A Phage Display Screening Derived Peptide with Affinity for the Adeninyl Moiety
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals & Materials
2.2. Synthesis Protocols
2.2.1. Synthesis of 9-(2'-hydroxyethyl)adenine
2.2.2. Derivatization of Glass Beads
2.3. Biopanning with the Ph.D.TM-C7C Library
2.3.1. Strains and Media
2.3.2. Amplification of Eluted Phages and Single Phage Clones
2.3.3. Titration
2.3.4. DNA Purification of Single Phage Clones
2.3.5. Adenine Viability Assay
2.4. Preparation of Adenine Coated Quartz Crystal Resonators
2.5. Characterization of Adenine Coated Surfaces
2.5.1. RAIR Spectroscopy
2.5.2. XPS
2.6. QCM Measurements
3. Results and Discussion
3.1. Phage Display Screening
Aa sequence | |
---|---|
pIII sequence A | --HSACRADYYASCGG-- |
Synthesized peptide AI | Ac-ACRADYYASCGG-NH2 |
Synthesized peptide AII | ACRADYYASCGG-NH2 |
pIII sequence B | --HSACHASSLPTCGG-- |
Synthesized peptide BI | Ac-ACHASSLPTCGG-NH2 |
Synthesized peptide BII | ACHASSLPTCGG-NH2 |
3.2. Peptide-Adeninyl Moiety Decorated Surface Recognition Studies
4. Conclusions
Acknowledgments
Author Contributions
Conflict of Interest
References
- Smith, G.P. Filamentous fusion phage—Novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315–1317. [Google Scholar]
- Scott, J.K.; Smith, G.P. Searching for peptide ligands with an epitope library. Science 1990, 249, 386–390. [Google Scholar]
- McCafferty, J.; Griffiths, A.D.; Winter, G.; Chiswell, D.J. Phage antibodies—Filamentous phage displaying antibody variable domains. Nature 1990, 348, 552–554. [Google Scholar] [CrossRef]
- Ng, S.; Jafari, M.R.; Derda, R. Bacteriophages and viruses as a support for organic synthesis and combinatorial chemistry. ACS Chem. Biol. 2012, 7, 123–138. [Google Scholar]
- Brown, S. Engineered iron oxide-adhesion mutants of the escherichia-coli phage-lambda receptor. Proc. Natl. Acad. Sci. USA 1992, 89, 8651–8655. [Google Scholar] [CrossRef]
- Adey, N.B.; Mataragnon, A.H.; Rider, J.E.; Carter, J.M.; Kay, B.K. Characterization of phage that bind plastic from phage-displayed random peptide libraries. Gene 1995, 156, 27–31. [Google Scholar] [CrossRef]
- Berglund, J.; Lindbladh, C.; Nicholls, I.A.; Mosbach, K. Selection of phage display combinatorial library peptides with affinity for a yohimbine imprinted methacrylate polymer. Anal. Commun. 1998, 35, 3–7. [Google Scholar]
- Dziedzic, P.; Zou, W.B.; Hafren, J.; Cordova, A. The small peptide-catalyzed direct asymmetric aldol reaction in water. Org. Biomol. Chem. 2006, 4, 38–40. [Google Scholar] [CrossRef]
- Olofsson, L.; Söderberg, P.; Ankarloo, J.; Nicholls, I.A. Phage display screening in low dielectric media. J. Mol. Recognit. 2008, 21, 329–336. [Google Scholar]
- Olofsson, L.; Ankarloo, J.; Nicholls, I.A. Phage viability in organic media: Insights into phage stability. J. Mol. Recognit. 1998, 11, 91–93. [Google Scholar] [CrossRef]
- Olofsson, L.; Ankarloo, J.; Andersson, P.O.; Nicholls, I.A. Filamentous bacteriophage stability in non-aqueous media. Chem. Biol. 2001, 8, 661–671. [Google Scholar]
- Rosengren, J.P.; Karlsson, J.G.; Nicholls, I.A. Enantioselective synthetic thalidomide receptors based upon DNA binding motifs. Org. Biomol. Chem. 2004, 2, 3374–3378. [Google Scholar] [CrossRef]
- Jaworski, J.W.; Raorane, D.; Huh, J.H.; Majumdar, A.; Lee, S.-W. Evolutionary screening of biomimetic coatings for selective detection of explosives. Langmuir 2008, 24, 4938–4943. [Google Scholar] [CrossRef]
- Ueda, N.; Konda, K.; Kono, M.; Takemoto, K.; Imoto, M. Vinyl polymerization. 217. Vinyl compounds of nucleic acid basis. I. Synthesis of n-vinylthymine, and n-vinyladenine. Makromol. Chem. 1968, 120, 13–20. [Google Scholar] [CrossRef]
- Von Rudloff, E. Permanganate–periodate oxidation: VI. The oxidation of various aliphatic compounds. Can. J. Chem. 1965, 43, 1784–1791. [Google Scholar] [CrossRef]
- Ankarloo, J.; Wikman, S.; Nicholls, I.A. Escherichia coli mar and acrab mutants display no tolerance to simple alcohols. Int. J. Mol. Sci. 2010, 11, 1403–1412. [Google Scholar] [CrossRef]
- Skladal, P. Piezoelectric quartz crystal sensors applied for bioanalytical assays and characterization of affinity interactions. J. Brazil. Chem. Soc. 2003, 14, 491–502. [Google Scholar] [CrossRef]
- Pietrzyk, A.; Suriyanarayanan, S.; Kutner, W.; Maligaspe, E.; Zandler, M.E.; D'Souza, F. Molecularly imprinted poly bis(2,2'-bithienyl)methane film with built-in molecular recognition sites for a piezoelectric microgravimetry chemosensor for selective determination of dopamine. Bioelectrochemistry 2010, 80, 62–72. [Google Scholar] [CrossRef]
- Halamek, J.; Hepel, M.; Skladal, P. Investigation of highly sensitive piezoelectric immunosensors for 2,4-dichlorophenoxyacetic acid. Biosens. Bioelectron. 2001, 16, 253–260. [Google Scholar] [CrossRef]
- Morton, T.A.; Myszka, D.G.; Chaiken, I.M. Interpreting complex binding-kinetics from optical biosensors—A comparison of analysis by linearization, the integrated rate-equation, and numerical-intergration. Anal. Biochem. 1995, 227, 176–185. [Google Scholar] [CrossRef]
- Navratilova, I.; Skladal, P.; Viklicky, V. Development of piezoelectric immunosensors for measurement of albuminuria. Talanta 2001, 55, 831–839. [Google Scholar] [CrossRef]
- O’Shannessy, D.J.; Brighma-Burke, M.; Soneson, K.K.; Hensley, P.; Brooks, I. Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: Use of nonlinear least squares analysis methods. Anal. Biochem. 1993, 212, 457–468. [Google Scholar] [CrossRef]
- Pribyl, J.; Hepel, M.; Skladal, P. Piezoelectric immunosensors for polychlorinated biphenyls operating in aqueous and organic phases. Sens. Actuator B Chem. 2006, 113, 900–910. [Google Scholar] [CrossRef]
- Skladal, P.; Horacek, J. Kinetic studies of affinity interactions: Comparison of piezoelectric and resonant mirror-based biosensors. Anal. Lett. 1999, 32, 1519–1529. [Google Scholar] [CrossRef]
- Horacek, J.; Skladal, P. Effect of organic solvents on immunoassays of environmental pollutants studied using a piezoelectric biosensor. Anal. Chim. Acta 2000, 412, 37–45. [Google Scholar] [CrossRef]
- Pietrzyk, A.; Suriyanarayanan, S.; Kutner, W.; Chitta, R.; D’Souza, F. Selective histamine piezoelectric chemosensor using a recognition film of the molecularly imprinted polymer of bis(bithiophene) derivatives. Anal. Chem. 2009, 81, 2633–2643. [Google Scholar] [CrossRef]
- Pietrzyk, A.; Suriyanarayanan, S.; Kutner, W.; Chitta, R.; Zandler, M.E.; D’Souza, F. Molecularly imprinted polymer (MIP) based piezoelectric microgravimetry chemosensor for selective determination of adenine. Biosens. Bioelectron. 2010, 25, 2522–2529. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Elmlund, L.; Söderberg, P.; Suriyanarayanan, S.; Nicholls, I.A. A Phage Display Screening Derived Peptide with Affinity for the Adeninyl Moiety. Biosensors 2014, 4, 137-149. https://doi.org/10.3390/bios4020137
Elmlund L, Söderberg P, Suriyanarayanan S, Nicholls IA. A Phage Display Screening Derived Peptide with Affinity for the Adeninyl Moiety. Biosensors. 2014; 4(2):137-149. https://doi.org/10.3390/bios4020137
Chicago/Turabian StyleElmlund, Louise, Pernilla Söderberg, Subramanian Suriyanarayanan, and Ian A. Nicholls. 2014. "A Phage Display Screening Derived Peptide with Affinity for the Adeninyl Moiety" Biosensors 4, no. 2: 137-149. https://doi.org/10.3390/bios4020137
APA StyleElmlund, L., Söderberg, P., Suriyanarayanan, S., & Nicholls, I. A. (2014). A Phage Display Screening Derived Peptide with Affinity for the Adeninyl Moiety. Biosensors, 4(2), 137-149. https://doi.org/10.3390/bios4020137