Biosensors with Built-In Biomolecular Logic Gates for Practical Applications
Abstract
:1. Introduction
2. Recognition and Transduction Strategies of Logically Gated Sensing Activity
3. Advances of Enzyme-Based Logical Gates for Sensing and Actuation
3.1. Sensing Based on Biocatalytic Reactions
3.2. Sensing and Actuation Processed by Enzyme Cascade Reactions
4. Advances of Nucleic Acid-Based Logic Gates for Sensing and Actuation
4.1. Sensing Based on DNA Processing
4.2. Sensing and Actuation Processed by DNA
5. Advanced Biomolecular Logic Gates Operated with Enzyme/Nucleic Acid Integrated System
6. Molecular Logic Gates Built with Unique Materials and Microorganisms
7. Conclusions and Perspectives
Acknowledgements
Conflicts of Interest
References
- Liu, Z.; Sall, A.; Yang, D.C. Microrna: An emerging therapeutic target and intervention tool. Int. J. Mol. Sci. 2008, 9, 978–999. [Google Scholar] [CrossRef]
- Katz, E.; Wang, J.; Privman, M.; Halamek, J. Multianalyte digital enzyme biosensors with built-in boolean logic. Anal. Chem. 2012, 84, 5463–5469. [Google Scholar]
- Wang, J.; Katz, E. Digital biosensors with built-in logic for biomedical applications-biosensors based on a biocomputing concept. Anal. Bioanal. Chem. 2010, 398, 1591–1603. [Google Scholar]
- Ma, D.L.; He, H.Z.; Chan, D.S.H.; Leung, C.H. Simple DNA-based logic gates responding to biomolecules and metal ions. Chem. Sci. 2013, 4, 3366–3380. [Google Scholar] [CrossRef]
- He, H.Z.; Chan, D.S.H.; Leung, C.H.; Ma, D.L. G-quadruplexes for luminescent sensing and logic gates. Nucleic Acids Res. 2013, 41, 4345–4359. [Google Scholar]
- Manesh, K.M.; Halamek, J.; Pita, M.; Zhou, J.; Tam, T.K.; Santhosh, P.; Chuang, M.C.; Windmiller, J.R.; Abidin, D.; Katz, E.; et al. Enzyme logic gates for the digital analysis of physiological level upon injury. Biosens. Bioelectron. 2009, 24, 3569–3574. [Google Scholar]
- Pita, M.; Zhou, J.; Manesh, K.M.; Halamek, J.; Katz, E.; Wang, J. Enzyme logic gates for assessing physiological conditions during an injury: Towards digital sensors and actuators. Sens. Actuator B Chem. 2009, 139, 631–636. [Google Scholar]
- Windmiller, J.R.; Strack, G.; Chuang, M.C.; Halamek, J.; Santhosh, P.; Bocharova, V.; Zhou, J.; Katz, E.; Wang, J. Boolean-format biocatalytic processing of enzyme biomarkers for the diagnosis of soft tissue injury. Sens. Actuator B Chem. 2010, 150, 285–290. [Google Scholar]
- Halamek, J.; Windmiller, J.R.; Zhou, J.; Chuang, M.C.; Santhosh, P.; Strack, G.; Arugula, M.A.; Chinnapareddy, S.; Bocharova, V.; Wang, J.; et al. Multiplexing of injury codes for the parallel operation of enzyme logic gates. Analyst 2010, 135, 2249–2259. [Google Scholar]
- Zhou, N.D.; Windmiller, J.R.; Valdes-Ramirez, G.; Zhou, M.; Halamek, J.; Katz, E.; Wang, J. Enzyme-based nand gate for rapid electrochemical screening of traumatic brain injury in serum. Anal. Chim. Acta 2011, 703, 94–100. [Google Scholar]
- Zhou, J.A.; Halamek, J.; Bocharova, V.; Wang, J.; Katz, E. Bio-logic analysis of injury biomarker patterns in human serum samples. Talanta 2011, 83, 955–959. [Google Scholar]
- Halamkova, L.; Halamek, J.; Bocharova, V.; Wolf, S.; Mulier, K.E.; Beilman, G.; Wang, J.; Katz, E. Analysis of biomarkers characteristic of porcine liver injury-from biomolecular logic gates to an animal model. Analyst 2012, 137, 1768–1770. [Google Scholar]
- Chuang, M.C.; Windmiller, J.R.; Santhosh, P.; Ramirez, G.V.; Katz, E.; Wang, J. High-fidelity determination of security threats via a boolean biocatalytic cascade. Chem. Commun. 2011, 47, 3087–3089. [Google Scholar]
- Motornov, M.; Zhou, J.; Pita, M.; Gopishetty, V.; Tokarev, I.; Katz, E.; Minko, S. “Chemical transformers” from nanoparticle ensembles operated with logic. Nano Lett. 2008, 8, 2993–2997. [Google Scholar]
- Motornov, M.; Zhou, J.; Pita, M.; Tokarev, I.; Gopishetty, V.; Katz, E.; Minko, S. An integrated multifunctional nanosystem from command nanoparticles and enzymes. Small 2009, 5, 817–820. [Google Scholar]
- Tokarev, I.; Gopishetty, V.; Zhou, J.; Pita, M.; Motornov, M.; Katz, E.; Minko, S. Stimuli-responsive hydrogel membranes coupled with biocatalytic processes. ACS Appl. Mater. Inter. 2009, 1, 532–536. [Google Scholar]
- Privman, M.; Tam, T.K.; Bocharova, V.; Halamek, J.; Wang, J.; Katz, E. Responsive interface switchable by logically processed physiological signals: Toward “smart” actuators for signal amplification and drug delivery. ACS Appl. Mater. Inter. 2011, 3, 1620–1623. [Google Scholar]
- Bocharova, V.; Zavalov, O.; MacVittie, K.; Arugula, M.A.; Guz, N.V.; Dokukin, M.E.; Halamek, J.; Sokolov, I.; Privman, V.; Katz, E. A biochemical logic approach to biomarker-activated drug release. J. Mater. Chem. 2012, 22, 19709–19717. [Google Scholar]
- Radhakrishnan, K.; Tripathy, J.; Raichur, A.M. Dual enzyme responsive microcapsules simulating an “or” logic gate for biologically triggered drug delivery applications. Chem. Commun. 2013, 49, 5390–5392. [Google Scholar]
- Zhou, M.; Zhou, N.D.; Kuralay, F.; Windmiller, J.R.; Parkhomovsky, S.; Valdes-Ramirez, G.; Katz, E.; Wang, J. A self-powered “sense-act-treat” system that is based on a biofuel cell and controlled by boolean logic. Angew. Chem. Int. Edit. 2012, 51, 2686–2689. [Google Scholar]
- Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids; A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar]
- Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. J.D. Watson and F.H.C. Crick. Published in Nature, number 4356 April 25, 1953. Nature 1974, 248, 765. [Google Scholar] [CrossRef]
- Yurke, B.; Turberfield, A.J.; Mills, A.P.; Simmel, F.C.; Neumann, J.L. A DNA-fuelled molecular machine made of DNA. Nature 2000, 406, 605–608. [Google Scholar]
- Zhang, D.Y.; Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 2009, 131, 17303–17314. [Google Scholar]
- Qian, L.; Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 2011, 332, 1196–1201. [Google Scholar]
- Seelig, G.; Soloveichik, D.; Zhang, D.Y.; Winfree, E. Enzyme-free nucleic acid logic circuits. Science 2006, 314, 1585–1588. [Google Scholar]
- Hemphill, J.; Deiters, A. DNA computation in mammalian cells: Microrna logic operations. J. Am. Chem. Soc. 2013, 135, 10512–10518. [Google Scholar]
- Kolpashchikov, D.M. Binary probes for nucleic acid analysis. Chem. Rev. 2010, 110, 4709–4723. [Google Scholar]
- Seeman, N.C. Nanomaterials based on DNA. Annu. Rev. Biochem. 2010, 79, 65–87. [Google Scholar]
- Wharam, S.D.; Marsh, P.; Lloyd, J.S.; Ray, T.D.; Mock, G.A.; Assenberg, R.; McPhee, J.E.; Brown, P.; Weston, A.; Cardy, D.L. Specific detection of DNA and rna targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure. Nucleic Acids Res. 2001, 29, E54. [Google Scholar]
- Cornett, E.M.; Campbell, E.A.; Gulenay, G.; Peterson, E.; Bhaskar, N.; Kolpashchikov, D.M. Molecular logic gates for DNA analysis: Detection of rifampin resistance in m. Tuberculosis DNA. Angew. Chem. Int. Edit. 2012, 51, 9075–9077. [Google Scholar]
- Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302. [Google Scholar]
- Wang, D.F.; Fu, Y.M.; Yan, J.; Zhao, B.; Dai, B.; Chao, J.; Liu, H.J.; He, D.N.; Zhang, Y.; Fan, C.H.; et al. Molecular logic gates on DNA origami nanostructures for microrna diagnostics. Anal. Chem. 2014, 86, 1932–1936. [Google Scholar]
- Breaker, R.R. Natural and engineered nucleic acids as tools to explore biology. Nature 2004, 432, 838–845. [Google Scholar]
- Famulok, M.; Hartig, J.S.; Mayer, G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem. Rev. 2007, 107, 3715–3743. [Google Scholar]
- Fang, X.H.; Tan, W.H. Aptamers generated from cell-selex for molecular medicine: A chemical biology approach. Accounts Chem. Res. 2010, 43, 48–57. [Google Scholar]
- Chen, J.; Zhang, J.; Li, J.; Yang, H.H.; Fu, F.; Chen, G. An ultrasensitive signal-on electrochemical aptasensor via target-induced conjunction of split aptamer fragments. Biosens. Bioelectron. 2010, 25, 996–1000. [Google Scholar]
- Lin, Z.Y.; Chen, L.F.; Zhu, X.; Qiu, B.; Chen, G.A. Signal-on electrochemiluminescence biosensor for thrombin based on target-induced conjunction of split aptamer fragments. Chem. Commun. 2010, 46, 5563–5565. [Google Scholar]
- Chen, J.H.; Fang, Z.Y.; Lie, P.C.; Zeng, L.W. Computational lateral flow biosensor for proteins and small molecules: A new class of strip logic gates. Anal. Chem. 2012, 84, 6321–6325. [Google Scholar]
- Clever, G.H.; Kaul, C.; Carell, T. DNA—Metal base pairs. Angew. Chem. 2007, 46, 6226–6236. [Google Scholar]
- Li, X.M.; Sun, L.; Ding, T.R. Multiplexed sensing of mercury(ii) and silver(i) ions: A new class of DNA electrochemiluminescent-molecular logic gates. Biosens. Bioelectron. 2011, 26, 3570–3576. [Google Scholar]
- Zhang, G.Y.; Lin, W.L.; Yang, W.Q.; Lin, Z.Y.; Guo, L.H.; Qiu, B.; Chen, G.N. Logic gates for multiplexed analysis of Hg2+ and Ag+. Analyst 2012, 137, 2687–2691. [Google Scholar]
- Ma, D.L.; He, H.Z.; Ma, V.P.Y.; Chan, D.S.H.; Leung, K.H.; Zhong, H.J.; Lu, L.H.; Mergny, J.L.; Leung, C.H. Label-free sensing of pH and silver nanoparticles using an “or” logic gate. Anal. Chim. Acta 2012, 733, 78–83. [Google Scholar]
- Ma, D.L.; Kwan, M.H.T.; Chan, D.S.H.; Lee, P.; Yang, H.; Ma, V.P.Y.; Bai, L.P.; Jiang, Z.H.; Leung, C.H. Crystal violet as a fluorescent switch-on probe for i-motif: Label-free DNA-based logic gate. Analyst 2011, 136, 2692–2696. [Google Scholar]
- Silverman, S.K. Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects. Chem. Commun. 2008, 3467–3485. [Google Scholar] [CrossRef]
- Willner, I.; Shlyahovsky, B.; Zayats, M.; Willner, B. Dnazymes for sensing, nanobiotechnology and logic gate applications. Chem. Soc. Rev. 2008, 37, 1153–1165. [Google Scholar]
- Baum, D.A.; Silverman, S.K. Deoxyribozymes: Useful DNA catalysts in vitro and in vivo. Cell. Mol. Life Sci. (CMLS) 2008, 65, 2156–2174. [Google Scholar] [CrossRef]
- Elbaz, J.; Lioubashevski, O.; Wang, F.A.; Remacle, F.; Levine, R.D.; Willner, I. DNA computing circuits using libraries of dnazyme subunits. Nat. Nanotechnol. 2010, 5, 417–422. [Google Scholar]
- Mokany, E.; Bone, S.M.; Young, P.E.; Doan, T.B.; Todd, A.V. Mnazymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switches. J. Am. Chem. Soc. 2010, 132, 1051–1059. [Google Scholar]
- Kahan-Hanum, M.; Douek, Y.; Adar, R.; Shapiro, E. A library of programmable dnazymes that operate in a cellular environment. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef]
- Dass, C.R.; Choong, P.F.M. C-jun: Pharmaceutical target for dnazyme therapy of multiple pathologies. Pharmazie 2008, 63, 411–414. [Google Scholar]
- Wen, Y.Q.; Xu, L.P.; Li, C.B.; Du, H.W.; Chen, L.F.; Su, B.; Zhang, Z.L.; Zhang, X.J.; Song, Y.L. DNA-based intelligent logic controlled release systems. Chem. Commun. 2012, 48, 8410–8412. [Google Scholar]
- You, M.; Peng, L.; Shao, N.; Zhang, L.; Qiu, L.; Cui, C.; Tan, W. DNA “nano-claw”: Logic-based autonomous cancer targeting and therapy. J. Am. Chem. Soc. 2014, 136, 1256–1259. [Google Scholar]
- Douglas, S.M.; Bachelet, I.; Church, G.M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012, 335, 831–834. [Google Scholar]
- Amir, Y.; Ben-Ishay, E.; Levner, D.; Ittah, S.; Abu-Horowitz, A.; Bachelet, I. Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol. 2014, 9, 353–357. [Google Scholar]
- Konry, T.; Walt, D.R. Intelligent medical diagnostics via molecular logic. J. Am. Chem. Soc. 2009, 131, 13232–13233. [Google Scholar]
- Liu, J.; Zhou, H.; Xu, J.J.; Chen, H.Y. Dual-biomarker-based logic-controlled electrochemical diagnosis for prostate cancers. Electrochem. Commun. 2013, 32, 27–30. [Google Scholar]
- Liao, W.C.; Chuang, M.C.; Ho, J.A. Electrochemical sensor for multiplex screening of genetically modified DNA: Identification of biotech crops by logic-based biomolecular analysis. Biosens. Bioelectron. 2013, 50, 414–420. [Google Scholar]
- Lai, Y.H.; Liao, Y.C.; Mu, J.J.; Kuo, T.M.; Hsu, Y.H.; Chuang, M.C. Biomolecular logic gate for analysis of the new delhi metallo-beta-lactamase (ndm)-coding gene with concurrent determination of its drug resistance-encoding fragments. Chem. Commun. 2014. [Google Scholar] [CrossRef]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in klebsiella pneumoniae sequence type 14 from india. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar]
- Zhou, M.; Kuralay, F.; Windmiller, J.R.; Wang, J. Dnazyme logic-controlled biofuel cells for self-powered biosensors. Chem. Commun. 2012, 48, 3815–3817. [Google Scholar]
- Lien, C.W.; Tseng, Y.T.; Huang, C.C.; Chang, H.T. Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions. Anal. Chem. 2014, 86, 2065–2072. [Google Scholar]
- Van de Bittner, G.C.; Bertozzi, C.R.; Chang, C.J. Strategy for dual-analyte luciferin imaging: In vivo bioluminescence detection of hydrogen peroxide and caspase activity in a murine model of acute inflammation. J. Am. Chem. Soc. 2013, 135, 1783–1795. [Google Scholar]
- Hettie, K.S.; Klockow, J.L.; Glass, T.E. Three-input logic gates with potential applications for neuronal imaging. J. Am. Chem. Soc. 2014, 136, 4877–4880. [Google Scholar]
- Wang, B.J.; Barahona, M.; Buck, M. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens. Bioelectron. 2013, 40, 368–376. [Google Scholar]
- Hutcheson, S.W.; Bretz, J.; Sussan, T.; Jin, S.M.; Pak, K. Enhancer-binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in Pseudomonas syringae strains. J. Bacteriol. 2001, 183, 5589–5598. [Google Scholar]
- Wang, B.J.; Kitney, R.I.; Joly, N.; Buck, M. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat. Commun. 2011, 2. [Google Scholar] [CrossRef]
- Mahmoud, E.A.; Sankaranarayanan, J.; Morachis, J.M.; Kim, G.; Almutairi, A. Inflammation responsive logic gate nanoparticles for the delivery of proteins. Bioconjugate Chem. 2011, 22, 1416–1421. [Google Scholar]
- Heffernan, M.J.; Murthy, N. Polyketal nanoparticles: A new ph-sensitive biodegradable drug delivery vehicle. Bioconjugate Chem. 2005, 16, 1340–1342. [Google Scholar]
- Paramonov, S.E.; Bachelder, E.M.; Beaudette, T.T.; Standley, S.M.; Lee, C.C.; Dashe, J.; Frechet, J.M.J. Fully acid-degradable biocompatible polyacetal microparticles for drug delivery. Bioconjugate Chem. 2008, 19, 911–919. [Google Scholar]
- Broaders, K.E.; Cohen, J.A.; Beaudette, T.T.; Bachelder, E.M.; Frechet, J.M.J. Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy. Proc. Natl. Acad. Sci. USA 2009, 106, 5497–5502. [Google Scholar]
- Zhou, S.W.; Du, X.Z.; Cui, F.B.; Zhang, X.F. Multi-responsive and logic controlled release of dnagated mesoporous silica vehicles functionalized with intercalators for multiple delivery. Small 2014, 10, 980–988. [Google Scholar]
- Privman, V.; Halamek, J.; Arugula, M.A.; Melnikov, D.; Bocharova, V.; Katz, E. Biochemical filter with sigmoidal response: Increasing the complexity of biomolecular logic. J. Phys. Chem. B 2010, 114, 14103–14109. [Google Scholar]
- Perez Rafael, S.; Vallee-Belisle, A.; Fabregas, E.; Plaxco, K.; Palleschi, G.; Ricci, F. Employing the metabolic “branch point effect” to generate an all-or-none, digital-like response in enzymatic outputs and enzyme-based sensors. Anal. Chem. 2012, 84, 1076–1082. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lai, Y.-H.; Sun, S.-C.; Chuang, M.-C. Biosensors with Built-In Biomolecular Logic Gates for Practical Applications. Biosensors 2014, 4, 273-300. https://doi.org/10.3390/bios4030273
Lai Y-H, Sun S-C, Chuang M-C. Biosensors with Built-In Biomolecular Logic Gates for Practical Applications. Biosensors. 2014; 4(3):273-300. https://doi.org/10.3390/bios4030273
Chicago/Turabian StyleLai, Yu-Hsuan, Sin-Cih Sun, and Min-Chieh Chuang. 2014. "Biosensors with Built-In Biomolecular Logic Gates for Practical Applications" Biosensors 4, no. 3: 273-300. https://doi.org/10.3390/bios4030273
APA StyleLai, Y. -H., Sun, S. -C., & Chuang, M. -C. (2014). Biosensors with Built-In Biomolecular Logic Gates for Practical Applications. Biosensors, 4(3), 273-300. https://doi.org/10.3390/bios4030273