Metabolism-Driven High-Throughput Cancer Identification with GLUT5-Specific Molecular Probes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Techniques
2.2. Synthesis of ManCou Conjugates
2.3. Tissue Culture
2.4. Microplate Uptake and Inhibition Assays
2.5. Immunostaining
2.6. Imaging
3. Results and Discussion
3.1. Design and Evaluation of Fluorescent Fructose Mimics as GLUT5-Specific Probes
3.2. Profiling Fructose Uptake Efficiency and GLUT5 in Cells for Cancer Detection
4. Conclusions
5. Patents
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Avcioglu, G.; Nural, C.; Yilmaz, F.M.; Baran, P.; Erel, O.; Yilmaz, G. Comparison of noninvasive and invasive point-of-care testing methods with reference method for hemoglobin measurement. J. Clin. Lab. Anal. 2017. [Google Scholar] [CrossRef] [PubMed]
- De Clippel, D.; Van Heddegem, L.; Vandewalle, G.; Vandekerckhove, P.; Compernolle, V. Hemoglobin screening in blood donors: A prospective study assessing the value of an invasive and a noninvasive point-of-care device for donor safety. Transfusion 2017, 57, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Ekhlaspour, L.; Mondesir, D.; Lautsch, N.; Balliro, C.; Hillard, M.; Magyar, K.; Radocchia, L.G.; Esmaeili, A.; Sinha, M.; Russell, S.J. Comparative accuracy of 17 point-of-care glucose meters. J. Diabetes Sci. Technol. 2017, 11, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Allardet-Servent, J.; Lebsir, M.; Dubroca, C.; Fabrigoule, M.; Jordana, S.; Signouret, T.; Castanier, M.; Thomas, G.; Soundaravelou, R.; Lepidi, A.; et al. Point-of-care versus central laboratory measurements of hemoglobin, hematocrit, glucose, bicarbonate and electrolytes: A prospective observational study in critically ill patients. PLoS ONE 2017, 12, e0169593. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.H.; Lee, H.C.; Ryu, H.G.; Chung, E.J.; Kim, B.; Jung, H.; Jung, C.W. Reliability of point-of-care hematocrit measurement during liver transplantation. Anesth. Analg. 2017, 125, 2038–2044. [Google Scholar] [CrossRef] [PubMed]
- Bueno, L.; de Araujo, W.R.; Paixão, T.R.L.C. 8-point of care (poc) medical biosensors for cancer detection a2-narayan, roger j. In Medical Biosensors for Point of Care (poc) Applications; Woodhead Publishing: Sawston, UK, 2017; pp. 183–201. [Google Scholar]
- Zarei, M. Advances in point-of-care technologies for molecular diagnostics. Biosens. Bioelectron. 2017, 98, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ding, B.; Chen, Q.; Feng, Q.; Lin, L.; Sun, J. Point-of-care-testing of nucleic acids by microfluidics. TrAC Trends Anal. Chem. 2017, 94, 106–116. [Google Scholar] [CrossRef]
- Jayanthi, V.S.P.K.; Sankara, A.; Das, A.B.; Saxena, U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron. 2017, 91, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, J.M. Having a breast biopsy: A review of the research for women and their families. In Center for Clinical Decisions and Communications Science; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2016. [Google Scholar]
- Davidson, N.E.; Rimm, D.L. Expertise vs evidence in assessment of breast biopsies: An atypical science. JAMA 2015, 313, 1109–1110. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (review). Oncol. Lett. 2012, 4, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Adler, L.P.; Crowe, J.P.; al-Kaisi, N.K.; Sunshine, J.L. Evaluation of breast masses and axillary lymph nodes with [f-18] 2-deoxy-2-fluoro-d-glucose pet. Radiology 1993, 187, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Calvaresi, E.C.; Hergenrother, P.J. Glucose conjugation for the specific targeting and treatment of cancer. Chem. Sci. 2013, 4, 2319–2333. [Google Scholar] [CrossRef] [PubMed]
- Tanasova, M.; Fedie, J. Molecular tools for facilitative carbohydrate transporters. ChemBioChem 2017, 18, 1774–1788. [Google Scholar] [CrossRef] [PubMed]
- Alavi, A.; Zhuang, H.M. Finding infection—Help from pet. Lancet 2001, 358, 1386. [Google Scholar] [CrossRef]
- Carvalho, K.C.; Cunha, I.W.; Rocha, R.M.; Ayala, F.R.; Cajaiba, M.M.; Begnami, M.D.; Vilela, R.S.; Paiva, G.R.; Andrade, R.G.; Soares, F.A. Glut1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics 2011, 66, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.S.; Chun, Y.K.; Hur, M.H.; Lee, H.K.; Kim, Y.J.; Hong, S.R.; Lee, J.H.; Lee, S.G.; Park, Y.K. Clinical significance of glucose transporter 1 (glut1) expression in human breast carcinoma. Jpn. J. Cancer Res. 2002, 93, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Lind, P.; Igerc, I.; Beyer, T.; Reinprecht, P.; Hausegger, K. Advantages and limitations of fdg pet in the follow-up of breast cancer. Eur. J. Nucl. Med. Mol. I 2004, 31, S125–S134. [Google Scholar]
- McQuade, D.T.; Plutschack, M.B.; Seeberger, P.H. Passive fructose transporters in disease: A molecular overview of their structural specificity. Org. Biomol. Chem. 2013, 11, 4909–4920. [Google Scholar] [CrossRef] [PubMed]
- Gowrishankar, G.; Zitzmann-Kolbe, S.; Junutula, A.; Reeves, R.; Levi, E.; Srinivasan, A.; Bruus-Jensen, K.; Cyr, J.; Dinkelborg, L.; Gambhir, S.S. Glut 5 is not over-expressed in breast cancer cells and patient breast cancer tissues. PLoS ONE 2011, 11, e26902. [Google Scholar] [CrossRef] [PubMed]
- Trayner, B.J.; Grant, T.N.; West, F.G.; Cheeseman, C.I. Synthesis and characterization of 6-deoxy-6-fluoro-d-fructose as a potential compound for imaging breast cancer with pet. Bioorg. Med. Chem. 2009, 17, 5488–5495. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Leon, S.P.; Golde, D.W.; Concha, I.I.; Rivas, C.I.; DelgadoLopez, F.; Baselga, J.; Nualart, F.; Vera, J.C. Expression of the fructose transporter glut5 in human breast cancer. Proc. Natl. Acad. Sci. USA 1996, 93, 1847–1852. [Google Scholar] [CrossRef] [PubMed]
- Mesonero, J.; Matosin, M.; Cambier, D.; Rodriguez-Yoldi, M.J.; Brot-Laroche, E. Sugar-dependent expression of the fructose transporter glut5 in caco-2 cells. Biochem. J. 1995, 312 Pt 3, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Baenke, F.; Peck, B.; Miess, H.; Schulze, A. Hooked on fat: The role of lipid synthesis in cancer metabolism and tumour development. Dis. Model. Mech. 2013, 6, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Monzavi-Karbassi, B.; Hine, R.J.; Stanley, J.S.; Ramani, V.P.; Carcel-Trullols, J.; Whitehead, T.L.; Kelly, T.; Siegel, E.R.; Artaud, C.; Shaaf, S.; et al. Fructose as a carbon source induces an aggressive phenotype in mda-mb-468 breast tumor cells. Int. J. Oncol. 2010, 37, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Manolescu, A.R.; Witkowska, K.; Kinnaird, A.; Cessford, T.; Cheeseman, C. Facilitated hexose transporters: New perspectives on form and function. Physiology 2007, 22, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Granchi, C.; Fortunato, S.; Minutolo, F. Anticancer agents interacting with membrane glucose transporters. Medchemcomm 2016, 7, 1716–1729. [Google Scholar] [CrossRef] [PubMed]
- Levi, J.; Cheng, Z.; Gheysens, O.; Patel, M.; Chan, C.T.; Wang, Y.B.; Namavari, M.; Gambhir, S.S. Fluorescent fructose derivatives for imaging breast cancer cells. Bioconjug. Chem. 2007, 18, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Dowden, J.; Tatibouet, A.; Hatanaka, Y.; Holman, G.D. Development of high-affinity ligands and photoaffinity labels for the d-fructose transporter glut5. Biochem. J. 2002, 367, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Tanasova, M.; Plutschack, M.; Muroski, M.E.; Sturla, S.J.; Strouse, G.F.; McQuade, D.T. Fluorescent thf-based fructose analogue exhibits fructose-dependent uptake. ChemBioChem 2013, 14, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Soueidan, O.M.; Scully, T.W.; Kaur, J.; Panigrahi, R.; Belovodskiy, A.; Do, V.; Matier, C.D.; Lemieux, M.J.; Wuest, F.; Cheeseman, C.; et al. Fluorescent hexose conjugates establish stringent stereochemical requirement by glut5 for recognition and transport of monosaccharides. ACS Chem. Biol. 2017, 12, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Kumar Kondapi, V.P.; Soueidan, O.M.; Cheeseman, C.I.; West, F.G. Tunable glut-hexose binding and transport via modulation of hexose c-3 hydrogen-bonding capabilities. Chem. Eur. J. 2017, 23, 8073–8081. [Google Scholar] [CrossRef] [PubMed]
- Begoyan, V.V.; Weselinski, L.J.; Xia, S.; Fedie, J.; Kannan, S.; Ferrier, A.; Rao, S.; Tanasova, M. Multicolor GLUT5-permeable fluorescent probes for fructose transport analysis. Chem. Commun. 2018. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, Y.; Zhang, P.; Wu, J. Direct amination of phenols under metal-free conditions. Synlett 2013, 24, 1448–1454. [Google Scholar]
- Kannan, S.; Begoyan, V.; Fedie, J.; Xia, S.; Weselinski, L.; Tanasova, M.; Rao, S. Fructose Uptake-Based Rapid Detection of Breast Cancer. In Proceedings of the IEEE Life Sciences Conference, Sydney, Australia, 13–15 December 2017. [Google Scholar]
- McCloy, R.A.; Rogers, S.; Caldon, C.E.; Lorca, T.; Castro, A.; Burgess, A. Partial inhibition of cdk1 in g 2 phase overrides the sac and decouples mitotic events. Cell Cycle 2014, 13, 1400–1412. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, Y.; Sasaki, A.; Teshima, T.; Yamada, K.; Yamamoto, T. Syntheses of d-glucose derivatives emitting blue fluorescence through pd-catalyzed c-n coupling. Org. Lett. 2016, 18, 1338–1341. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Seino, Y.; Fukumoto, H.; Koh, G.; Yano, H.; Inagaki, N.; Yamada, Y.; Inoue, K.; Manabe, T.; Imura, H. Over-expression of facilitative glucose transporter genes in human cancer. Biochem. Biophys. Res. Commun. 1990, 170, 223–230. [Google Scholar] [CrossRef]
- Dills, W.L.; Covey, T.R.; Singer, P.; Neal, S.; Rappaport, M.S. 2,5-anhydro-1-deoxy-d-lyxitol, 2,5-anhydro-1-deoxy-d-mannitol, and 2,5-anhydro-1-deoxy-d-talitol—Synthesis and enzymic studies. Carbohydr. Res. 1982, 99, 23–31. [Google Scholar] [CrossRef]
- Azema, L.; Claustre, S.; Alric, I.; Blonski, C.; Willson, M.; Perie, J.; Baltz, T.; Tetaud, E.; Bringaud, F.; Cottem, D.; et al. Interaction of substituted hexose analogues with the trypanosoma brucei hexose transporter. Biochem. Pharmacol. 2004, 67, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, P.T.; Wernette-Hammond, M.E.; Kneer, N.M.; Lardy, H.A. Mechanism of action of 2,5-anhydro-d-mannitol in hepatocytes. Effects of phosphorylated metabolites on enzymes of carbohydrate metabolism. J. Biol. Chem. 1984, 259, 5115–5123. [Google Scholar] [PubMed]
- Hanson, R.L.; Ho, R.S.; Wiseberg, J.J.; Simpson, R.; Younathan, E.S.; Blair, J.B. Inhibition of gluconeogenesis and glycogenolysis by 2,5-anhydro-d-mannitol. J. Biol. Chem. 1984, 259, 218–223. [Google Scholar] [PubMed]
- Douard, V.; Ferraris, R.P. Regulation of the fructose transporter glut5 in health and disease. Am. J. Physiol.-Endocrinol. Metab. 2008, 295, E227–E237. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannan, S.; Begoyan, V.V.; Fedie, J.R.; Xia, S.; Weseliński, Ł.J.; Tanasova, M.; Rao, S. Metabolism-Driven High-Throughput Cancer Identification with GLUT5-Specific Molecular Probes. Biosensors 2018, 8, 39. https://doi.org/10.3390/bios8020039
Kannan S, Begoyan VV, Fedie JR, Xia S, Weseliński ŁJ, Tanasova M, Rao S. Metabolism-Driven High-Throughput Cancer Identification with GLUT5-Specific Molecular Probes. Biosensors. 2018; 8(2):39. https://doi.org/10.3390/bios8020039
Chicago/Turabian StyleKannan, Srinivas, Vagarshak V. Begoyan, Joseph R. Fedie, Shuai Xia, Łukasz J. Weseliński, Marina Tanasova, and Smitha Rao. 2018. "Metabolism-Driven High-Throughput Cancer Identification with GLUT5-Specific Molecular Probes" Biosensors 8, no. 2: 39. https://doi.org/10.3390/bios8020039
APA StyleKannan, S., Begoyan, V. V., Fedie, J. R., Xia, S., Weseliński, Ł. J., Tanasova, M., & Rao, S. (2018). Metabolism-Driven High-Throughput Cancer Identification with GLUT5-Specific Molecular Probes. Biosensors, 8(2), 39. https://doi.org/10.3390/bios8020039