The Use of Angiotensin-I Converting Enzyme I/D Genetic Polymorphism as a Biomarker of Athletic Performance in Humans
Abstract
:1. Introduction
2. Materials and Methods
3. The Renin-Angiotensin System
4. ACE Genetic Polymorphism and Performance in Humans
Reference | Number of subjects | Training/sport | Variable assessed as indicator of superior athletic ability | Measurements remarks | Findings | Special training protocol |
---|---|---|---|---|---|---|
[4] | 308 Caucasian soldiers | 10 weeks military training | left ventricular hypertrophy | pre-training versus post-training | DD genotype associated with left ventricular hypertrophy post training | no |
[18] | 80 Finish athletes | 4 different sport modalities with different training regimes | left ventricular hypertrophy and ventricular mass | compared a sedentary group with the athletes in a single measurement | No association between ACE I/D polymorphism and ventricular hypertrophy | no |
[14] | 43 runners | ultra-marathon | left ventricular hypertrophy | single measurement | D allele associated with greater left ventricular hypertrophy | no |
[13] | 28 professional footballers | football | left ventricular hypertrophy | pre-training versus post-training | D allele associated with greater left ventricular hypertrophy | yes |
Reference | Number of subjects | Training/sport | Variable assessed as indicator of superior athletic ability | Measurements remarks | Findings |
---|---|---|---|---|---|
[3] | 33 | high altitude mountaineers | number of successful climbs above 8,000 m | single measurement compared to achievement | I allele associated with improved endurance |
[24] | 60 Spanish athletes | cycling, running, handball | frequency of alleles in elite athletes | single measurement compared to competition result | I allele more frequent in athletes in comparison to controls |
[25] | 64 Olympic athletes | rowing | frequency of alleles in professional athletes | single measurement | I allele more frequent in elite rowers |
[6] | 91 Olympic athletes | running | frequency of alleles in elite athletes in comparison to controls | single measurement | I allele more frequent in elite runners |
[15] | 447 athletes | Triathlon | frequency of alleles in association with performance results | single measurement | I allele associated with best finishing times on South African born Ironman athletes |
[16] | 88 Turkish athletes | running | frequency of alleles in association with performance results | single measurement | D allele associated with better performance in short sprints |
[19] | 192 athletes | 6 different modalities | frequency of alleles in athletes in comparison to controls | single measurement | No difference in the frequency of the alleles between athletes and controls |
[26] | 56 elite athletes | swimming | frequency of alleles in elite athletes grouped by distance | single measurement | D allele present in higher frequency in short distance swimmers |
[17] | 281 Kenyan athletes | long distance running | frequency of alleles in athletes in comparison to controls | single measurement | No difference in the frequency of the alleles between athletes and controls |
[27] | 121 elite Israeli runners | 79 Marathon runners and 42 sprinters | frequency of alleles in elite athletes grouped by distance | single measurement | D allele in higher frequency in Israeli sprinters |
5. Conclusions
References
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 1990, 86, 1343–1346. [Google Scholar] [CrossRef]
- De Mello Costa, M.F. Angiotensin-Converting Enyzme (ACE) in Horses and Its Relationship to Performance and Fitness. Ph.D. Thesis, The University of Melbourne, Melbourne, Victoria, Australia, 2010. [Google Scholar]
- Montgomery, H.; Marshall, R.; Myerson, S.; Clarkson, P.; Dollery, C.; Haynard, M.; Holliman, D.E.; Jubb, M.; World, M.; Thomas, E.L.; Brynes, A.E.; Saeed, N.; Barnard, M.; Dell, J.D.; Prasad, K.; Rayson, M.; Talmud, P.J.; Humphries, S.E. Human gene for physical performance. Nature 1998, 393, 221–222. [Google Scholar] [CrossRef]
- Montgomery, H.E.; Clarkson, P.; Dollery, C.M.; Prasad, K.; Losi, M.A.; Hemingway, H.; Statters, D.; Jubb, M.; Girvain, M.; Varnava, A.; World, M.; Deanfield, J.; Talmud, P.; McEwan, J.R.; McKenna, W.J.; Humphries, S. Association of angiotensin-converting enzyma gene I/D polynorphism with change in left ventricular mass in response to physical training. Circulation 1997, 96, 741–747. [Google Scholar] [CrossRef]
- Montgomery, H.; Clarkson, P.; Barnard, M.; Bell, J.; Brynes, A.; Dollery, C.; Hajnal, J.; Hemingway, H.; Mercer, D.; Jarman, P.; Marshall, R.; Prasad, K.; Rayson, M.; Saeed, N.; Talmud, P.; Thomas, L.; Jubb, M.; World, M.; Humphries, S. Angiotensin-converting enzyme gene insertion/deletion polymorphism and response to physical training. Lancet 1999, 353, 541–545. [Google Scholar]
- Myerson, S.; Hamingway, H.; Budget, R.; Martin, J.; Humphries, S.; Montgomery, H. Human angiotensin I-converting enzyme gene and endurance performance. J. Appl. Physiol. 1999, 87, 1313–1316. [Google Scholar]
- Bowen, I.M.; Marr, C.M.; Elliot, J. Drugs acting on the cardiovascular system. In Equine Clinical Pharmacology, 1st ed.; Bertone, J.J., Horspool, L.J.I., Eds.; Elsevier: London, UK, 2004; pp. 193–215. [Google Scholar]
- McKeever, K.H.; Gordon, M.E. Endocrine alterations in the equine athlete. In Equine Exercise Physiology; Hinchcliff, K.W., Geor, R.J., Kaneps, A.J., Eds.; Saunders Elsevier: Philadelphia, PA, USA, 2008; pp. 274–300. [Google Scholar]
- Robertson, J.I.S.; Nicholls, M.G. The Renin-Angiotensin System; Gower Medical Publishing: London, UK, 1993; Volume 1, p. 511. [Google Scholar]
- McKeever, K.H.; Gordon, M.B. Endocrine alterations in the equine athlete. In Equine Sports Medicine and Surgery, 1st ed.; Hinchcliff, K.W., Kaneps, A.J., Geor, R.J., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2004; pp. 793–814. [Google Scholar]
- Rigat, B.; Hubert, C.; Corvol, P.; Soubrier, F. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase1). Nucl. Acid Res. 1992, 20, 1433. [Google Scholar]
- Hubert, C.; Houot, A.M.; Corvol, P.; Soubrier, F. Structure of the angiotensin I-converting enzyme gene. J. Biol. Chem. 1991, 23, 15377–15383. [Google Scholar]
- Fatini, C.; Guazzelli, R.; Manetti, P.; Battaglini, B.; Gensini, F.; Vono, R.; Toncelli, L.; Zilli, P.; Capalbo, A.; Abbate, R.; Gensini, G.F.; Galanti, G. RAS genes influence exercise-induced left ventricular hypertrophy: An elite athletes study. Med. Sci. Sport Exercise 2000, 32, 1868–1872. [Google Scholar] [CrossRef]
- Nagashima, J.; Musha, H.; Takada, H.; Awaya, T.; Oba, H.; Mori, N.; Ohmiya, K.; Nobuoka, S.; Murayama, M. Influence of angiotensin-converting enzyme gene polymorphism on development of athlete’s heart. Clin. Cardiol. 2000, 23, 621–624. [Google Scholar] [CrossRef]
- Collins, E.; Xenophontos, S.L.; Cariolou, M.A.; Mokone, G.G.; Hudson, D.E.; Anastasiades, L.; Noakes, T.D. The ACE gene and endurance performance during the South African Ironman triathlons. Med. Sci. Sport Exercise 2004, 36, 1314–1320. [Google Scholar] [CrossRef]
- Cam, F.S.; Colakoglu, M.; Sekuri, C.; Colakoglu, S.; Sahan, Ç.; Berdeli, A. Association between the ACE I/D gene polymorphism and physical performance in a homogenous non-elite cohort. Can. J. Appl. Physiol. 2005, 30, 74–86. [Google Scholar] [CrossRef]
- Scott, R.A.; Moran, C.; Wilson, R.H.; Onywera, V.; Boit, M.K.; Goodwin, W.H.; Gohlke, P.; Payne, J.; Montgomery, H.; Pitsiladis, Y.P. No association between angiotensin converting enzyme (ACE) gene variation and endurance athlete status in Kenyans. Comp. Biochem. Physiol. 2005, 141, 169–175. [Google Scholar] [CrossRef]
- Karjalainen, J.; Kujala, U.M.; Stolt, A.; Mäntysaari, M.; Viitasalo, M.; Kainulainin, K.; Kontula, K. Angiotensin Gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes. J. Amer. Coll. Cardiol. 1999, 34, 494–499. [Google Scholar] [CrossRef]
- Rankinen, T.; Wolfarth, B.; Simoneau, J.A.; Maier-Lenz, D.; Rauramaa, R.; Rivera, M.A.; Boulay, M.R.; Chagnon, Y.C.; Perusse, L.; Keul, J.; Bouchard, C. No association bewteen the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J. Appl. Physiol. 2000, 88, 1571–1575. [Google Scholar]
- Rankinen, T.; Perusse, L.; Rauramaa, R.; Rivera, M.A.; Wolfarth, B.; Bouchard, C. The human gene map for performance and health-related fitness phenotypes. Med. Sci. Sport Exercise 2001, 33, 855–867. [Google Scholar] [CrossRef]
- Perusse, L.; Rankinen, T.; Rauramaa, R.; Rivera, M.A.; Wolfarth, B.; Bouchard, C. The human gene map for performance and health-related fitness phenotypes: The 2002 update. Med. Sci. Sport Exercise 2003, 35, 1248–1264. [Google Scholar] [CrossRef]
- Bray, M.S.; Hagberg, J.M.; Perusse, L.; Rankinen, T.; Roth, S.M.; Wolfarth, B.; Bouchard, C. The human gene map for performance and health-related fitness phenotypes: The 2006-2007 update. Med. Sci. Sport Exercise 2009, 41, 35–73. [Google Scholar]
- Bae, J.S.; Kang, B.Y.; Lee, K.O.; Lee, S.T. Genetic variation in the renin-angiotensin system and response to endurance training. Med. Princip. Pract. 2007, 16, 142–146. [Google Scholar] [CrossRef]
- Álvarez, R.; Terrados, N.; Ortolano, R.; Iglesias-Cubero, G.; Reguero, J.R.; Batalla, A.; Cortina, A.; Fernádez-García, B.; Rodríguez, C.; Braga, S.; Alvarez, V.; Coto, E. Genetic variation in the renin-angiotensin system and athletic performance. Eur. J. Appl. Physiol. 2000, 82, 117–120. [Google Scholar] [CrossRef]
- Gayagay, G.; Yu, B.; Hambly, B.; Boston, T.; Hahn, A.; Celermajer, D.S.; Trent, R.J. Elite endurance athletes and the ACE I allele- the role of genes in athletic performance. Hum. Genet. 1998, 103, 48–50. [Google Scholar] [CrossRef]
- Woods, D.; Hickman, M.; Jamshidi, Y.; Brull, D.; Vassiliou, V.; Jones, A.; Humphries, S.; Montgomery, H. Elite swimmers and the D allele of the ACE I/D polymorphism. Hum. Genet. 2001, 108, 230–232. [Google Scholar] [CrossRef]
- Amir, O.; Amir, R.; Yamin, C.; Attias, E.; Eynon, N.; Sagiv, M.; Sagiv, M.; Meckel, Y. The ACE deletion allele is associated with Israeli elite endurance athletes. Exp. Physiol. 2007, 92, 881–886. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
De Mello Costa, M.F.; Slocombe, R. The Use of Angiotensin-I Converting Enzyme I/D Genetic Polymorphism as a Biomarker of Athletic Performance in Humans. Biosensors 2012, 2, 396-404. https://doi.org/10.3390/bios2040396
De Mello Costa MF, Slocombe R. The Use of Angiotensin-I Converting Enzyme I/D Genetic Polymorphism as a Biomarker of Athletic Performance in Humans. Biosensors. 2012; 2(4):396-404. https://doi.org/10.3390/bios2040396
Chicago/Turabian StyleDe Mello Costa, Maria Fernanda, and Ron Slocombe. 2012. "The Use of Angiotensin-I Converting Enzyme I/D Genetic Polymorphism as a Biomarker of Athletic Performance in Humans" Biosensors 2, no. 4: 396-404. https://doi.org/10.3390/bios2040396
APA StyleDe Mello Costa, M. F., & Slocombe, R. (2012). The Use of Angiotensin-I Converting Enzyme I/D Genetic Polymorphism as a Biomarker of Athletic Performance in Humans. Biosensors, 2(4), 396-404. https://doi.org/10.3390/bios2040396