Multidrug-Resistant Micro-Organisms Associated with Urinary Tract Infections in Orthopedic Patients: A Retrospective Laboratory-Based Study
Abstract
1. Background
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gossett, P.C.; Schwartz, B.E.; Chuang, D.P.; Piponov, H.I.; Gonzalez, M.H. Urinary Tract Infection after Total Hip Arthroplasty: A Retrospective Cohort Study. J. Surg. Orthop. Adv. 2020, 29, 162–164. [Google Scholar] [PubMed]
- Ma, Y.; Lu, X. Indwelling catheter can increase postoperative urinary tract infection and may not be required in total joint arthroplasty: A meta-analysis of randomised controlled trial. BMC Musculoskelet. Disorder 2019, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Parker, V.; Giles, M.; Graham, L.; Suthers, B.; Watts, W.; O’Brien, T.; Searles, A. Avoiding inappropriate urinary catheter use and catheter-associated urinary tract infection (CAUTI): A pre-post control intervention study. BMC Health Serv. Res. 2017, 17, 314. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, L.E. Catheter associated urinary tract infections. Antimicrob. Resist. Infect. Control 2014, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Thakker, A.; Briggs, N.; Maeda, A.; Byrne, J.; Davey, J.R.; Jackson, T.D. Reducing the rate of post-surgical urinary tract infections in orthopaedic patients. BMJ Open Qual. 2018, 7. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Pawłowska, I.; Ziółkowski, G.; Wójkowska-Mach, J.; Bielecki, T. Can surgical site infections be controlled through microbiological surveillance? A three-year laboratory-based surveillance at an orthopaedic unit, retrospective observatory study. Int. Orthop. 2019. [CrossRef]
- ECDC. Surveillance of Healthcare-Associated Infections and Prevention Indicators in European Intensive Care Units HAI-Net ICU Protocol. Available online: https://ecdc.europa.eu/sites/portal/files/documents/HAI-Net-ICU-protocol-v2.2_0.pdf (accessed on 23 January 2020).
- EUCAST. Guideline for the Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance. Available online: http://www.eucast.org/resistance_mechanisms/ (accessed on 23 January 2020).
- EUCAST. Clinical Breakpoints—Breakpoints and Guidance. Available online: http://www.eucast.org/clinical_breakpoints (accessed on 23 January 2020).
- Drieux, L.; Brossier, F.; Sougakoff, W.; Jarlier, V. Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: Review and bench guide. Clin. Microbiol. Infect. 2008, 14, 90–103. [Google Scholar] [CrossRef]
- Herruzo-Cabrera, R.; López-Giménez, J.; Munuera, C.L. Urinary infection after orthopaedic procedures. Int. Orthop. 2001, 25, 55–59. [Google Scholar] [CrossRef][Green Version]
- Alvarez, A.P.; Demzik, A.L.; Alvi, H.M.; Hardt, K.D. Manning DW. Risk Factors for Postoperative Urinary Tract Infections in Patients Undergoing Total Joint Arthroplasty. Adv. Orthop. 2016, 2016, 7268985. [Google Scholar] [CrossRef]
- Dudeck, M.A.; Edwards, J.R.; Allen-Bridson, K.; Gross, C.; Malpiedi, P.J.; Peterson, K.D.; Pollock, D.A.; Weiner, L.M.; Sievert, D.M. NHSN Annual Report: Data summary for 2013, Device-associated Module. Am. J. Infect. Control 2015, 43, 206–221. [Google Scholar] [CrossRef] [PubMed]
- Kołpa, M.; Wałaszek, M.; Różańska, A.; Wolak, Z.; Wójkowska-Mach, J. Hospital-Wide Surveillance of Healthcare-Associated Infections as a Source of Information about Specific Hospital Needs. A 5-Year Observation in a Multiprofile Provincial Hospital in the South of Poland. Int. J. Environ. Res. Public Health 2018, 15, 1956. [Google Scholar] [CrossRef] [PubMed]
- Stéphan, F.; Sax, H.; Wachsmuth, M.; Hoffmeyer, P.; Clergue, F.; Pittet, D. Reduction of Urinary Tract Infection and Antibiotic Use after Surgery: A Controlled, Prospective, Before After Intervention Study. Clin. Infect. Dis. 2006, 42, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Corigliano, A.; Galasso, O.; Varano, A.; Riccelli, D.A.; Gasparini, G. Urinary tract infections after early removal of urinary catheter in total joint arthroplasty. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Balderi, T.; Carli, F. Urinary retention after total hip and knee arthroplasty. Minerva Anestesiol. 2010, 76, 120–130. [Google Scholar] [PubMed]
- Koulouvaris, P.; Sculco, P.; Finerty, E.; Sculco, T.; Sharrock, N.E. Relationship between perioperative urinary tract infection and deep infection after joint arthroplasty. Clin. Orthop. Relat. Res. 2008, 467, 1859–1867. [Google Scholar] [CrossRef]
- Núñez-Pereira, S.; Rodríguez-Pardo, D.; Pellisé, F.; Pigrau, C.; Bagó, J.; Villanueva, C.; Cáceres, E. Postoperative urinary tract infection and surgical site infection in instrumented spinal surgery: Is there a link? Clin Microbiol. Infect. 2014, 20, 768–773. [Google Scholar] [CrossRef]
- Sopeña-Sutil, R.; Medina-Polo, J.; Justo-Quintas, J.; Gil-Moradillo, J.; Garcia-Gonzalez, L.; Benítez-Sala, R.; Alonso-Isa, M.; Lara-Isla, A.; Tejido-Sanchez, A. Healthcare-Associated Infections after Lower Urinary Tract Endoscopic Surgery: Analysis of Risk Factors, Associated Microorganisms and Patterns of Antibiotic Resistance. Urol. Int. 2018, 100, 440–444. [Google Scholar] [CrossRef]
- Pellowe, C.; Pratt, R. Catheter-associated urinary tract infections: Primary care guidelines. Nurs. Times 2004, 100, 53–55. [Google Scholar]
- Fisher, J.F. Candida urinary tract infections—Epidemiology, pathogenesis, diagnosis, and treatment: Executive summary. Clin. Infect. Dis. 2011, 52, S429–S432. [Google Scholar] [CrossRef]
- Kauffman, C.A.; Vazquez, J.A.; Sobel, J.D.; Gallis, H.A.; McKinsey, D.S.; Karchmer, A.W.; Sugar, A.M.; Sharkey, P.K.; Wise, G.J.; Mangi, R.; et al. Prospective multicenter surveillance study of funguria in hospitalized patients. Clin. Infect. Dis. 2000, 30, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Nicolas-Chanoine, M.H.; Blanco, J.; Leflon-Guibout, V.; Demarty, R.; Alonso, M.P.; Caniça, M.M.; Park, Y.J.; Lavigne, J.P.; Pitout, J.; Johnson, J.R. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother. 2008, 61, 273–281. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA—Annual Epidemiological Report 2019; ECDC: Stockholm, Sweden, 2020; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Antimicrobial-consumption-in-the-EU-Annual-Epidemiological-Report-2019.pdf (accessed on 20 November 2020).
- Khawcharoenporn, T.; Vasoo, S.; Singh, K. Urinary Tract Infections due to Multidrug-Resistant Enterobacteriaceae: Prevalence and Risk Factors in a Chicago Emergency Department. Emerg. Med. Int. 2013, 2013, 258517. [Google Scholar] [CrossRef] [PubMed]
- Mazzariol, A.; Bazaj, A.; Cornaglia, G. Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: A review. J. Chemother. 2017, 29, 2–9. [Google Scholar] [CrossRef]
Pathogen | Monomicrobial n [%] | Polymicrobial n [%] | Total n [%] | Depending on the Use of Bladder Catheter [%] | Total n [%] | ||||
---|---|---|---|---|---|---|---|---|---|
Female | Male | Female | Male | Female | Male | CA-UTI | Non-CA-UTI | ||
Gram-positive (16.3% of all micro-organisms) | |||||||||
Staphylococcus aureus | 0 (0.0) | 2 (2.4) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (1.9) | 2 (1.0) | 0 (0.0) | 2 (1.0) |
Enterococcus faecalis | 5 (6.4) | 5 (5.9) | 5 (6.5) | 5 (22.7) | 10 (9.8) | 10 (9.3) | 18 (9.1) | 2 (16.7) | 20 (9.6) |
Enterococcus faecium | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (4.5) | 0 (0.0) | 1 (0.9) | 1 (0.5) | 0 (0.0) | 1 (0.5) |
Others | 11 (14.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 11 (10.8) | 0 (0.0) | 11 (5.6) | 0 (0.0) | 11 (5.3) |
Gram-negative (76.1% of all micro-organisms) | |||||||||
Escherichia coli | 13 (16.7) | 25 | 15 (62.5) | 8 (36.4) | 28 (27.5) | 33 (30.8) | 56 (28.4) | 5 (41.7) | 61 (29.2) |
Klebsiella pneumoniae | 11 (14.1) | 14 | 4 (16.7) | 3 (13.6) | 15 (14.7) | 17 15.9) | 30 (15.2) | 2 (16.7) | 32 (13.3) |
Proteus mirabilis | 7 (9.0) | 13 | 0 (0.0) | 5 (22.7) | 7 (6.9) | 18 (16.8) | 24 (12.2) | 1 (8.3) | 25 (12.0) |
Pseudomonas aeruginosa | 10 (12.8) | 11 | 0 (0.0) | 0 (0.0) | 10 (99.8) | 11 (10.3) | 21 (10.7) | 0 (0.0) | 21 (10.0) |
Acinetobacter baumannii | 3 (3.8) | 6 | 0 (0.0) | 0 (0.0) | 3 (2.9) | 6 (5.6) | 9 (4.6) | 0 (0.0) | 9 (4.3) |
Enterobacter cloacae | 2 (2.6) | 1 | 0 (0.0) | 0 (0.0) | 2 (2.0) | 1 (0.9) | 3 (1.5) | 0 (0.0) | 3 (1.4) |
Others | 8 (10.3) | 0 | 0 (0.0) | 0 (0.0) | 8 (7.8) | 0 (0.0) | 8 (4.1) | 0 (0.0) | 8 (3.8) |
Candida spp. | 8 (10.3) | 8 | 0 (0.0) | 0 (0.0) | 8 (7.8) | 8 (7.6) | 14 (7.1) | 2 (16.7) | 16 (7.7) |
total | 78 (100) | 85 (100) | 24 (100) | 22 (100) | 102 (100) | 107 | 197 (100) | 12 (100) | 209 (100) |
Antibiotics | Escherichia coli n = 61 | Klebsiella pneumoniae n = 32 | Proteus mirabilis (n = 25) | Pseudomonas aeruginosa n = 21 |
---|---|---|---|---|
Beta-lactam antibacterials: penicillins, with extended-spectrum, beta-lactamase resistant penicillins, combinations of penicillins incl. beta-lactamase inhibitors | ||||
Ampicillin | 26% | 0% | 37% | NT |
Piperacillin | 28% | 0% | 35% | 75% |
amoxicillin + clavulanate | 82% | 35% | 91% | NT |
piperacillin + tazobactam | 70% | 31% | 92% | 85% |
ticarcillin + clavulanate | NT | NT | NT | 90 |
Other beta-lactam antibacterials: second/third-generation cephalosporins, carbapenems | ||||
Cefuroxime | 84% | 25% | 78% | NT |
Ceftazidime | 94% | 38% | 93% | 85% |
Cefotaxime | 96% | 38% | 94% | NT |
Cefepime | 92% | 31% | 97% | 100% |
Imipenem | 100% | 100% | 33% | 77% |
Meropenem | 100% | 100% | 100% | 77% |
Ertapenem | 100% | 100% | 100% | NT |
Aminoglycoside antibacterials | ||||
Gentamicin | 87% | 25% | 67% | 88% |
Tobramycin | 73% | 36% | 60% | 91% |
Amikacin | 88% | 50% | 67% | 92% |
Netilmicin | 89% | 40% | 60% | 82% |
Quinolone antibacterials | ||||
Ciprofloxacin | 64% | 42% | 57% | 37% |
Levofloxacin | 64% | 38% | 43% | 50% |
Other antibacterials | ||||
Nitrofurantoin | 96% | NT | NT | NT |
Fosfomycin | 100% | 80% | NT | 98% |
trimethoprim-sulfamethoxazole | 55% | 42% | 50% | NT |
Pathogen | MDR Isolates [n] | Prevalence of MDR [%] | Trend in 2013–2015 p-Value | ||
---|---|---|---|---|---|
Female | Male | Total | |||
Acinetobacter baumannii XDR, n = 9 | 2 | 5 | 7 | 77.8 | p = 0.6015 |
Klebsiella pneumoniae MDR, incl. ESBL, n = 32 | 10 | 11 | 21 | 65.6 | p = 0.6015 |
Pseudomonas aeruginosa MDR, XDR, n = 21 | 2 | 3 | 5 | 23.8 | p = 0.6015 |
Proteus mirabilis MDR, incl. ESBL, n = 25 | 2 | 2 | 4 | 16.0 | p = 0.2008 |
Escherichia coli MDR, incl. ESBL, n = 61 | 2 | 6 | 8 | 13.1 | p = 0.6015 |
Others, n = 61 | 6 | 2 | 6 | 9.8 | p = 0.6015 |
Total, n = 209 | 20 | 31 | 51 | 24.4 | p = 0.6015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziółkowski, G.; Pawłowska, I.; Stasiowski, M.; Jachowicz, E.; Wójkowska-Mach, J.; Bielecki, T. Multidrug-Resistant Micro-Organisms Associated with Urinary Tract Infections in Orthopedic Patients: A Retrospective Laboratory-Based Study. Antibiotics 2021, 10, 7. https://doi.org/10.3390/antibiotics10010007
Ziółkowski G, Pawłowska I, Stasiowski M, Jachowicz E, Wójkowska-Mach J, Bielecki T. Multidrug-Resistant Micro-Organisms Associated with Urinary Tract Infections in Orthopedic Patients: A Retrospective Laboratory-Based Study. Antibiotics. 2021; 10(1):7. https://doi.org/10.3390/antibiotics10010007
Chicago/Turabian StyleZiółkowski, Grzegorz, Iwona Pawłowska, Michał Stasiowski, Estera Jachowicz, Jadwiga Wójkowska-Mach, and Tomasz Bielecki. 2021. "Multidrug-Resistant Micro-Organisms Associated with Urinary Tract Infections in Orthopedic Patients: A Retrospective Laboratory-Based Study" Antibiotics 10, no. 1: 7. https://doi.org/10.3390/antibiotics10010007
APA StyleZiółkowski, G., Pawłowska, I., Stasiowski, M., Jachowicz, E., Wójkowska-Mach, J., & Bielecki, T. (2021). Multidrug-Resistant Micro-Organisms Associated with Urinary Tract Infections in Orthopedic Patients: A Retrospective Laboratory-Based Study. Antibiotics, 10(1), 7. https://doi.org/10.3390/antibiotics10010007