Combined Resistance to Ceftolozane-Tazobactam and Ceftazidime-Avibactam in Extensively Drug-Resistant (XDR) and Multidrug-Resistant (MDR) Pseudomonas aeruginosa: Resistance Predictors and Impact on Clinical Outcomes Besides Implications for Antimicrobial Stewardship Programs
Abstract
:1. Introduction
2. Results
2.1. Antibiotic Susceptibility
2.2. Characteristics of Patients Colonized/Infected with a S-C/T + CZA PA and R-C/T + CZA PA
2.3. Risk Factors for Combined Resistance to C/T and CZA
2.4. Survival Rate Analysis and Predictors of Mortality
3. Discussion
4. Materials and Methods
4.1. Study Design and Setting
4.2. Definitions and Data Collection
4.3. Microbiological Methods
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; WHO Press: Geneva, Switzerland, 2017; pp. 1–7. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bac-teria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossolini, G.M.; Mantengoli, E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin. Microbiol. Infect. 2005, 11, 17–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Barrio-Tofiño, E.; López-Causapé, C.; Cabot, G.; Rivera, A.; Benito, N.; Segura, C.; Montero, M.M.; Sorlí, L.; Tubau, F.; Gómez-Zorrilla, S.; et al. Genomics and Susceptibility Profiles of Extensively Drug-Resistant Pseudomonas aeruginosa Isolates from Spain. Antimicrob Agents Chemother. 2017, 61, e01589-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, K.; Snelling, A. Pseudomonas aeruginosa: A formidable and ever-present adversary. J. Hosp. Infect. 2009, 73, 338–344. [Google Scholar] [CrossRef]
- Gbaguidi-Haore, H.; Varin, A.; Cholley, P.; Thouverez, M.; Hocquet, D.; Bertrand, X. A Bundle of Measures to Control an Outbreak of Pseudomonas aeruginosa Associated With P-Trap Contamination. Infect. Control. Hosp. Epidemiology 2018, 39, 164–169. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Healthcare-associated infections: Surgical site infections. ECDC. Annual epidemiological report for Stockholm: ECDC. Available online: https://www.ecdc.europa.eu/en/publications-data/healthcare-associated-infections-surgical-site-infections-annual-1 (accessed on 11 August 2021).
- European Centre for Disease Prevention and Control. Healthcare-associated infections acquired in intensive care units. ECDC. Annual epidemiological report for Stockholm: ECDC. Available online: https://www.ecdc.europa.eu/en/publications-data/healthcare-associated-infections-intensive-care-units-annual-epidemiological-1 (accessed on 11 August 2021).
- Wright, H.; Bonomo, R.A.; Paterson, D.L. New agents for the treatment of infections with Gram-negative bacteria: Restoring the miracle or false dawn? Clin. Microbiol. Infect. 2017, 23, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Castanheira, M.; Doyle, T.B.; Mendes, R.E.; Sader, H. Comparative Activities of Ceftazidime-Avibactam and Ceftolozane-Tazobactam against Enterobacteriaceae Isolates Producing Extended-Spectrum β-Lactamases from U.S. Hospitals. Antimicrob. Agents Chemother. 2019, 63, e00160-19. [Google Scholar] [CrossRef] [Green Version]
- Fraile-Ribot, P.A.; Cabot, G.; Mulet, X.; Periañez, L.; Martín-Pena, M.L.; Juan, C.; Pérez, J.L.; Oliver, A. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2018, 73, 658–663. [Google Scholar] [CrossRef] [Green Version]
- Haidar, G.; Philips, N.J.; Shields, R.K.; Snyder, D.; Cheng, S.; Potoski, B.A.; Doi, Y.; Hao, B.; Press, E.G.; Cooper, V.S.; et al. Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance. Clin. Infect. Dis. 2017, 65, 110–120. [Google Scholar] [CrossRef]
- Langendonk, R.F.; Neill, D.R.; Fothergill, J.L. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front. Cell Infect Microbiol. 2021, 11, 665759. [Google Scholar] [CrossRef]
- Álvarez-Marín, R.; López-Cerero, L.; Guerrero-Sánchez, F.; Palop-Borras, B.; Rojo-Martín, M.D.; Ruiz-Sancho, A.; Herrero-Rodríguez, C.; García, M.V.; Lazo-Torres, A.M.; López, I.; et al. Do specific antimicrobial stewardship interventions have an impact on carbapenem resistance in Gram-negative bacilli? A multicentre quasi-experimental ecological study: Time-trend analysis and characterization of carbapenemases. J. Antimicrob. Chemother. 2021, 76, 1928–1936. [Google Scholar] [CrossRef]
- Sader, H.S.; Carvalhaes, C.G.; Streit, J.M.; Doyle, T.B.; Castanheira, M. Antimicrobial Activity of Ceftazidime-Avibactam, Ceftolozane-Tazobactam and Comparators Tested Against Pseudomonas aeruginosa and Klebsiella pneumoniae Isolates from United States Medical Centers in 2016. Microb. Drug Resist. 2021, 27, 342–349. [Google Scholar] [CrossRef]
- Kazmierczak, K.M.; De Jonge, B.L.M.; Stone, G.G.; Sahm, D.F. In vitro activity of ceftazidime/avibactam against isolates of Pseudomonas aeruginosa collected in European countries: INFORM global surveillance 2012–15. J. Antimicrob. Chemother. 2018, 73, 2777–2781. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.; Shortridge, D.; Sader, H.; Gales, A.; Castanheira, M.; Flamm, R.K. Ceftolozane-tazobactam activity against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa causing healthcare-associated infections in Latin America: Report from an antimicrobial surveillance program (2013–2015). Braz. J. Infect. Dis. 2017, 21, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Giani, T.; Arena, F.; Pollini, S.; Di Pilato, V.; D’Andrea, M.M.; Henrici De Angelis, L.; Bassetti, M.; Rossolini, G.M. On behalf of the Pseudomonas aeruginosa Working Group. Italian nationwide survey on Pseudomonas aeruginosa from invasive infections: Activity of ceftolozane/tazobactam and comparators, and molecular epidemiology of carbapenemase producers. J. Antimicrob. Chemother. 2018, 73, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Hindler, J.A.; Wong-Beringer, A.; Miller, S.A. Activity of Ceftolozane-Tazobactam and Ceftazidime-Avibactam against Beta-Lactam-Resistant Pseudomonas aeruginosa Isolates. Antimicrob. Agents Chemother. 2017, 61, e01858-17. [Google Scholar] [CrossRef] [Green Version]
- Ortiz de la Rosa, J.M.; Nordmann, P.; Poirel, L. ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam combinations in Escherichia coli and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2019, 74, 1934–1939. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Meunier, D.; Hopkins, K.; Doumith, M.; Hill, R.; Pike, R.; Staves, P.; Woodford, N. Activity of ceftazidime/avibactam against problem Enterobacteriaceae and Pseudomonas aeruginosa in the UK, 2015–16. J. Antimicrob. Chemother. 2017, 73, 648–657. [Google Scholar] [CrossRef]
- Sid Ahmed, M.A.; Abdel Hadi, H.; Hassan, A.A.I.; Abu Jarir, S.; Al-Maslamani, M.A.; Omer Eltai, N.; Dousa, K.M.; Hujer, A.M.; Sultan, A.A.; Soderquist, B.; et al. Evaluation of in vitro activity of ceftazidime/avibactam and ceftolozane/tazobactam against MDR Pseudomonas aeruginosa isolates from Qatar. J. Antimicrob. Chemother. 2019, 74, 3497–3504. [Google Scholar] [CrossRef]
- Tamma, P.D.; Beisken, S.; Bergman, Y.; Posch, A.E.; Avdic, E.; Sharara, S.L.; Cosgrove, S.E.; Simner, P.J. Modifiable Risk Factors for the Emergence of Ceftolozane-tazobactam Resistance. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Rubio, A.M.; Kline, E.G.; Jones, C.E.; Chen, L.; Kreiswirth, B.N.; Nguyen, M.H.; Clancy, C.J.; Cooper, V.S.; Haidar, G.; Van Tyne, D.; et al. In Vitro Susceptibility of Multidrug-Resistant Pseudomonas aeruginosa following Treatment-Emergent Resistance to Ceftolozane-Tazobactam. Antimicrob. Agents Chemother. 2021. [Google Scholar] [CrossRef]
- Cao, B.; Wang, H.; Sun, H.; Zhu, Y.; Chen, M. Risk factors and clinical outcomes of nosocomial multi-drug resistant Pseudomonas aeruginosa infections. J. Hosp. Infect. 2004, 57, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, K.; Ng, O.T.; Cherng, B.P.Z.; Fong, R.K.C.; Pada, S.K.; De, P.P.; Ooi, S.T.; Smitasin, N.; Thoon, K.C.; Krishnan, P.U.; et al. Antecedent carbapenem exposure as a risk factor for non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae and carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2019, 63, e00845-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raman, G.; Avendano, E.E.; Chan, J.; Merchant, S.; Puzniak, L. Risk factors for hospitalized patients with resistant or mul-tidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrobial Resistance and Infection Control 2018, 7, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Gutiérrez, B.; Rodríguez-Baño, J. Current options for the treatment of infections due to extended-spectrum be-ta-lactamase-producing Enterobacteriaceae in different groups of patients. Clin. Microbiol. Infect. 2019, 25, 932–942. [Google Scholar] [CrossRef]
- Barrasa-Villar, J.I.; Aibar-Remón, C.; Prieto-Andrés, P.; Mareca-Doñate, R.; Moliner-Lahoz, J. Impact on Morbidity, Mortality, and Length of Stay of Hospital-Acquired Infections by Resistant Microorganisms. Clin. Infect. Dis. 2017, 65, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Sligl, W.I.; Dragan, T.; Smith, S.W. Nosocomial Gram-negative bacteremia in intensive care: Epidemiology, antimicrobial susceptibilities, and outcomes. Int. J. Infect. Dis. 2015, 37, 129–134. [Google Scholar] [CrossRef] [Green Version]
- U.S. Centers for Disease Control and Prevention. The National Healthcare Safety Network (NHSN) Manual: NHSN 2021 Toolkit and Guidance for External Validation; U.S. Centers for Disease Control and Prevention: Atlanta, GA, USA, 2021.
Characteristics | Total Population | S-C/T + CZA PA | R-C/T + CZA PA | p |
---|---|---|---|---|
Age, M (Q1–Q3), years | 67 (59–76) | 64 (58.5–75) | 74 (66–82) | 0.090 |
Male sex, % (n. of pts) | 63.9 (71/111) | 60.0 (36/60) | 77.7 (21/27) | 0.107 |
Microbiological Specimen of PA, % (n. of pts) | ||||
Airways | 34.3 (38/111) | 38.3 (23/60) | 18.5 (5/27) | 0.129 |
Urine | 18.9 (21/111) | 16.7 (10/60) | 33.3 (9/27) | |
Blood | 7.2 (8/111) | 3.3 (2/60) | 11.1 (3/27) | |
Surgical wound swab/pus | 21.6 (24/111) | 25 (15/60) | 14.8 (4/27) | |
Rectal | 1.8 (2/111) | 1.7 (1/60) | 3.7 (1/27) | |
Liquor | 1.8 (2/111) | 3.3 (2/60) | 0.0 (0/27) | |
Intra-abdominal | 7.2 (8/111) | 5.0 (3/60) | 14.8 (4/27) | |
Other | 7.2 (8/111) | 6.7 (4/60) | 3.7 (1/27) | |
Underlying Systemic Disease | ||||
CCI, mean (±SD) | 5.3 (±2.6) | 4.7 (±2.5) | 6.1 (±2.3) | 0.026 |
CCI 0–3, % (n. of pts) | 23.4 (26/111) | 31.7 (19/60) | 14.81 (4/27) | 0.125 |
CCI 4–6, % (n. of pts) | 44.1 (49/111) | 40.0 (24/60) | 37.0 (10/27) | |
CCI ≥ 7, % (n. of pts) | 32.4 (36/111) | 28.3 (17/60) | 48.1 (13/27) | |
Prior PA colonization, % (n. of pts) | 28.8 (32/111) | 27.1 (16/59) | 66.6 (18/27) | <0.001 |
Hospitalization | ||||
Time at risk, days, M (Q1–Q3) | 22 (7–45) | 23.0 (±23.5) | 37.3 (±35.4) | 0.042 |
Previous admission in ICU % (n. of pts) | 47.7 (52/109) | 41.4 (24/58) | 55.5 (15/27) | 0.222 |
LOS in ICU, days, M (Q1–Q3) | 1 (0–22) | 0 (0–17) | 4 (0–42) | 0.030 |
Devices | ||||
OTI/TT, % (n. of pts) | 40.9 (45/110) | 37.3 (22/59) | 44.4 (12/27) | 0.529 |
CVC, % (n. of pts) | 30.9 (34/110) | 18.6 (11/59) | 40.7 (11/27) | 0.029 |
UC, % (n. of pts) | 52.7 (58/110) | 40.7 (24/59) | 62.9 (17/27) | 0.055 |
CA previous exposure, days, M (Q1–Q3) | 0 (0–9) | 0 (0–7) | 0 (0–12) | 0.252 |
Prior Antibiotic Usage, % (n. of pts) | ||||
C/T | 7.2 (8/111) | 0 (0/60) | 11.1 (3/27) | 0.009 |
CZA | 0.9 (1/111) | 0 (0/60) | 3.7 (1/27) | 0.134 |
CAZ | 35.1(39/111 | 28.3 (17/60) | 40.7 (11/27) | 0.252 |
P/T | 51.3 (57/111) | 43.3 (26/60) | 55.6 (15/27) | 0.291 |
3-4GC | 36.9 (41/111) | 28.3 (17/60) | 51.8 (14/27) | 0.034 |
FQ | 15.3 (17/111) | 15 (9/60) | 3.7 (1/27) | 0.126 |
Outcomes | ||||
LOS, days (±SD) | 49 (21–87) | 37.5 (19–64) | 60 (27–107) | 0.061 |
Crude overall mortality, % (n. of pts) | 41.8 (46/110) | 38.3 (23/60) | 61.5 (16/26) | 0.047 |
Crude attributable mortality %, (n. pts) | 46.0 (35/76) | 47 (16/34) | 60.0 (12/20) | 0.263 |
Characteristics | R-C/T + CZA PA and S-C/T + CZA PA | ||
---|---|---|---|
Adjusted RR (95% CI) | p-Value | ||
Age | 1.02 | (1.02–1.02) | <0.001 |
CCI 0–3 | ref. | ||
CCI 4–6 | 1.09 | (0.34–3.10) | 0.872 |
CCI ≥ 7 | 2.30 | (1.01–6.21) | 0.064 |
Prior PA colonization | 3.69 | (1.99–4.65) | <0.001 |
Time at risk | 1.00 | (1.01–1.04) | <0.001 |
UTI | 1.56 | (1.32–2.90) | <0.001 |
CA previous exposure | 1.73 | (1.73–1.74) | <0.001 |
Predictors | OR CI (95%) | p-Value |
---|---|---|
Microbiological specimen of PA | ||
PA-related BSI | 6.59 (0.65–66.5) | 0.110 |
Underlying systemic disease | ||
CCI 0–3 | Ref. | |
CCI 4–6 | 4.85 (0.93–25.07) | 0.060 |
CCI ≥ 7 | 8.89 (1.52–51.92) | 0.015 |
Related to hospitalization | ||
LOS in ICU, days | 1.03 (1.01–1.05) | 0.004 |
Antibiotic resistance | ||
R-C/T + CZA | 1.43 (0.48–4.24) | 0.511 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meschiari, M.; Orlando, G.; Kaleci, S.; Bianco, V.; Sarti, M.; Venturelli, C.; Mussini, C. Combined Resistance to Ceftolozane-Tazobactam and Ceftazidime-Avibactam in Extensively Drug-Resistant (XDR) and Multidrug-Resistant (MDR) Pseudomonas aeruginosa: Resistance Predictors and Impact on Clinical Outcomes Besides Implications for Antimicrobial Stewardship Programs. Antibiotics 2021, 10, 1224. https://doi.org/10.3390/antibiotics10101224
Meschiari M, Orlando G, Kaleci S, Bianco V, Sarti M, Venturelli C, Mussini C. Combined Resistance to Ceftolozane-Tazobactam and Ceftazidime-Avibactam in Extensively Drug-Resistant (XDR) and Multidrug-Resistant (MDR) Pseudomonas aeruginosa: Resistance Predictors and Impact on Clinical Outcomes Besides Implications for Antimicrobial Stewardship Programs. Antibiotics. 2021; 10(10):1224. https://doi.org/10.3390/antibiotics10101224
Chicago/Turabian StyleMeschiari, Marianna, Gabriella Orlando, Shaniko Kaleci, Vincenzo Bianco, Mario Sarti, Claudia Venturelli, and Cristina Mussini. 2021. "Combined Resistance to Ceftolozane-Tazobactam and Ceftazidime-Avibactam in Extensively Drug-Resistant (XDR) and Multidrug-Resistant (MDR) Pseudomonas aeruginosa: Resistance Predictors and Impact on Clinical Outcomes Besides Implications for Antimicrobial Stewardship Programs" Antibiotics 10, no. 10: 1224. https://doi.org/10.3390/antibiotics10101224
APA StyleMeschiari, M., Orlando, G., Kaleci, S., Bianco, V., Sarti, M., Venturelli, C., & Mussini, C. (2021). Combined Resistance to Ceftolozane-Tazobactam and Ceftazidime-Avibactam in Extensively Drug-Resistant (XDR) and Multidrug-Resistant (MDR) Pseudomonas aeruginosa: Resistance Predictors and Impact on Clinical Outcomes Besides Implications for Antimicrobial Stewardship Programs. Antibiotics, 10(10), 1224. https://doi.org/10.3390/antibiotics10101224