Use of Electronic Noses in Seawater Quality Monitoring: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
Search Strategy
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Correa, S.M.; Arbilla, G.; Marques, M.R.C.; Oliveira, K.M.P.G. The impact of btex emissions from gas stations into the atmosphere. Atmos. Pollut. Res. 2012, 3, 163–169. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagby, S.C.; Reddy, C.M.; Aeppli, C.; Fisher, G.B.; Valentine, D.L. Persistence and biodegradation of oil at the ocean floor following deepwater horizon. Proc. Natl. Acad. Sci. USA 2017, 114, E9–E18. [Google Scholar] [CrossRef] [PubMed]
- Chocarro-Ruiz, B.; Herranz, S.; Fernández Gavela, A.; Sanchís, J.; Farré, M.; Marco, M.P.; Lechuga, L.M. Interferometric nanoimmunosensor for label-free and real-time monitoring of Irgarol 1051 in seawater. Biosens. Bioelectron. 2018, 117, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Liu, J.; Bacosa, H.; Rosenheim, B.E.; Liu, Z. Petroleum hydrocarbon persistence following the deepwater horizon oil spill as a function of shoreline energy. Mar. Pollut. Bull. 2017, 115, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Bakker, K. Water Security: Research Challenges and Opportunities. Science 2012, 337, 914–915. [Google Scholar] [CrossRef] [PubMed]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Tonacci, A.; Sansone, F.; Pala, A.P.; Conte, R. Exhaled breath analysis in evaluation of psychological stress: A short literature review. Int. J. Psychol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Portable Electronic Nose Based on Electrochemical Sensors for Food Quality Assessment. Sensors 2017, 17, 2715. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, W.; Hogben, P.; Pike, A.; Stuetz, R.M. Development of a sensor array based measurement system for continuous monitoring of water and wastewater. Sens. Actuators B 2003, 88, 312–319. [Google Scholar] [CrossRef]
- Tzing, S.H.; Chang, J.Y.; Ghule, A.; Chang, J.J.; Lo, B.; Ling, Y.C. A simple and rapid method for identifying the source of spilled oil using an electronic nose: Confirmation by gas chromatography with mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 1873–1880. [Google Scholar] [CrossRef] [PubMed]
- Goschnick, J.; Koronczi, I.; Frietsch, M.; Kiselev, I. Water pollution recognition with the electronic nose KAMINA. Sens. Actuators B 2005, 106, 182–186. [Google Scholar] [CrossRef]
- Lozano, J.; Santos, J.P.; Suárez, J.I.; Arroyo, P.; Herrero, J.L.; Martín, A. Detection of pollutants in water samples with a wireless hand-held e-nose. Procedia Eng. 2014, 87, 556–559. [Google Scholar] [CrossRef]
- Herrero, J.L.; Lozano, J.; Santos, J.P.; Suárez, J.I. On-line classification of pollutants in water using wireless portable electronic noses. Chemosphere 2016, 152, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Tonacci, A.; Corda, D.; Tartarisco, G.; Pioggia, G.; Domenici, C. A smart sensor system for detecting hydrocarbon Volatile Organic Compounds in sea water. CLEAN Soil Air Water 2015, 43, 147–152. [Google Scholar] [CrossRef]
- Tonacci, A.; Lacava, G.; Lippa, M.A.; Lupi, L.; Cocco, M.; Domenici, C. Electronic Nose and AUV: A Novel Perspective in Marine Pollution Monitoring. Mar. Technol. Soc. J. 2015, 49, 18–24. [Google Scholar] [CrossRef]
- Son, M.; Cho, D.G.; Lim, J.H.; Park, J.; Hong, S.; Ko, H.J.; Park, T.H. Real-time monitoring of geosmin and 2-methylisoborneol, representative odor compounds in water pollution using bioelectronics nose with human-like performance. Biosens. Bioelectron. 2015, 74, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Moroni, D.; Pieri, G.; Salvetti, O.; Tampucci, M.; Domenici, C.; Tonacci, A. Sensorized buoy for oil spill early detection. Methods Oceanogr. 2016, 17, 221–231. [Google Scholar] [CrossRef]
- Climent, E.; Pelegri-Sebastia, J.; Sogorb, T.; Talens, J.B.; Chilo, J. Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection. Sensors 2017, 17, 1917. [Google Scholar] [CrossRef] [PubMed]
- Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Ayuso, J.; Álvarez, J.A.; Palma, M.; Barroso, C.G. An Electronic Nose Based Method for the Discrimination of Weathered Petroleum-Derived Products. Sensors 2018, 18, 2180. [Google Scholar] [CrossRef] [PubMed]
- Mille, G.; Asia, L.; Guiliano, M.; Malleret, L.; Doumenq, P. Hydrocarbons in coastal sediments from the Mediterranean sea (Gulf of Fos area, France). Mar. Pollut. Bull. 2007, 54, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Zrafi, I.; Bakhrouf, A.; Mahmoud, R.; Dalila, S.D. Aliphatic and aromatic biomarkers for petroleum hydrocarbon monitoring in Khniss Tunisian-Coast, (Mediterranean Sea). Procedia Environ. Sci. 2013, 18, 211–220. [Google Scholar] [CrossRef]
- Azzellino, A.; Panigada, S.; Lanfredi, C.; Zanardelli, M.; Airoldi, S.; Notarbartolo di Sciara, G. Predictive habitat models for managing marine areas: Spatial and temporal distribution of marine mammals within the Pelagos Sanctuary (Northwestern Mediterranean sea). Ocean Coast. Manag. 2012, 67, 63–74. [Google Scholar] [CrossRef]
Study | Design | Sensor(s) Type | Monitoring Site |
---|---|---|---|
Bourgeois et al. [11] | (i) Sampling vessel, eNose sensor array and PC for data analysis; (ii) eNose sensor array, PC for data storage, data transfer system | (i) eNose5000; (ii) ProSAT | (i) Laboratory trials; (ii) Cranfield University Sewage Works facilities |
Tzing et al. [12] | eNose used to identify source of oil leakage from an accident site. zNose, GC-MS used for results’ confirmation and quantitative analysis | eNose: Cyranose 320; zNose FGC/SAW 7100; GC-MS: Varian CP-3800 + Saturn 200 ion-trap | On-field (accident site) |
Goschnik et al. [13] | eNose used to discriminate between clear and polluted (chloroform and ammonia) water | Semiconductor-based KAMINA eNose | Laboratory trials |
Lozano et al. [14,15] | Portable wireless resistive sensor-based eNose, electronic pump and valve, electronics and rechargeable batteries. Measurements on clear water and 11 pollutants | Home-made eNose capable of hosting resistive sensors | Laboratory trials |
Tonacci et al. [16,17] | eNose, electronic pump and valve, embedded electronics and PC for data acquisition, integrated within an AUV | eNose composed of three piD sensors | On-field acquisition (La Spezia Gulf and Enfola Bay, Italy) |
Son et al. [18] | bio-eNose tested to distinguish the presence of GSM and MIB | Human ORs and swCNT-FET | Laboratory trials with tap water, bottled water and river water |
Moroni et al. [19] | eNose, electronic pump and valve, embedded electronics and PC for data acquisition, integrated within a moored buoy | eNose composed of three piD sensors | On-field acquisition (La Spezia Gulf and Enfola Bay, Italy) |
Climent et al. [20] | eNose, architecture for data acquisition, storage, processing and user interfacing parts | eNose composed of four, IoT suitable, MOS sensors | Laboratory trials with water polluted with dimethyl disulphide, dimethyl diselenide, sulphur |
Aliaño-González et al. [21] | eNose combined with chemometrics; linear discrimination analysis for classification | AlphaMOS eNose composed of MOS sensors | Laboratory trials on 444 samples from gasoline, diesel and paraffin, subjected to a natural weathering process by evaporation |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonacci, A.; Sansone, F.; Conte, R.; Domenici, C. Use of Electronic Noses in Seawater Quality Monitoring: A Systematic Review. Biosensors 2018, 8, 115. https://doi.org/10.3390/bios8040115
Tonacci A, Sansone F, Conte R, Domenici C. Use of Electronic Noses in Seawater Quality Monitoring: A Systematic Review. Biosensors. 2018; 8(4):115. https://doi.org/10.3390/bios8040115
Chicago/Turabian StyleTonacci, Alessandro, Francesco Sansone, Raffaele Conte, and Claudio Domenici. 2018. "Use of Electronic Noses in Seawater Quality Monitoring: A Systematic Review" Biosensors 8, no. 4: 115. https://doi.org/10.3390/bios8040115
APA StyleTonacci, A., Sansone, F., Conte, R., & Domenici, C. (2018). Use of Electronic Noses in Seawater Quality Monitoring: A Systematic Review. Biosensors, 8(4), 115. https://doi.org/10.3390/bios8040115