Carbapenem-Resistant Pseudomonas aeruginosa Strains-Distribution of the Essential Enzymatic Virulence Factors Genes
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Their Selection Criteria
4.2. Strain Identification
4.3. Bacterial Genomic DNA Isolation
4.4. Detection of MBLs and MBL Genes
4.5. Virulence Factor Genes Detection
4.6. Statistical Methods
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kucisec-Tepes, N. Pseudomonas aeruginosa—A significant hospital pathogen and resistance to carbapenem. Acta Med. Croat. 2004, 58, 313–321. [Google Scholar]
- Livermore, D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin. Infect Dis. 2002, 34, 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogiel, T.; Mikucka, A.; Skalski, T.; Gospodarek, E. Occurrence and susceptibility to antibiotics of carbapenem-resistant Pseudomonas aeruginosa strains between 1998 and 2009. Med. Dosw. Mikrobiol. 2010, 62, 221–229. [Google Scholar] [PubMed]
- Bogiel, T.; Deptuła, A.; Gospodarek, E. Evaluation of Different Methods for Detection of Metallo-Beta-Lactamases in Pseudomonas Aeruginosa Clinical Isolates. Pol. J. Microbiol. 2010, 59, 45–48. [Google Scholar] [PubMed]
- Urbanowicz, P.; Izdebski, R.; Baraniak, A.; Żabicka, D.; Ziółkowski, G.; Hryniewicz, W.; Gniadkowski, M. Pseudomonas aeruginosa with NDM-1, DIM-1 and PME-1 β-lactamases, and RmtD3 16S rRNA methylase, encoded by new genomic islands. J. Antimicrob. Chemother. 2019, 74, 3117–3119. [Google Scholar] [CrossRef] [Green Version]
- Papagiannitsis, C.C.; Medvecky, M.; Chudejova, K.; Skalova, A.; Rotova, V.; Spanelova, P.; Jakubu, V.; Zemlickova, H.; Hrabak, J. Czech Participants of the European Antimicrobial Resistance Surveillance Network Molecular Characterization of Carbapenemase-Producing Pseudomonas aeruginosa of Czech Origin and Evidence for Clonal Spread of Extensively Resistant Sequence Type 357 Expressing IMP-7 Metallo-β-Lactamase. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Al-Wrafy, F.; Brzozowska, E.; Górska, S.; Gamian, A. Pathogenic factors of Pseudomonas aeruginosa—The role of biofilm in pathogenicity and as a target for phage therapy. Postepy Hig. Med. Dosw. (Online) 2017, 71, 78–91. [Google Scholar] [CrossRef]
- Ostroff, R.M.; Vasil, A.I.; Vasil, M.L. Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J. Bacteriol. 1990, 172, 5915–5923. [Google Scholar] [CrossRef] [Green Version]
- Toder, D.S.; Ferrell, S.J.; Nezezon, J.L.; Rust, L.; Iglewski, B.H. lasA and lasB genes of Pseudomonas aeruginosa: Analysis of transcription and gene product activity. Infect. Immun. 1994, 62, 1320–1327. [Google Scholar] [CrossRef] [Green Version]
- Soong, G.; Muir, A.; Gomez, M.I.; Waks, J.; Reddy, B.; Planet, P.; Singh, P.K.; Kaneko, Y.; Kanetko, Y.; Wolfgang, M.C.; et al. Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production. J. Clin. Investig. 2006, 116, 2297–2305. [Google Scholar] [CrossRef] [Green Version]
- Iiyama, K.; Takahashi, E.; Lee, J.M.; Mon, H.; Morishita, M.; Kusakabe, T.; Yasunaga-Aoki, C. Alkaline protease contributes to pyocyanin production in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef] [PubMed]
- Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Ellappan, K.; Belgode Narasimha, H.; Kumar, S. Coexistence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant Pseudomonas aeruginosa strains from a tertiary care hospital in South India. J. Glob. Antimicrob. Resist. 2018, 12, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, K.A.; Wardell, S.J.T.; Patrick, W.M.; Brockway, B.; Reid, D.W.; Winstanley, C.; Bell, S.C.; Lamont, I.L. Genomic and phenotypic comparison of environmental and patient-derived isolates of Pseudomonas aeruginosa suggest that antimicrobial resistance is rare within the environment. J. Med. Microbiol. 2019, 68, 1591–1595. [Google Scholar] [CrossRef] [PubMed]
- Sonbol, F.I.; Khalil, M.A.E.F.; Mohamed, A.B.; Ali, S.S. Correlation between antibiotic resistance and virulence of Pseudomonas aeruginosa clinical isolates. Turk. J. Med. Sci. 2015, 45, 568–577. [Google Scholar] [CrossRef]
- Di Martino, P.; Gagnière, H.; Berry, H.; Bret, L. Antibiotic resistance and virulence properties of Pseudomonas aeruginosa strains from mechanically ventilated patients with pneumonia in intensive care units: Comparison with imipenem-resistant extra-respiratory tract isolates from uninfected patients. Microbes Infect. 2002, 4, 613–620. [Google Scholar] [CrossRef]
- Deptuła, A.; Gospodarek, E. Reduced expression of virulence factors in multidrug-resistant Pseudomonas aeruginosa strains. Arch. Microbiol. 2010, 192, 79–84. [Google Scholar] [CrossRef]
- Liew, S.M.; Rajasekaram, G.; Puthucheary, S.A.; Chua, K.H. Antimicrobial susceptibility and virulence genes of clinical and environmental isolates of Pseudomonas aeruginosa. PeerJ 2019, 7, e6217. [Google Scholar] [CrossRef] [Green Version]
- Ramisse, F.; van Delden, C.; Gidenne, S.; Cavallo, J.; Hernandez, E. Decreased virulence of a strain of Pseudomonas aeruginosa O12 overexpressing a chromosomal type 1 beta-lactamase could be due to reduced expression of cell-to-cell signaling dependent virulence factors. FEMS Immunol. Med. Microbiol. 2000, 28, 241–245. [Google Scholar] [CrossRef] [Green Version]
- Takata, I.; Yamagishi, Y.; Mikamo, H. Association of the exoU genotype with a multidrug non-susceptible phenotype and mRNA expressions of resistance genes in Pseudomonas aeruginosa. J. Infect. Chemother. 2018, 24, 45–52. [Google Scholar] [CrossRef]
- Dehbashi, S.; Tahmasebi, H.; Arabestani, M.R. Association between Beta-lactam Antibiotic Resistance and Virulence Factors in AmpC Producing Clinical Strains of P. aeruginosa. Osong Public Health Res. Perspect. 2018, 9, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Subedi, D.; Vijay, A.K.; Kohli, G.S.; Rice, S.A.; Willcox, M. Association between possession of ExoU and antibiotic resistance in Pseudomonas aeruginosa. PLoS ONE 2018, 13, e0204936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruczek, C.; Kottapalli, K.R.; Dissanaike, S.; Dzvova, N.; Griswold, J.A.; Colmer-Hamood, J.A.; Hamood, A.N. Major Transcriptome Changes Accompany the Growth of Pseudomonas aeruginosa in Blood from Patients with Severe Thermal Injuries. PLoS ONE 2016, 11, e0149229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmassry, M.M.; Mudaliar, N.S.; Kottapalli, K.R.; Dissanaike, S.; Griswold, J.A.; San Francisco, M.J.; Colmer-Hamood, J.A.; Hamood, A.N. Pseudomonas aeruginosa Alters Its Transcriptome Related to Carbon Metabolism and Virulence as a Possible Survival Strategy in Blood from Trauma Patients. mSystems 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Kiewitz, C.; Tümmler, B. Sequence diversity of Pseudomonas aeruginosa: Impact on population structure and genome evolution. J. Bacteriol. 2000, 182, 3125–3135. [Google Scholar] [CrossRef] [Green Version]
- Pobiega, M.; Maciąg, J.; Chmielarczyk, A.; Romaniszyn, D.; Pomorska-Wesolowska, M.; Ziolkowski, G.; Heczko, P.B.; Bulanda, M.; Wojkowska-Mach, J. Molecular characterization of carbapenem-resistant Pseudomonas aeruginosa strains isolated from patients with urinary tract infections in Southern Poland. Diagn. Microbiol. Infect. Dis. 2015, 83, 295–297. [Google Scholar] [CrossRef]
- Rojo-Bezares, B.; Cavalié, L.; Dubois, D.; Oswald, E.; Torres, C.; Sáenz, Y. Characterization of carbapenem resistance mechanisms and integrons in Pseudomonas aeruginosa strains from blood samples in a French hospital. J. Med. Microbiol. 2016, 65, 311–319. [Google Scholar] [CrossRef]
- Tingpej, P.; Smith, L.; Rose, B.; Zhu, H.; Conibear, T.; Al Nassafi, K.; Manos, J.; Elkins, M.; Bye, P.; Willcox, M.; et al. Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J. Clin. Microbiol. 2007, 45, 1697–1704. [Google Scholar] [CrossRef] [Green Version]
- Sabharwal, N.; Dhall, S.; Chhibber, S.; Harjai, K. Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections. Int. J. Mol. Epidemiol. Genet. 2014, 5, 125–134. [Google Scholar]
- Lanotte, P.; Watt, S.; Mereghetti, L.; Dartiguelongue, N.; Rastegar-Lari, A.; Goudeau, A.; Quentin, R. Genetic features of Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. J. Med. Microbiol. 2004, 53, 73–81. [Google Scholar] [CrossRef]
- Strateva, T.; Petrova, G.; Perenovska, P.; Mitov, I. Bulgarian cystic fibrosis Pseudomonas aeruginosa isolates: Antimicrobial susceptibility and neuraminidase-encoding gene distribution. J. Med. Microbiol. 2009, 58, 690–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pournajaf, A.; Razavi, S.; Irajian, G.; Ardebili, A.; Erfani, Y.; Solgi, S.; Yaghoubi, S.; Rasaeian, A.; Yahyapour, Y.; Kafshgari, R.; et al. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infez. Med. 2018, 26, 226–236. [Google Scholar] [PubMed]
- Fazeli, N.; Momtaz, H. Virulence Gene Profiles of Multidrug-Resistant Pseudomonas aeruginosa Isolated from Iranian Hospital Infections. Iran. Red Crescent Med. J. 2014, 16, e15722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolska, K.; Szweda, P. Genetic features of clinical Pseudomonas aeruginosa strains. Pol. J. Microbiol. 2009, 58, 255–260. [Google Scholar]
- Faraji, F.; Mahzounieh, M.; Ebrahimi, A.; Fallah, F.; Teymournejad, O.; Lajevardi, B. Molecular detection of virulence genes in Pseudomonas aeruginosa isolated from children with Cystic Fibrosis and burn wounds in Iran. Microb. Pathog. 2016, 99, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Mitov, I.; Strateva, T.; Markova, B. Prevalence of virulence genes among bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa. Braz. J. Microbiol. 2010, 41, 588–595. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic Resistance in Pseudomonas Aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Mahenthiralingam, E.; Campbell, M.E.; Foster, J.; Lam, J.S.; Speert, D.P. Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. J. Clin. Microbiol. 1996, 34, 1129–1135. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Lim, Y.S.; Yong, D.; Yum, J.H.; Chong, Y. Evaluation of the Hodge Test and the Imipenem-EDTA Double-Disk Synergy Test for Differentiating Metallo-β-Lactamase-Producing Isolates of Pseudomonas Spp. and Acinetobacter Spp. J. Clin. Microbiol. 2003, 41, 4623–4629. [Google Scholar] [CrossRef] [Green Version]
- Yong, D.; Lee, K.; Yum, J.H.; Shin, H.B.; Rossolini, G.M.; Chong, Y. Imipenem-EDTA Disk Method for Differentiation of Metallo-β-Lactamase-Producing Clinical Isolates of Pseudomonas Spp. and Acinetobacter Spp. J. Clin. Microbiol. 2002, 40, 3798–3801. [Google Scholar] [CrossRef] [Green Version]
- Pitout, J.D.D.; Gregson, D.B.; Poirel, L.; McClure, J.-A.; Le, P.; Church, D.L. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J. Clin. Microbiol. 2005, 43, 3129–3135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnan, S.; Morrissey, J.P.; O’Gara, F.; Boyd, E.F. Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J. Clin. Microbiol. 2004, 42, 5783–5792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene/Genotype | A | B | C | D | E | F | G | H | I | n = 107 | % |
---|---|---|---|---|---|---|---|---|---|---|---|
aprA | + | + | + | + | + | + | + | + | + | 107 | 100.0 |
plcN | + | + | + | + | + | + | + | + | − | 106 | 99.1 |
plcH | + | + | + | + | + | + | + | − | + | 106 | 99.1 |
lasB | + | + | + | − | + | − | − | − | − | 98 | 91.6 |
nan2 | + | + | − | + | − | − | + | + | + | 94 | 87.9 |
nan1 * | − | + | − | − | + | − | + | − | + | 40 | 37.4 |
n = 107 | 51 | 36 | 9 | 4 | 2 | 2 | 1 | 1 | 1 | ||
% | 47.7 | 33.6 | 8.4 | 3.7 | 1.9 | 1.9 | 0.9 | 0.9 | 0.9 |
Gene | |||||||
---|---|---|---|---|---|---|---|
aprA | plcN | plcH | lasB * | nan2 | nan1 ** | ||
MBL-positive | n = 32 | 32 | 32 | 31 | 25 | 27 | 5 |
% | 100.0 | 100.0 | 96.9 | 78.1 | 84.4 | 15.6 | |
MBL-negative | n = 75 | 75 | 74 | 75 | 73 | 67 | 35 |
% | 100.0 | 98.7 | 100.0 | 97.3 | 89.3 | 46.7 |
Clinical Specimen Type | Gene | |||||
---|---|---|---|---|---|---|
aprA | plcN | plcH | lasB | nan2 | nan1 | |
n = 82 | ||||||
Bronchoalveolar lavage (n = 23) | 23 | 23 | 23 | 18 | 18 | 6 |
% | 100.0 | 100.0 | 100.0 | 78.3 | 78.3 | 26.1 |
Wound swab (n = 16) | 16 | 15 | 15 | 14 | 16 | 6 |
% | 100.0 | 93.8 | 93.8 | 87.5 | 100.0 | 37.5 |
Urine catheterized (n = 12) | 12 | 12 | 12 | 12 | 9 | 2 |
% | 100.0 | 100.0 | 100.0 | 100.0 | 75.0 | 16.7 |
Urine samples (n = 12) | 12 | 12 | 12 | 12 | 10 | 3 |
% | 100.0 | 100.0 | 100.0 | 100.0 | 83.3 | 25.0 |
Blood samples (n = 11) | 11 | 11 | 11 | 9 | 11 | 5 |
% | 100.0 | 100.0 | 100.0 | 81.8 | 100.0 | 45.5 |
Respiratory tract secretion (n = 8) | 8 | 8 | 8 | 8 | 7 | 4 |
% | 100.0 | 100.0 | 100.0 | 100.0 | 87.5 | 50.0 |
Virulence Factor Detected | PCR Primer Name | Primer Sequence 5′→3′ | Tm (°C) | Annealing Temperature (°C) | Product Size (bp) |
---|---|---|---|---|---|
Elastase B | lasB F | -GGAATGAACGAAGCGTTCTC- | 51.8 | 50 | 300 |
lasB R | -GGTCCAGTAGTAGCGGTTGG- | 55.9 | |||
Phospholipase C (H) | plcH F | -GAAGCCATGGGCTACTTCAA- | 55.1 | 52 | 307 |
plcH R | -AGAGTGACGAGGAGCGGTAG- | 58.2 | |||
Phospholipase C (N) | plcN F | -GTTATCGCAACCAGCCCTAC- | 55.9 | 53 | 466 |
plcN R | -AGGTCGAACACCTGGAACAC- | 57.2 | |||
Neuraminidase-1 | nan1 F | -AGGATGAATACTTATTTTGAT- | 42.6 | 47 | 1316 |
nan1 R | -TCACTAAATCCATCTCTGACCCGATA- | 56.4 | |||
Neuraminidase-2 | nan2 F | -ACAACAACGGGGACGGTAT- | 51.1 | 50 | 1161 |
nan2 R | -GTTTTGCTGATGCTGGTTCA- | 49.7 | |||
Alkaline protease | aprA F | -TGTCCAGCAATTCTCTTGC- | 48.9 | 50 | 1017 |
aprA R | -CGTTTTCCACGGTGACC- | 49.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogiel, T.; Prażyńska, M.; Kwiecińska-Piróg, J.; Mikucka, A.; Gospodarek-Komkowska, E. Carbapenem-Resistant Pseudomonas aeruginosa Strains-Distribution of the Essential Enzymatic Virulence Factors Genes. Antibiotics 2021, 10, 8. https://doi.org/10.3390/antibiotics10010008
Bogiel T, Prażyńska M, Kwiecińska-Piróg J, Mikucka A, Gospodarek-Komkowska E. Carbapenem-Resistant Pseudomonas aeruginosa Strains-Distribution of the Essential Enzymatic Virulence Factors Genes. Antibiotics. 2021; 10(1):8. https://doi.org/10.3390/antibiotics10010008
Chicago/Turabian StyleBogiel, Tomasz, Małgorzata Prażyńska, Joanna Kwiecińska-Piróg, Agnieszka Mikucka, and Eugenia Gospodarek-Komkowska. 2021. "Carbapenem-Resistant Pseudomonas aeruginosa Strains-Distribution of the Essential Enzymatic Virulence Factors Genes" Antibiotics 10, no. 1: 8. https://doi.org/10.3390/antibiotics10010008
APA StyleBogiel, T., Prażyńska, M., Kwiecińska-Piróg, J., Mikucka, A., & Gospodarek-Komkowska, E. (2021). Carbapenem-Resistant Pseudomonas aeruginosa Strains-Distribution of the Essential Enzymatic Virulence Factors Genes. Antibiotics, 10(1), 8. https://doi.org/10.3390/antibiotics10010008