogenous or through uptake from the environment | [37,40] | CobF gene was one of the genes required in MTB production of VB12. Low B12 supplement provides a favorable situation for MTB multiplication |
C | Water-soluble | -VC induced Fenton reaction in aerobic envinroment leading to ROS production, lipid alteration, redox unbalance and DNA demage in MTB coltures. -The combination treatment with VC and Mycothiol inhibitors could lead to more rapid MTB cells death. -VC affects lipid biosynthesis in MTB and induces a reduction in phospholipid content -Transcriptional adaptation, grow arrest and dormancy phenotype development is triggered by VC | -High concentrations of vitamin C sterilize drug-susceptible, MDR and extensively drug-resistant MTB cultures and prevent the emergence of drug persisters -Fenton reaction is the main mechanism of action of VC against MTB -VC potentiates the cidal action of PZA -Addition dose of VC to INH-RIF treatment could reduce the emergence of INH and RIF resistant mutants | -In vitro [48,52] -In mice [56] -Humans [59,60] | -In TB patients with high doses of VC added to first line treatment, there is no evidence of any regression of TB lesion. The effects on the bedridden patients were described as remarkable, they had regained appetite and physical activity -VC might improve patients resistance to infection |
D | fat-soluble | -Stimulates endogenous production of hCAP-18/LL37 which interacts with the molecules of the bacterial wall and perforate the cytoplasmic membrane of the bacterial cell; -Induces autophagy in infected macrophages; -Determines expansion of T-reg lymphocytes that inhibit the Th1 immune response; -Reduces the production of MMPs, associated with tissue remodeling and the formation of tuberculous granulomas; -Promotes the stabilization of the endothelium and of the barrier function in the presence of inflammatory mediators | -VD suppresses the replication of mycobacterium in vitro; -Anti-tuberculous drugs reduce the production of cathelicidin hCAP18-LL37; -In patients receiving 4-drug therapy, despite VD supplementation, there is no significant increase in serum VD levels. | In vivo but few and with numerically small samples and data inaccuracies [52,53,73,84,85] | -VD and TB prevention: conflicting results that do not show a clear correlation in vivo between VD supplementation and prevention of disease development -VD and treatment of TB: infusion of high doses of VD did not reach an early microscopic negativization, compared to placebo, but in a metanalysis of RCT it seems that VD can accelerate sputum culture conversion in patients with multidrug-resistant pulmonary TB. -In patients receiving 4-drug therapy, despite VD supplementation, there is no significant increase in serum VD levels. |
E | liposolubil | -Boosting humoral and cell immune responses, increasing phagocytic functions -Removal of free radicals -Protection of structural components of cell membranes against peroxidation | Low levels of VE on TB onset; docuemented poor assumption of VE in TB patients; protective role against TB progression in household contacts protection against organ toxicity of ATT in vivo studies; improvement of quality of life; improvement of nutritional status during ATT | [12,13] | No reliable evidence for routinary supplementation over the major outcomes (i.e., reduced death, increased cure rate at 6 and 12 months, improved nutritional status) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patti, G.; Pellegrino, C.; Ricciardi, A.; Novara, R.; Cotugno, S.; Papagni, R.; Guido, G.; Totaro, V.; De Iaco, G.; Romanelli, F.; et al. Potential Role of Vitamins A, B, C, D and E in TB Treatment and Prevention: A Narrative Review. Antibiotics 2021, 10, 1354. https://doi.org/10.3390/antibiotics10111354
Patti G, Pellegrino C, Ricciardi A, Novara R, Cotugno S, Papagni R, Guido G, Totaro V, De Iaco G, Romanelli F, et al. Potential Role of Vitamins A, B, C, D and E in TB Treatment and Prevention: A Narrative Review. Antibiotics. 2021; 10(11):1354. https://doi.org/10.3390/antibiotics10111354
Chicago/Turabian StylePatti, Giulia, Carmen Pellegrino, Aurelia Ricciardi, Roberta Novara, Sergio Cotugno, Roberta Papagni, Giacomo Guido, Valentina Totaro, Giuseppina De Iaco, Federica Romanelli, and et al. 2021. "Potential Role of Vitamins A, B, C, D and E in TB Treatment and Prevention: A Narrative Review" Antibiotics 10, no. 11: 1354. https://doi.org/10.3390/antibiotics10111354
APA StylePatti, G., Pellegrino, C., Ricciardi, A., Novara, R., Cotugno, S., Papagni, R., Guido, G., Totaro, V., De Iaco, G., Romanelli, F., Stolfa, S., Minardi, M. L., Ronga, L., Fato, I., Lattanzio, R., Bavaro, D. F., Gualano, G., Sarmati, L., Saracino, A., ... Di Gennaro, F. (2021). Potential Role of Vitamins A, B, C, D and E in TB Treatment and Prevention: A Narrative Review. Antibiotics, 10(11), 1354. https://doi.org/10.3390/antibiotics10111354