Does Systemic Methotrexate Therapy Induce Azole Resistance among Endogenous Candida Strains?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Identification
3.2. Minimum Inhibitory Concentration (MIC)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hannoodee, M.; Mittal, M. Methotrexate; StatPearls Publishing: Treasure Island, FL, USA, 2021.
- Yapar, N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk Manag. 2014, 10, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clin. Microbiol. Infect. 2014, 20, 5–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scorzoni, L.; de Paula e Silva, A.C.A.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.M.A.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front. Microbiol. 2017, 8, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.C.A.; Sorrell, T.C. Fluconazole. In Kucers the Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, 7th ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 2756–2785. ISBN 9781498747967. [Google Scholar]
- Bondaryk, M.; Kurza̧tkowski, W.; Staniszewska, M. Antifungal agents commonly used in the superficial and mucosal candidiasis treatment: Mode of action and resistance development. Postep. Dermatol. Alergol. 2013, 30, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Harry, J.B.; Oliver, B.G.; Song, J.L.; Silver, P.M.; Little, J.T.; Choiniere, J.; White, T.C. Drug-induced regulation of the MDR1 promoter in Candida albicans. Antimicrob. Agents Chemother. 2005, 49, 2785–2792. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Kohli, A.; Krishnamurthy, S.; Puri, N.; Aalamgeer, S.A.; Panwar, S.; Prasad, R. Identification of polymorphic mutant alleles of CaMDR1, a major facilitator of Candida albicans which confers multidrug resistance, and its in vitro transcriptional activation. Curr. Genet. 1998, 34, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Ben-Yaacov, R.; Knoller, S.; Caldwell, G.A.; Becker, J.M.; Koltinl, Y. Candida albicans Gene Encoding Resistance to Benomyl and Methotrexate Is a Multidrug Resistance Gene. Antimicrob. Agents Chemother. 1994, 38, 648–652. [Google Scholar] [CrossRef] [Green Version]
- Karuga, F.F.; Góralska, K.; Brzeziańska, E.; Brzeziańska-Lasota, E. Detection of Cross-Resistance Between Methotrexate and Azoles in Candida albicans and Meyerozyma guilliermondii: An In Vitro Study. Acta Mycol. 2021, 56, 566. [Google Scholar] [CrossRef]
- Hiller, D.; Sanglard, D.; Morschhäuser, J. Overexpression of the MDR1 Gene Is Sufficient To Confer Increased Resistance to Toxic Compounds in Candida albicans. Antimicrob. Agents Chemother. 2006, 50, 1365–1371. [Google Scholar] [CrossRef] [Green Version]
- Martinez, M. Heterogeneous mechanisms of azole resistance in Candida albicans clinical isolates from an HIV-infected patient on continuous fluconazole therapy for oropharyngeal candidosis. J. Antimicrob. Chemother. 2002, 49, 515–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staniszewska, M.; Bondaryk, M.; Piłat, J.; Siennicka, K.; Magda, U.; Kurzatkowski, W. Virulence factors of Candida albicans. Prz. Epidemiol. 2012, 66, 629–633. [Google Scholar]
- Enoch, D.A.; Ludlam, H.A.; Brown, N.M. Invasive fungal infections: A review of epidemiology and management options. J. Med. Microbiol. 2006, 55, 809–818. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Chaturvedi, V.; Espinel-Ingroff, A.; Ghannoum, M.A.; Gosey, L.L.; Odds, F.C.; Rex, J.H.; Rinaldi, M.G.; Sheehan, D.J.; Walsh, T.J.; et al. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Second Edition Serving the World’s Medical Science Community Through Voluntary Consensus, 2nd ed.; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2002; Volume 22, ISBN 1562384694. [Google Scholar]
- Clinical & Laboratory Standards Institute. CLSI Performance Standards for Antifungal Susceptibility Testing of Yeasts, 2nd ed.; CLSI Supplement M60; Clinical & Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Sobel, J.D. Vulvovaginal candidosis. Lancet 2007, 369, 1961–1971. [Google Scholar] [CrossRef]
- Gonçalves, B.; Ferreira, C.; Alves, C.T.; Henriques, M.; Azeredo, J.; Silva, S. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Crit. Rev. Microbiol. 2016, 42, 905–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Shamahy, H.A. Oral Candida Albicans Colonization in Dental Prosthesis Patients and Individuals with Natural Teeth, Sana’a City, Yemen. Biomed. J. Sci. Tech. Res. 2018, 11, 8388–8392. [Google Scholar] [CrossRef]
- Yan, Z.; Young, A.L.; Hua, H.; Xu, Y. Multiple oral Candida infections in patients with Sjögren’s syndrome—Prevalence and clinical and drug susceptibility profiles. J. Rheumatol. 2011, 38, 2428–2431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fangtham, M.; Magder, L.S.; Petri, M.A. Oral candidiasis in systemic lupus erythematosus. Lupus 2014, 23, 684–690. [Google Scholar] [CrossRef]
- Bishu, S.; Su, E.W.; Wilkerson, E.R.; Reckley, K.A.; Jones, D.M.; McGeachy, M.J.; Gaffen, S.L.; Levesque, M.C. Rheumatoid arthritis patients exhibit impaired Candida albicans-specific Th17 responses. Arthritis Res. Ther. 2014, 16, R50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Listing, J.; Gerhold, K.; Zink, A. The risk of infections associated with rheumatoid arthritis, with its comorbidity and treatment. Rheumatology 2013, 52, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Ergun, S.; Çekici, A.; Topcuoglu, N.; Migliari, D.A.; Külekçi, G.; Tanyeri, H.; Isik, G. Oral status and Candida colonization in patients with Sjögren’s syndrome. Med. Oral Patol. Oral Cir. Bucal 2010, 15, e310-5. [Google Scholar] [CrossRef] [PubMed]
- Nilius, A.M. Antimicrobial Pharmacodynamics in Theory and Clinical Practice; Informa Healthcare USA: New York, NY, USA, 2002; Volume 17, ISBN 9780824729257. [Google Scholar]
- Kohli, A.; Gupta, V.; Krishnamurthy, S.; Hasnain, S.E.; Prasad, R. Specificity of drug transport mediated by CaMDR1: A major facilitator of Candida albicans. J. Biosci. 2001, 26, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Grossman, N.T.; Pham, C.D.; Cleveland, A.A.; Lockhart, S.R. Molecular mechanisms of fluconazole resistance in Candida parapsilosis isolates from a U.S. surveillance system. Antimicrob. Agents Chemother. 2015, 59, 1030–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinea, J.; Sánchez-Somolinos, M.; Cuevas, O.; Peláez, T.; Bouza, E. Fluconazole resistance mechanisms in Candida krusei: The contribution of efflux-pumps. Med. Mycol. 2006, 44, 575–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Gao, L.; Yu, P.; Kosgey, J.C.; Jia, L.; Fang, Y.; Xiong, J.; Zhang, F. In vitro synergy of azole antifungals and methotrexate against Candida albicans. Life Sci. 2019, 235, 116827. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, G. Mechanisms of methotrexate resistance in osteosarcoma cell lines and strategies for overcoming this resistance. Oncol. Lett. 2015, 9, 940–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Methotrexate 100 mg/mL Solution for Injection—Summary of Product Characteristics (SmPC)—(emc). Available online: https://www.medicines.org.uk/emc/product/8504/smpc#gref (accessed on 13 October 2021).
- Howard, S.C.; McCormick, J.; Pui, C.-H.; Buddington, R.K.; Harvey, R.D. Preventing and Managing Toxicities of High-Dose Methotrexate. Oncologist 2016, 21, 1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakura, T.; Hayakawa, F.; Sugiura, I.; Murayama, T.; Imai, K.; Usui, N.; Fujisawa, S.; Yamauchi, T.; Yujiri, T.; Kakihana, K.; et al. High-dose methotrexate therapy significantly improved survival of adult acute lymphoblastic leukemia: A phase III study by JALSG. Leukemia 2018, 32, 626–632. [Google Scholar] [CrossRef] [PubMed]
KERRYPNX | Test Group (n = 52) | Control Group (n = 49) |
---|---|---|
Age (years), mean (SD) | 52.21 (13.21) | 51.45 (14.97) |
Gender | Male: 18/52 (34.6%) | Male: 25/49 (51.0%) |
Female: 34/52 (65.4%) | Female: 24/49 (49.0%) | |
Dentures presence | 13/52 (25.0%) | 9/49 (18.4%) |
Total duration of methotrexate therapy (years), mean (SD) | 5.90 (4.47) | - |
Methotrexate dose (mg/week), mean (SD) | 19.09 mg, 20 mg (5.24 mg) | - |
Cause of methotrexate therapy | RA: 34 | - |
PsA: 7 | ||
RA/PsA: 1 | ||
SLE: 3 | ||
AS: 2 | ||
SpA: 1 | ||
JIA: 1 | ||
SSc: 1 | ||
GPA: 1 | ||
SjS: 1 |
Single-Species Samples | Multiple-Species Samples | ||
---|---|---|---|
Species | Number of Samples | Species | Number of Samples |
C. albicans | 33 | C. albicans + C. dubliniensis | 0 |
C. dubliniensis | 0 | C. albicans + C. glabrata | 2 |
C. glabrata | 1 | C. albicans + C. inconspicua | 1 |
C. kefyr | 1 | C. albicans + C. krusei | 1 |
C. krusei | 2 | C. albicans + C. tropicalis | 0 |
C. lusitaniae | 1 | C. albicans + Rhodotorulla mucilaginosa | 0 |
C. tropicalis | 0 | C. krusei + C. glabrata | 1 |
Hanseniaspora uvarum | 0 | C. glabrata + C. tropicalis | 0 |
Wickerhamomyces anomalus | 1 | C. albicans + C. farmata + C. glabrata | 0 |
C. albicans + C. parapsilosis + C. zeylanoides | 0 | ||
C. tropicalis + C. Glabrata + Yarnodria lipolytica | 0 | ||
C. albicans + C. dubliniensis + C. krusei + C. tropicalis | 0 |
Single-Species Samples | Multiple-Species Samples | ||
---|---|---|---|
Species | Number of Samples | Species | Number of Samples |
C. albicans | 16 | C. albicans + C. dubliniensis | 2 |
C. dubliniensis | 4 | C. albicans + C. glabrata | 1 |
C. glabrata | 0 | C. albicans + C. inconspicua | 0 |
C. kefyr | 0 | C. albicans + C. krusei | 0 |
C. krusei | 0 | C. albicans + C. tropicalis | 2 |
C. lusitaniae | 1 | C. albicans + Rhodotorulla mucilaginosa | 1 |
C. tropicalis | 1 | C. krusei + C. glabrata | 0 |
Hanseniaspora uvarum | 1 | C. glabrata + C. tropicalis | 1 |
Wickerhamomyces anomalus | 0 | C. albicans + C. farmata + C. glabrata | 1 |
C. albicans + C. parapsilosis + C. zeylanoides | 1 | ||
C. tropicalis + C. Glabrata + Yarnodria lipolytica | 1 | ||
C. albicans + C. dubliniensis + C. krusei + C. tropicalis | 1 |
Sample | Species | MIC (µg/mL) (Susceptibility Status) | Gender (Age), Duration of MTX Therapy, Weekly Dose, Cause of Therapy, Dentures Presence |
---|---|---|---|
T11, Test group |
| 32 (SDD) | Male (77), 10, 20 mg, RA, dentures present |
<0.125 (R) | |||
T12, Test group |
| <0.125 (S) | Male (66), 15, 25 mg, RA, dentures present |
64 (R) | |||
T41, Test group |
| 16 (R) | Female (66), 2, 25 mg, RA, dentures present |
T49, Test group |
| <0.125 (R) | Female (45), 6, 20 mg, SpA, dentures absent |
<0.125 (R) | |||
C40, Control group |
| 0.25 (S) | Male (64), dentures present |
0.25 (S) | |||
64 (R) | |||
0.25 (S) | |||
C43, Control group |
| 64 (R) | Male (73), dentures present |
MTX Dose (mg/Week) | Number of Candida Strains with Specific MIC Value (µg/mL)/All Candida Strains in the Dose Category | Number of Patients | ||||
---|---|---|---|---|---|---|
64 | 32 | 16 | 0.25 | <0.125 | ||
25 | 1/16 | 1/16 | 1/16 | 2/16 | 11/16 | 18 |
20 | 0/12 | 1/12 | 0/12 | 1/12 | 10/12 | 12 |
17.5 | 0/1 | 0/1 | 0/1 | 1/1 | 0/1 | 1 |
15 | 0/13 | 0/13 | 0/13 | 0/13 | 13/13 | 15 |
12.5 | 0/1 | 0/1 | 0/1 | 0/1 | 1/1 | 1 |
10 | 0/5 | 0/5 | 0/5 | 1/5 | 4/5 | 4 |
7.5 | 0/1 | 0/1 | 0/1 | 0/1 | 1/1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żyrek, D.; Nowicka, J.; Pajączkowska, M.; Morgiel, E. Does Systemic Methotrexate Therapy Induce Azole Resistance among Endogenous Candida Strains? Antibiotics 2021, 10, 1302. https://doi.org/10.3390/antibiotics10111302
Żyrek D, Nowicka J, Pajączkowska M, Morgiel E. Does Systemic Methotrexate Therapy Induce Azole Resistance among Endogenous Candida Strains? Antibiotics. 2021; 10(11):1302. https://doi.org/10.3390/antibiotics10111302
Chicago/Turabian StyleŻyrek, Dawid, Joanna Nowicka, Magdalena Pajączkowska, and Ewa Morgiel. 2021. "Does Systemic Methotrexate Therapy Induce Azole Resistance among Endogenous Candida Strains?" Antibiotics 10, no. 11: 1302. https://doi.org/10.3390/antibiotics10111302
APA StyleŻyrek, D., Nowicka, J., Pajączkowska, M., & Morgiel, E. (2021). Does Systemic Methotrexate Therapy Induce Azole Resistance among Endogenous Candida Strains? Antibiotics, 10(11), 1302. https://doi.org/10.3390/antibiotics10111302