Antimicrobial Treatment Strategies for Stenotrophomonas maltophilia: A Focus on Novel Therapies
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Historical Therapeutics
3.1.1. Trimethoprim-Sulfamethoxazole (TMP-SMX)
3.1.2. Fluoroquinolones
3.1.3. Minocycline
3.1.4. Beta-Lactam Treatment
3.1.5. Colistin and Polymyxin
3.1.6. Combination Treatment
3.2. Novel Therapeutics
3.2.1. Eravacycline and Tigecycline
3.2.2. Cefiderocol
3.2.3. Avibactam-Aztreonam
3.2.4. Phage and Peptide Therapy
3.3. A Recommended Approach to Therapy
Author Contributions
Funding
Conflicts of Interest
References
- Falagas, M.E.; Kastoris, A.C.; Vouloumanou, E.K.; Dimopoulos, G. Community-acquired Stenotrophomonas maltophilia infections: A systematic review. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 719–730. [Google Scholar] [CrossRef]
- Brooke, J.S. Advances in the microbiology of Stenotrophomonas maltophilia. Clin. Microbiol. Rev. 2021, 34, e00030-19. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Kastoris, A.C.; Vouloumanou, E.K.; Rafailidis, P.I.; Kapaskelis, A.M.; Dimopoulos, G. Attributable mortality of Stenotrophomonas maltophilia infections: A systematic review of the literature. Futur. Microbiol. 2009, 4, 1103–1109. [Google Scholar] [CrossRef]
- Mojica, M.F.; Rutter, J.D.; Taracila, M.; Abriata, L.A.; Fouts, D.E.; Papp-Wallace, K.M.; Walsh, T.J.; LiPuma, J.J.; Vila, A.J.; Bonomo, R.A. Population structure, molecular epidemiology, and β-lactamase diversity among Stenotrophomonas maltophilia isolates in the United States. mBio 2019, 10, e00405-19. [Google Scholar] [CrossRef] [PubMed]
- Biagi, M.; Vialichka, A.; Jurkovic, M.; Wu, T.; Shajee, A.; Lee, M.; Patel, S.; Mendes, R.E.; Wenzler, E. Activity of cefiderocol alone and in combination with levofloxacin, minocycline, polymyxin B, or trimethoprim-sulfamethoxazole against multidrug-resistant Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2020, 64, e00559-20. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Tillotson, G.; Benjumea, D.; Callahan, P.; Echols, R. The burden of bloodstream infections due to Stenotrophomonas maltophilia in the United States: A large, retrospective database study. Open Forum Infect. Dis. 2020, 7, ofaa141. [Google Scholar] [CrossRef]
- Echang, Y.T.; Elin, C.Y.; Echen, Y.H.; Ehsueh, P.-R. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front. Microbiol. 2015, 6, 893. [Google Scholar] [CrossRef]
- Gil-Gil, T.; Martínez, J.L.; Blanco, P. Mechanisms of antimicrobial resistance in Stenotrophomonas maltophilia: A review of current knowledge. Expert Rev. Anti-Infect. Ther. 2020, 18, 335–347. [Google Scholar] [CrossRef]
- Sanchez, M.B.; Hernandez, A.; Martinez, J.L. Stenotrophomonas maltophilia drug resistance. Futur. Microbiol. 2009, 4, 655–660. [Google Scholar] [CrossRef]
- Gales, A.C.; Seifert, H.; Gur, D.; Castanheira, M.; Jones, R.N.; Sader, H. Antimicrobial susceptibility of Acinetobacter calcoaceticus-Acinetobacter baumannii complex and Stenotrophomonas maltophilia clinical isolates: Results from the sentry antimicrobial surveillance program (1997–2016). Open Forum Infect. Dis. 2019, 6, S34–S46. [Google Scholar] [CrossRef] [Green Version]
- Gajdács, M.; Urbán, E. Prevalence and antibiotic resistance of Stenotrophomonas maltophilia in respiratory tract samples: A 10-year epidemiological snapshot. Health Serv. Res. Manag. Epidemiol. 2019, 6, 2333392819870774. [Google Scholar] [CrossRef] [Green Version]
- Nys, C.; Cherabuddi, K.; Venugopalan, V.; Klinker, K.P. Clinical and microbiologic outcomes in patients with monomicrobial Stenotrophomonas maltophilia infections. Antimicrob. Agents Chemother. 2019, 63, e00788-19. [Google Scholar] [CrossRef]
- Wang, Y.L.; Scipione, M.R.; Dubrovskaya, Y.; Papadopoulos, J. Monotherapy with fluoroquinolone or trimethoprim-sulfamethoxazole for treatment of Stenotrophomonas maltophilia infections. Antimicrob. Agents Chemother. 2014, 58, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Junco, S.J.; Bowman, M.C.; Turner, R.B. Clinical outcomes of Stenotrophomonas maltophilia infection treated with trimethoprim/sulfamethoxazole, minocycline, or fluoroquinolone monotherapy. Int. J. Antimicrob. Agents 2021, 58, 106367. [Google Scholar] [CrossRef]
- Farrell, D.J.; Sader, H.S.; Jones, R.N. Antimicrobial susceptibilities of a worldwide collection of Stenotrophomonas maltophilia isolates tested against tigecycline and agents commonly used for S. maltophilia infections. Antimicrob. Agents Chemother. 2010, 54, 2735–2737. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.R. Cotrimoxazole—optimal dosing in the critically ill. Ann. Intensiv. Care 2014, 4, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biagi, M.; Lamm, D.; Meyer, K.; Vialichka, A.; Jurkovic, M.; Patel, S.; Mendes, R.E.; Bulman, Z.P.; Wenzler, E. Activity of aztreonam in combination with avibactam, clavulanate, relebactam, and vaborbactam against multidrug-resistant Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2020, 64, e00297-20. [Google Scholar] [CrossRef] [PubMed]
- Grillon, A.; Schramm, F.; Kleinberg, M.; Jehl, F. Comparative activity of ciprofloxacin, levofloxacin and moxifloxacin against Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia assessed by minimum inhibitory concentrations and time-kill studies. PLoS ONE 2016, 11, e0156690. [Google Scholar] [CrossRef] [PubMed]
- Ba, B.B.; Feghali, H.; Arpin, C.; Saux, M.-C.; Quentin, C. Activities of ciprofloxacin and moxifloxacin against Stenotrophomonas maltophilia and emergence of resistant mutants in an In Vitro pharmacokinetic-pharmacodynamic model. Antimicrob. Agents Chemother. 2004, 48, 946–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.Y.; Kang, C.-I.; Kim, J.; Ha, Y.E.; Chung, D.R.; Lee, N.Y.; Peck, K.R.; Song, J.-H. Can levofloxacin be a useful alternative to trimethoprim-sulfamethoxazole for treating Stenotrophomonas maltophilia bacteremia? Antimicrob. Agents Chemother. 2013, 58, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.-H.; Kang, C.-I.; Cornejo-Juárez, P.; Yeh, K.-M.; Wang, C.-H.; Cho, S.; Gözel, M.G.; Kim, S.-H.; Hsueh, P.-R.; Sekiya, N.; et al. Fluoroquinolones versus trimethoprim-sulfamethoxazole for the treatment of Stenotrophomonas maltophilia infections: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2019, 25, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Garrison, M.W.; Anderson, D.E.; Campbell, D.M.; Carroll, K.C.; Malone, C.L.; Anderson, J.D.; Hollis, R.J.; Pfaller, M.A. Stenotrophomonas maltophilia: Emergence of multidrug-resistant strains during therapy and in an In Vitro pharmacodynamic chamber model. Antimicrob. Agents Chemother. 1996, 40, 2859–2864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flamm, R.K.; Shortridge, D.; Castanheira, M.; Sader, H.; Pfaller, M.A. In Vitro activity of minocycline against U.S. isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus species complex, Stenotrophomonas maltophilia, and Burkholderia cepacia complex: Results from the SENTRY antimicrobial surveillance program, 2014 to 2018. Antimicrob. Agents Chemother. 2019, 63, e01154-19. [Google Scholar] [CrossRef]
- Hand, E.; Davis, H.; Kim, T.; Duhon, B. Monotherapy with minocycline or trimethoprim/sulfamethoxazole for treatment of Stenotrophomonas maltophilia infections. J. Antimicrob. Chemother. 2016, 71, 1071–1075. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; King, M.; Rose, L. Medical management of endocarditis caused by Stenotrophomonas maltophilia: A case report. J. Pharm. Pr. 2018, 32, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Ni, W.; Cai, X.; Zhao, J.; Cui, J. Evaluation of trimethoprim/sulfamethoxazole (SXT), minocycline, tigecycline, moxifloxacin, and ceftazidime alone and in combinations for SXT-susceptible and SXT-resistant Stenotrophomonas maltophilia by In Vitro time-kill experiments. PLoS ONE 2016, 11, e0152132. [Google Scholar] [CrossRef]
- Colton, B.; McConeghy, K.W.; Schreckenberger, P.C.; Danziger, L.H. IV minocycline revisited for infections caused by multidrug-resistant organisms. Am. J. Health Pharm. 2016, 73, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Ni, W.; Cai, X.; Cui, J. A Monte Carlo pharmacokinetic/pharmacodynamic simulation to evaluate the efficacy of minocycline, tigecycline, moxifloxacin, and levofloxacin in the treatment of hospital-acquired pneumonia caused by Stenotrophomonas maltophilia. Infect. Dis. 2015, 47, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Biagi, M.; Tan, X.; Wu, T.; Jurkovic, M.; Vialichka, A.; Meyer, K.; Mendes, R.E.; Wenzler, E. Activity of potential alternative treatment agents for Stenotrophomonas maltophilia isolates nonsusceptible to levofloxacin and/or trimethoprim-sulfamethoxazole. J. Clin. Microbiol. 2020, 58, e01603-19. [Google Scholar] [CrossRef]
- Mathy, V.; Grohs, P.; Compain, F. In Vitro activity of β-lactams in combination with avibactam against multidrug-resistant Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Achromobacter xylosoxidans isolates from patients with cystic fibrosis. J. Med Microbiol. 2018, 67, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Valkimadi, P.-E.; Huang, Y.-T.; Matthaiou, D.; Hsueh, P.-R. Therapeutic options for Stenotrophomonas maltophilia infections beyond co-trimoxazole: A systematic review. J. Antimicrob. Chemother. 2008, 62, 889–894. [Google Scholar] [CrossRef] [Green Version]
- Krueger, T.S.; Clark, E.A.; Nix, D.E. In Vitro susceptibility of Stenotrophomonas maltophilia to various antimicrobial combinations. Diagn. Microbiol. Infect. Dis. 2001, 41, 71–78. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.-T.; Shiau, Y.-R.; Wang, H.-Y.; Lauderdale, T.-L.Y.; Chang, S.-C. A multicenter surveillance of antimicrobial resistance on Stenotrophomonas maltophilia in Taiwan. J. Microbiol. Immunol. Infect. 2012, 45, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Petrosillo, N.; Ioannidou, E.; Falagas, M. Colistin monotherapy vs. combination therapy: Evidence from microbiological, animal and clinical studies. Clin. Microbiol. Infect. 2008, 14, 816–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Servat, S.; Yero, D.; Huedo, P.; Marquez, R.; Molina, G.; Daura, X.; Gibert, I. Heterogeneous colistin-resistance phenotypes coexisting in Stenotrophomonas maltophilia isolates influence colistin susceptibility testing. Front. Microbiol. 2018, 9, 2871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamdi, A.M.; Fida, M.; Abu Saleh, O.M.; Beam, E. Stenotrophomonas bacteremia antibiotic susceptibility and prognostic determinants: Mayo clinic 10-year experience. Open Forum Infect. Dis. 2020, 7, ofaa008. [Google Scholar] [CrossRef]
- Gabriel, P.S.; Zhou, J.; Tabibi, S.; Chen, Y.; Trauzzi, M.; Saiman, L. Antimicrobial susceptibility and synergy studies of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis. Antimicrob. Agents Chemother. 2004, 48, 168–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciacci, N.; Boncompagni, S.; Valzano, F.; Cariani, L.; Aliberti, S.; Blasi, F.; Pollini, S.; Rossolini, G.M.; Pallecchi, L. In Vitro synergism of colistin and N-acetylcysteine against Stenotrophomonas maltophilia. Antibiotics 2019, 8, 101. [Google Scholar] [CrossRef] [Green Version]
- Hornsey, M.; Longshaw, C.; Phee, L.; Wareham, D.W. In Vitro activity of telavancin in combination with Colistin versus gram-negative bacterial pathogens. Antimicrob. Agents Chemother. 2012, 56, 3080–3085. [Google Scholar] [CrossRef] [Green Version]
- Betts, J.; Phee, L.M.; Woodford, N.; Wareham, D.W. Activity of colistin in combination with tigecycline or rifampicin against multidrug-resistant Stenotrophomonas maltophilia. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1565–1572. [Google Scholar] [CrossRef] [Green Version]
- Church, D.; Lloyd, T.; Peirano, G.; Pitout, J. Antimicrobial susceptibility and combination testing of invasive Stenotrophomonas maltophilia isolates. Scand. J. Infect. Dis. 2012, 45, 265–270. [Google Scholar] [CrossRef]
- Karamanlioğlu, D.; Dizbay, M.; Karamanlıoğlu, D. In Vitro combination of tigecycline with other antibiotics in Stenotrophomonas maltophilia isolates. Turk. J. Med. Sci. 2019, 49, 683–686. [Google Scholar] [CrossRef]
- Wood, G.C.; Underwood, E.L.; Croce, M.A.; Swanson, J.M.; Fabian, T.C. Treatment of recurrent Stenotrophomonas maltophilia ventilator-associated pneumonia with doxycycline and aerosolized colistin. Ann. Pharmacother. 2010, 44, 1665–1668. [Google Scholar] [CrossRef] [PubMed]
- Correia, C.; Ferreira, S.T.; Nunes, P. Stenotrophomonas maltophilia: Rare cause of meningitis. Pediatr. Int. 2014, 56, e21–e22. [Google Scholar] [CrossRef] [PubMed]
- Subhani, S.; Patnaik, A.; Barik, R.; Nemani, L. Infective endocarditis caused by Stenotrophomonas maltophilia: A report of two cases and review of literature. Indian Heart J. 2016, 68, S267–S270. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.D.; Coe, K.E.; El Boghdadly, Z.; Wardlow, L.C.; Dela-Pena, J.; Stevenson, K.B.; Reed, E.E. Efficacy of combination therapy versus monotherapy in the treatment of Stenotrophomonas maltophilia pneumonia. J. Antimicrob. Chemother. 2019, 74, 2055–2059. [Google Scholar] [CrossRef]
- Araoka, H.; Baba, M.; Okada, C.; Abe, M.; Kimura, M.; Yoneyama, A. Evaluation of trimethoprim-sulfamethoxazole based combination therapy against Stenotrophomonas maltophilia: In Vitro effects and clinical efficacy in cancer patients. Int. J. Infect. Dis. 2017, 58, 18–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lake, P.; Furuya, E.Y.; Kubin, C.J. Comparison of monotherapy versus combination therapy for Stenotrophomonas maltophilia pneumonia including trimethoprim-sulfamethoxazole-containing and -sparing regimens. Open Forum Infect. Dis. 2016, 3, 2029. [Google Scholar] [CrossRef] [Green Version]
- Fukuoka, T.; Ohya, S.; Utsui, Y.; Domon, H.; Takenouchi, T.; Koga, T.; Masuda, N.; Kawada, H.; Kakuta, M.; Kubota, M.; et al. In Vitro and In Vivo antibacterial activities of CS-834, a novel oral carbapenem. Antimicrob. Agents Chemother. 1997, 41, 2652–2663. [Google Scholar] [CrossRef] [Green Version]
- Zhanel, G.G.; Lawrence, C.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-relebactam and meropenem-vaborbactam: Two novel carbapenem-β-lactamase inhibitor combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef]
- Lin, Q.; Zou, H.; Chen, X.; Wu, M.; Ma, D.; Yu, H.; Niu, S.; Huang, S. Avibactam potentiated the activity of both ceftazidime and aztreonam against S. maltophilia clinical isolates In Vitro. BMC Microbiol. 2021, 21, 60. [Google Scholar] [CrossRef]
- Moriceau, C.; Eveillard, M.; Lemarié, C.; Chenouard, R.; Pailhoriès, H.; Kempf, M. Stenotrophomonas maltophilia susceptibility to ceftazidime-avibactam combination versus ceftazidime alone. Médecine Mal. Infect. 2020, 50, 305–307. [Google Scholar] [CrossRef]
- Farfour, E.; Trochu, E.; Devin, C.; Martin, E.C.; Limousin, L.; Roux, A.; Picard, C.; Jolly, E.; Vasse, M.; Lesprit, P. Trends in ceftazidime-avibactam activity against multidrug-resistant organisms recovered from respiratory samples of cystic fibrosis patients. Transpl. Infect. Dis. 2018, 20, e12955. [Google Scholar] [CrossRef]
- Gramegna, A.; Millar, B.; Blasi, F.; Elborn, J.; Downey, D.; Moore, J. In Vitro antimicrobial activity of ceftolozane/tazobactam against Pseudomonas aeruginosa and other non-fermenting gram-negative bacteria in adults with cystic fibrosis. J. Glob. Antimicrob. Resist. 2018, 14, 224–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, D.J.; Sader, H.S.; Flamm, R.K.; Jones, R.N. Ceftolozane/tazobactam activity tested against gram-negative bacterial isolates from hospitalised patients with pneumonia in US and European medical centres (2012). Int. J. Antimicrob. Agents 2014, 43, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Grohs, P.; Taieb, G.; Morand, P.; Kaibi, I.; Podglajen, I.; Lavollay, M.; Mainardi, J.-L.; Compain, F. In Vitro activity of ceftolozane-tazobactam against multidrug-resistant nonfermenting gram-negative bacilli isolated from patients with cystic fibrosis. Antimicrob. Agents Chemother. 2017, 61, e02688-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walkty, A.; Adam, H.; Baxter, M.; Denisuik, A.; Lagacé-Wiens, P.; Karlowsky, J.A.; Hoban, D.J.; Zhanel, G.G. In Vitro activity of plazomicin against 5,015 gram-negative and gram-positive clinical isolates obtained from patients in canadian hospitals as part of the CANWARD study, 2011–2012. Antimicrob. Agents Chemother. 2014, 58, 2554–2563. [Google Scholar] [CrossRef] [Green Version]
- Almuzara, M.N.; Barzallo, M.I.E.; Famiglietti, A.M.R.; Vay, C.A. Comparative activities of tigecycline and other tetracyclines against nonfermenting gram-negative bacilli, excluding Acinetobacter spp. Antimicrob. Agents Chemother. 2011, 55, 3961–3963. [Google Scholar] [CrossRef] [Green Version]
- Farrar, J.E.; Garner, K.M.; Swanson, J.M.; Magnotti, L.J.; Croce, M.A.; Wood, G.C. Tigecycline to treat Stenotrophomonas maltophilia ventilator-associated pneumonia in a trauma intensive care unit as a result of a drug shortage: A case series. J. Clin. Pharm. Ther. 2020, 45, 836–839. [Google Scholar] [CrossRef]
- Tekçe, Y.T.; Erbay, A.; Çabadak, H.; Şen, S. Tigecycline as a therapeutic option in Stenotrophomonas maltophilia infections. J. Chemother. 2012, 24, 150–154. [Google Scholar] [CrossRef]
- Zha, L.; Zhang, D.; Pan, L.; Ren, Z.; Li, X.; Zou, Y.; Li, S.; Luo, S.; Yang, G.; Tefsen, B. Tigecycline in the treatment of ventilator-associated pneumonia due to Stenotrophomonas maltophilia: A multicenter retrospective cohort study. Infect. Dis. Ther. 2021, 1–15. [Google Scholar] [CrossRef]
- Giamarellou, H.; Poulakou, G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin. Drug Metab. Toxicol. 2011, 7, 1459–1470. [Google Scholar] [CrossRef]
- De Pascale, G.; Lisi, L.; Ciotti, G.M.P.; Vallecoccia, M.S.; Cutuli, S.L.; Cascarano, L.; Gelormini, C.; Bello, G.; Montini, L.; Carelli, S.; et al. Pharmacokinetics of high-dose tigecycline in critically ill patients with severe infections. Ann. Intensiv. Care 2020, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shao, Z. High-dosage tigecycline for Stenotrophomonas maltophilia bacteremia. Chin. Med. J. 2014, 127, 3199. [Google Scholar]
- Alosaimy, S.; Molina, K.C.; Claeys, K.C.; Andrade, J.; Truong, J.; King, M.A.; Pullinger, B.M.; Huang, G.; Morrisette, T.; Lagnf, A.M.; et al. Early experience with eravacycline for complicated infections. Open Forum Infect. Dis. 2020, 7, ofaa071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrissey, I.; Olesky, M.; Hawser, S.; Lob, S.H.; Karlowsky, J.A.; Corey, G.R.; Bassetti, M.; Fyfe, C. In Vitro activity of eravacycline against gram-negative bacilli isolated in clinical laboratories worldwide from 2013 to 2017. Antimicrob. Agents Chemother. 2020, 64, e01699-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simner, P.J.; Patel, R. Cefiderocol antimicrobial susceptibility testing considerations: The Achilles’ Heel of the Trojan Horse? J. Clin. Microbiol. 2020, 59, e00951-20. [Google Scholar] [CrossRef]
- Delgado-Valverde, M.; Conejo, M.D.C.; Serrano, L.; Fernández-Cuenca, F.; Pascual, Á. Activity of cefiderocol against high-risk clones of multidrug-resistant Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 2020, 75, 1840–1849. [Google Scholar] [CrossRef]
- Portsmouth, S.; van Veenhuyzen, D.; Echols, R.; Machida, M.; Ferreira, J.C.A.; Ariyasu, M.; Tenke, P.; Nagata, T.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2018, 18, 1319–1328. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Chen, I.H.; Kidd, J.M.; Abdelraouf, K.; Nicolau, D.P. Comparative In Vivo antibacterial activity of human-simulated exposures of cefiderocol and ceftazidime against Stenotrophomonas maltophilia in the murine thigh model. Antimicrob. Agents Chemother. 2019, 63, e01558-19. [Google Scholar] [CrossRef]
- Nakamura, R.; Ito-Horiyama, T.; Takemura, M.; Toba, S.; Matsumoto, S.; Ikehara, T.; Tsuji, M.; Sato, T.; Yamano, Y. In Vivo pharmacodynamic study of cefiderocol, a novel parenteral siderophore cephalosporin, in murine thigh and lung infection models. Antimicrob. Agents Chemother. 2019, 63, e02031-18. [Google Scholar] [CrossRef] [Green Version]
- Hsueh, S.-C.; Lee, Y.-J.; Huang, Y.-T.; Liao, C.-H.; Tsuji, M.; Hsueh, P.-R. In Vitro activities of cefiderocol, ceftolozane/tazobactam, ceftazidime/avibactam and other comparative drugs against imipenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, and Stenotrophomonas maltophilia, all associated with bloodstream infections in Taiwan. J. Antimicrob. Chemother. 2019, 74, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Stracquadanio, S.; Torti, E.; Longshaw, C.; Henriksen, A.S.; Stefani, S. In Vitro activity of cefiderocol and comparators against isolates of gram-negative pathogens from a range of infection sources: SIDERO-WT-2014–2018 studies in Italy. J. Glob. Antimicrob. Resist. 2021, 25, 390–398. [Google Scholar] [CrossRef]
- Mojica, M.F.; Ouellette, C.P.; Leber, A.; Becknell, M.B.; Ardura, M.I.; Perez, F.; Shimamura, M.; Bonomo, R.A.; Aitken, S.L.; Shelburne, S.A. Successful treatment of bloodstream infection due to metallo-β-lactamase-producing Stenotrophomonas maltophilia in a renal transplant patient. Antimicrob. Agents Chemother. 2016, 60, 5130–5134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvopiña, K.; Hinchliffe, P.; Brem, J.; Heesom, K.J.; Johnson, S.; Cain, R.; Lohans, C.T.; Fishwick, C.W.G.; Schofield, C.J.; Spencer, J.; et al. Structural/mechanistic insights into the efficacy of nonclassical β-lactamase inhibitors against extensively drug resistant Stenotrophomonas maltophilia clinical isolates. Mol. Microbiol. 2017, 106, 492–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mojica, M.F.; Papp-Wallace, K.M.; Taracila, M.A.; Barnes, M.D.; Rutter, J.D.; Jacobs, M.R.; LiPuma, J.J.; Walsh, T.J.; Vila, A.J.; Bonomo, R.A. Avibactam restores the susceptibility of clinical isolates of Stenotrophomonas maltophilia to aztreonam. Antimicrob. Agents Chemother. 2017, 61, e00777-17. [Google Scholar] [CrossRef] [Green Version]
- Alexander, J.; Carr, A.; Minor, S.B.; Navas, D. 1607. Dual therapy with aztreonam & ceftazidime/avibactam against multi-drug resistant Stenotrophomonas maltophilia on tricuspid valve endocarditis. Open Forum Infect. Dis. 2020, 7, S798. [Google Scholar] [CrossRef]
- Falcone, M.; Daikos, G.L.; Tiseo, G.; Bassoulis, D.; Giordano, C.; Galfo, V.; Leonildi, A.; Tagliaferri, E.; Barnini, S.; Sani, S.; et al. Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-β-lactamase–producing enterobacterales. Clin. Infect. Dis. 2021, 72, 1871–1878. [Google Scholar] [CrossRef]
- Lodise, T.P.; Smith, N.M.; O’Donnell, N.; Eakin, A.E.; Holden, P.N.; Boissonneault, K.R.; Zhou, J.; Tao, X.; Bulitta, J.B.; Fowler, V.G.; et al. Determining the optimal dosing of a novel combination regimen of ceftazidime/avibactam with aztreonam against NDM-1-producing Enterobacteriaceae using a hollow-fibre infection model. J. Antimicrob. Chemother. 2020, 75, 2622–2632. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Kritsotakis, E.I.; Gikas, A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: An approach based on the mechanisms of resistance to carbapenems. Infection 2020, 48, 835–851. [Google Scholar] [CrossRef]
- McCutcheon, J.G.; Lin, A.; Dennis, J. Isolation and characterization of the novel bacteriophage AXL3 against Stenotrophomonas maltophilia. Int. J. Mol. Sci. 2020, 21, 6338. [Google Scholar] [CrossRef]
- Chang, H.-C.; Chen, C.-R.; Lin, J.-W.; Shen, G.-H.; Chang, K.-M.; Tseng, Y.-H.; Weng, S.-F. Isolation and characterization of novel giant Stenotrophomonas maltophilia phage φSMA5. Appl. Environ. Microbiol. 2005, 71, 1387–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pompilio, A.; Crocetta, V.; Scocchi, M.; Pomponio, S.; Di Vincenzo, V.; Mardirossian, M.; Gherardi, G.; Fiscarelli, E.; Dicuonzo, G.; Gennaro, R.; et al. Potential novel therapeutic strategies in cystic fibrosis: Antimicrobial and anti-biofilm activity of natural and designed α-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. BMC Microbiol. 2012, 12, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Agent | Line of Treatment | Notes on Clinical Use |
---|---|---|
Trimethoprim-Sulfamethoxazole (TMP-SMX) | First line |
|
Fluoroquinolones | First line |
|
Tetracyclines | First line |
|
Cefiderocol | Salvage |
|
Ceftazidime/Avibactam + Aztreonam | Salvage |
|
Combination therapy amongst first/second line agents and alternatives | Possible options |
|
Polymyxins | Possible options |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibb, J.; Wong, D.W. Antimicrobial Treatment Strategies for Stenotrophomonas maltophilia: A Focus on Novel Therapies. Antibiotics 2021, 10, 1226. https://doi.org/10.3390/antibiotics10101226
Gibb J, Wong DW. Antimicrobial Treatment Strategies for Stenotrophomonas maltophilia: A Focus on Novel Therapies. Antibiotics. 2021; 10(10):1226. https://doi.org/10.3390/antibiotics10101226
Chicago/Turabian StyleGibb, Jean, and Darren W. Wong. 2021. "Antimicrobial Treatment Strategies for Stenotrophomonas maltophilia: A Focus on Novel Therapies" Antibiotics 10, no. 10: 1226. https://doi.org/10.3390/antibiotics10101226
APA StyleGibb, J., & Wong, D. W. (2021). Antimicrobial Treatment Strategies for Stenotrophomonas maltophilia: A Focus on Novel Therapies. Antibiotics, 10(10), 1226. https://doi.org/10.3390/antibiotics10101226