Aptasensors for Rapid Detection of Hazards in Food: Latest Developments and Trends
Abstract
1. Introduction
2. Electrochemistry-Based Aptasensor Application for the Detection of Hazards in Food
2.1. Basic EC-Based Aptasensor
2.2. ECL-Based Aptasensor
2.3. PEC-Based Aptasensor
2.4. OECT/OPECT-Based Aptasensor
2.5. Brief Summary of the Whole EC-Based Aptasensor for the Detection of Hazards in Food
3. Fluorescence-Based Aptasensor Application for the Detection of Hazards in Food
3.1. QD Fluorescence-Based Aptasensor
3.2. Organic Fluorophore Probe-Based Aptasensor
3.3. MNCs Fluorescence-Based Aptasensor
3.4. Upconversion Fluorescent, Conjugated Polymer Fluorescent, and Time-Resolved Fluorescent-Based Aptasensor
3.5. Brief Summary of the Fluorescence-Based Aptasensor for the Detection of Hazards in Food
4. Colorimetry-Based Aptasensor Application for the Detection of Hazards in Food
4.1. TMB/ABTS Color Development-Based Aptasensor
4.2. MNPs Color Development (AuNPs, AgNPs) Aptasensor
4.3. Other Colorimetric Aptasensors: pH, Dye, and Stimulus-Responsive Material-Based Color Development
4.4. Brief Summary of the Colorimetric-Based Aptasensors for the Detection of Hazards in Food
5. Other Technologies Based on Aptasensor Applications for the Detection of Hazards in Food
5.1. SERS-Based Aptasensor
5.2. SPR-Based Aptasensor
5.3. Aptasensor Based on Integration of Multiple Technologies
5.4. Brief Summary of Other Aptasensors for the Detection of Hazards in Food
6. Conclusions and Future Prospects
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Apt | Aptamer |
SELEX | Systematic evolution of ligands by exponential enrichment |
EC | Electrochemistry |
ECL | Electrochemiluminescent |
PEC | Photoelectrochemistry |
OPECT | Organic photoelectrochemistry transistors |
FL | Fluorescence |
CM | Colorimetry |
SERS | Surface-enhanced Raman spectroscopy |
S. aureus | Staphylococcus aureus |
E. coli | Escherichia coli |
AFB1 | Aflatoxin B1 |
OTA | Ochratoxin A |
DON | Monotelomeric mycotoxins/deoxynivalenol/vomitoxin |
AD | Acetamiprid |
ML | Malathion |
ZEN | Zearalenone |
LOD | Limit of detection |
NIR | Near-infrared |
RPA | Recombinase polymerase amplification |
MB | Magnetic bead |
AA | Ascorbic acid |
CIP | Ciprofloxacin |
FRET | Fluorescence resonance energy transfer |
QDs | Quantum dots |
MNCs | Metal nanoclusters |
UCNPs | Upconversion fluorescent nanoparticles |
CPs | Conjugated polymers |
TRF | Time-resolved fluorescent |
TMB | Tetramethylbenzidine |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
SPR | Surface plasmon resonance |
References
- Maudet, C.; Kheloufi, M.; Levallois, S.; Gaillard, J.; Huang, L.; Gaultier, C.; Tsai, Y.H.; Disson, O.; Lecuit, M. Bacterial inhibition of Fas-mediated killing promotes neuroinvasion and persistence. Nature 2022, 603, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Zhiyuan, L.; Yuzhe, X.; Fanzhuo, K.; Jiaojiao, X.; Hongbo, S.; Rubing, H.; Bin, Z. Biomimetic enzyme ratiometric electrochemical sensor based on graphene, calcined UIO-66 and thionine for rapid and sensitive detection of zearalenone in vegetable oil. Food Biosci. 2025, 68, 106548. [Google Scholar] [CrossRef]
- Ali, S.; Chen, X.; Shah, M.A.; Ali, M.; Zareef, M.; Arslan, M.; Ahmad, S.; Jiao, T.; Li, H.; Chen, Q. The avenue of fruit wastes to worth for synthesis of silver and gold nanoparticles and their antimicrobial application against foodborne pathogens: A review. Food Chem. 2021, 359, 129912. [Google Scholar] [CrossRef]
- Rizan, C.; Rotchell, J.M.; Eng, P.C.; Robaire, B.; Ciocan, C.; Kapoor, N.; Kalra, S.; Sherman, J.D. Mitigating the environmental effects of healthcare: The role of the endocrinologist. Nat. Rev. Endocrinol. 2025, 21, 344–359. [Google Scholar] [CrossRef]
- Jepson, P.C.; Murray, K.; Bach, O.; Bonilla, M.A.; Neumeister, L. Selection of pesticides to reduce human and environmental health risks: A global guideline and minimum pesticides list. The Lancet Planetary Health 2020, 4, e56–e63. [Google Scholar] [CrossRef] [PubMed]
- Ghebreyesus, T.A.; Frieden, T. Trans fat: Everyone must join the fight to eliminate this invisible killer from the world’s food supply forever. Br. Med. J. 2024, 386, q1525. [Google Scholar] [CrossRef]
- Bancalari, E.; Neviani, E.; Gatti, M. Impedometric analysis applied to food micsrobiology. Curr. Opin. Food Sci. 2024, 57, 101152. [Google Scholar] [CrossRef]
- Ouyang, Q.; Rong, Y.; Wang, B.; Ahmad, W.; Liu, S.; Chen, Q. An innovative solid-phase biosensor for rapid on-site detection of N-nitrosodimethylamine incorporating zein film and upconversion nanoparticles. Food Chem. 2024, 430, 136981. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Lu, B.; Hang, Y.; Chen, Q. Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chem. 2020, 321, 126503. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Jayan, H.; Gao, S.; Zhou, R.; Yosri, N.; Zou, X.; Guo, Z. Recent and emerging trends of metal-organic frameworks (MOFs)-based sensors for detecting food contaminants: A critical and comprehensive review. Food Chem. 2024, 448, 139051. [Google Scholar] [CrossRef]
- Qian, S.; Chang, D.; He, S.; Li, Y. Aptamers from random sequence space: Accomplishments, gaps and future considerations. Anal. Chim. Acta 2022, 1196, 339511. [Google Scholar] [CrossRef]
- Stangherlin, S.; Lui, N.; Lee, J.H.; Liu, J. Aptamer-based biosensors: From SELEX to biomedical diagnostics. TrAC Trends Anal. Chem. 2025, 191, 118349. [Google Scholar] [CrossRef]
- He, M.; Wang, Z.; Wu, X.; Cui, C.; Du, Z.; Zhao, Z.; Sun, Y.; Zhang, X.; He, L.; Tan, W. Functional SELEX and Biomedical Applications of Aptamers: Beyond Molecular Recognition. Angew. Chem. 2024, 137, e202424687. [Google Scholar] [CrossRef]
- Hampton, T. RNA Aptamers Deliver Chemotherapy Directly to Tumors. J. Am. Med. Assoc. 2020, 324, 829. [Google Scholar] [CrossRef]
- Yu, H.; Alkhamis, O.; Canoura, J.; Liu, Y.; Xiao, Y. Advances and challenges in small-molecule DNA aptamer isolation, characterization, and sensor development. Angew. Chem. Int. Ed. 2021, 60, 16800–16823. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.Y.; Wong, M.S.; Lee, J.H.; Liu, J. From cell-SELEX to tissue-SELEX for targeted drug delivery and aptamer nanomedicine. Adv. Drug Delivery Rev. 2025, 224, 115646. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhou, R.; Zhang, D.; Zheng, X.; El-Seedi, H.R.; Chen, S.; Niu, L.; Li, X.; Guo, Z.; Zou, X. Magnetic nanoparticle-based immunosensors and aptasensors for mycotoxin detection in foodstuffs: An update. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13266. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Qian, S.; Cao, H.; Yu, J.; Ye, T.; Wu, X.; Chen, L.; Xu, F. An ultra-sensitive electrochemical aptasensor for simultaneous quantitative detection of Pb2+ and Cd2+ in fruit and vegetable. Food Chem. 2022, 382, 132173. [Google Scholar] [CrossRef]
- Ma, J.; Guan, Y.; Xing, F.; Wang, Y.; Li, X.; Yu, Q.; Yu, X. Smartphone-based chemiluminescence detection of aflatoxin B1 via labelled and label-free dual sensing systems. Food Chem. 2023, 413, 135654. [Google Scholar] [CrossRef]
- Li, Y.; Meng, S.; Dong, N.; Wei, Y.; Wang, Y.; Li, X.; Liu, D.; You, T. Space-confined electrochemical aptasensing with conductive hydrogels for enhanced applicability to aflatoxin B1 detection. J. Agric. Food Chem. 2023, 71, 14806–14813. [Google Scholar] [CrossRef]
- Zeng, G.C.; Huang, H.W.; Lin, C.K.; Chen, J.C.; Dong, G.C.; Hung, S.C.; Wang, Y.L. Design and demonstration of a temperature-resistant aptamer structure for highly sensitive mercury ion detection with BioFETs. Talanta 2025, 283, 127138. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, J.; Chen, L.; Chen, H.; Dang, S.; Li, F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem. Soc. Rev. 2024, 53, 6830–6859. [Google Scholar] [CrossRef]
- Ji, C.; Wei, J.; Zhang, L.; Hou, X.; Tan, J.; Yuan, Q.; Tan, W. Aptamer-protein interactions: From regulation to biomolecular detection. Chem. Rev. 2023, 123, 12471–12506. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, W.; Li, X.; Zou, X.; Niu, L.; Gao, S. Integrating magnetic-plasmonic and membrane-like nanotags for the sensitive and reliable detection of aflatoxin B1 in foodstuffs. Food Control 2025, 171, 111144. [Google Scholar] [CrossRef]
- Liang, N.; Shi, B.; Hu, X.; Li, W.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; Shi, J. A ternary heterostructure aptasensor based on metal-organic framework and polydopamine nanoparticles for fluorescent detection of sulfamethazine. Food Chem. 2024, 460, 140570. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, P.; Yin, L.; Zuo, M.; Chen, Q.; El-Seedi, H.R.; Zou, X. Determination of lead in food by surface-enhanced Raman spectroscopy with aptamer regulating gold nanoparticles reduction. Food Control 2022, 132, 108498. [Google Scholar] [CrossRef]
- Shoaib, M.; Li, H.; Khan, I.M.; Hassan, M.M.; Zareef, M.; Niazi, S.; Chen, Q. Emerging MXene-Based Aptasensors: A Paradigm Shift in Food Safety Detection. Trends Food Sci. Technol. 2024, 151, 104635. [Google Scholar] [CrossRef]
- Kim, H.R.; Song, M.Y.; Kim, B.C. Rapid isolation of bacteria-specific aptamers with a non-SELEX-based method. Anal. Biochem. 2020, 591, 113542. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, R.; Chen, F.; Jiang, T.; Wang, H.; Slavik, M.; Li, Y. QCM-based aptamer selection and detection of Salmonella typhimurium. Food chem. 2017, 221, 776–782. [Google Scholar] [CrossRef]
- Han, S.R.; Lee, S.W. In vitro selection of RNA aptamer specific to Salmonella typhimurium. J. Microbiol. Biotechnol. 2013, 23, 878–884. [Google Scholar] [CrossRef]
- Xu, G.; Zhao, J.; Yu, H.; Wang, C.; Huang, Y.; Zhao, Q.; Liu, M. Structural insights into the mechanism of high-affinity binding of ochratoxin A by a DNA aptamer. J. Am. Chem. Soc. 2022, 144, 7731–7740. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Tsai, C.H. Aptamer against Aflatoxin B1 obtained by SELEX and applied in detection. Biosensors 2022, 12, 848. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Wang, R.; Wang, H.; Slavik, M.F.; Li, Y. Selection of acrylamide-specific aptamers by a quartz crystal microbalance combined SELEX method and their application in rapid and specific detection of acrylamide. Sens. Actuators B 2018, 273, 220–227. [Google Scholar] [CrossRef]
- Ahn, J.Y.; Lee, S.; Jo, M.; Kang, J.; Kim, E.; Jeong, O.C.; Kim, S. Sol-gel derived nanoporous compositions for entrapping small molecules and their outlook toward aptamer screening. Anal Chem. 2012, 84, 2647–2653. [Google Scholar] [CrossRef]
- Sawan, S.; Errachid, A.; Maalouf, R.; Jaffrezic-Renault, N. Aptamers functionalized metal and metal oxide nanoparticles: Recent advances in heavy metal monitoring. TrAC Trends Anal. Chem. 2022, 157, 116748. [Google Scholar] [CrossRef]
- Lim, H.J.; Song, H.; Lee, E.; Lee, J.; Lee, J.; Yoon, Y.; Son, A. Current trends of aptamer-based portable biosensing systems for the detection of environmental micropollutants: A review. Chem. Eng. J. 2024, 500, 157494. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Y.; Xu, X.; Liu, Y.; Lin, B.; Zhang, M.; Zhang, J.; Wan, S.; Yang, C.; Tan, W. Aptamer-based detection of circulating targets for precision medicine. Chem. Rev. 2021, 121, 12035–12105. [Google Scholar] [CrossRef]
- Goddard, Z.R.; Marín, M.J.; Russell, D.A.; Searcey, M. Active targeting of gold nanoparticles as cancer therapeutics. Chem. Soc. Rev. 2020, 49, 8774–8789. [Google Scholar] [CrossRef]
- Ouyang, M.; Liu, T.; Yuan, X.; Xie, C.; Luo, K.; Zhou, L. Nanomaterials-based aptasensors for rapid detection and early warning of key food contaminants: A review. Food Chem. 2024, 462, 140990. [Google Scholar] [CrossRef]
- Li, L.; Ma, R.; Wang, W.; Zhang, L.; Li, J.; Eltzov, E.; Wang, S.; Mao, X. Group-targeting aptamers and aptasensors for simultaneous identification of multiple targets in foods. TrAC Trends Anal. Chem. 2023, 166, 117169. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, F.; Sang, Y.; Katouzian, I.; Jafari, S.M.; Wang, X.; Li, W.; Wang, J.; Mohammadi, Z. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends Food Sci. Technol. 2022, 123, 355–375. [Google Scholar] [CrossRef]
- Tian, R.; Sun, J.; Ye, Y.; Lu, X.; Sun, X. Screening strategy of aptamer and its application in food contaminants determination. TrAC Trends Anal. Chem. 2024, 175, 117710. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, W.; Li, C.; Xu, H.; Zhang, X.; Zou, X.; Sun, Z. Fe3O4@ Au Nanoparticle-Enabled Magnetic Separation Coupled with CRISPR/Cas12a for Ultrasensitive Detection of Foodborne Pathogens. J. Agric. Food Chem. 2025, 73, 13949–13959. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Yi, X.; Zareef, M.; Li, H.; Chen, Q. Recent advancements of optical, electrochemical, and photoelectrochemical transducer-based microfluidic devices for pesticide and mycotoxins in food and water. Trends Food Sci. Technol. 2023, 142, 104230. [Google Scholar] [CrossRef]
- Shoaib, M.; Li, H.; Zareef, M.; Khan, I.M.; Iqbal, M.W.; Niazi, S.; Chen, Q. Recent advances in food safety detection: Split aptamer-based biosensors development and potential applications. J. Agric. Food Chem. 2025, 73, 4397–4424. [Google Scholar] [CrossRef]
- Sharma, A.; Hulse, T.; Qatamin, A.H.; Moreno, M.; Souza, K.S.; Pereira, M.B.; Campos, F.S.; Carneiro, L.B.; de Andrade, A.M.; Roehe, P.M.; et al. Electrochemically modulated surface plasmon waves for characterization and interrogation of DNA-based sensors. Analyst 2024, 149, 5821–5831. [Google Scholar] [CrossRef]
- Zhu, A.; Ali, S.; Jiao, T.; Wang, Z.; Ouyang, Q.; Chen, Q. Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1466–1494. [Google Scholar] [CrossRef]
- Yang, L.; Ding, Y.; Ma, Y.; Wen, J.; Wang, J.; Dai, G.; Mo, F. An electrochemical sensor based on 2D Zn-MOFs and 2D C-Ti3C2Tx composite materials for rapid and direct detection of various foodborne pathogens. Food Chem. 2025, 462, 140922. [Google Scholar] [CrossRef]
- Lin, X.; Liu, C.; Lei, Q.; Nan, X.; Zhu, Y.; Liao, J.; Du, Z.; Ye, C.; Xiong, Y.; Yang, M.; et al. A novel ratiometric electrochemical aptasensor based on graphene quantum dots/Cu-MOF nanocomposite for the on-site determination of Staphylococcus aureus. J. Hazard. Mater. 2025, 485, 136845. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Wei, Z.; Zheng, X.; Wang, T.; Huang, X.; Shen, T.; Zou, X. Multiplexed lateral-flow immunoassays for the simultaneous detection of several mycotoxins in foodstuffs. Trends Food Sci. Technol. 2025, 156, 104858. [Google Scholar] [CrossRef]
- Yu, T.; Suo, Z.; Zhang, X.; Shen, H.; Wei, M.; Jin, H.; He, B.; Ren, W.; Xu, Y. Highly conductive AuNPs/Co-MOF nanocomposites synergistic hybridization chain reaction enzyme-free electrochemical aptasensor for ultrasensitive detection of Aflatoxin B1. Chem. Eng. J. 2024, 495, 153596. [Google Scholar] [CrossRef]
- Kourti, D.; Geka, G.; Nemtsov, L.; Ahmadi, S.; Economou, A.; Thompson, M. Electrochemical Aptasensor with Antifouling Properties for Label-Free Detection of Oxytetracycline. Sensors 2024, 24, 5488. [Google Scholar] [CrossRef]
- Wu, F.; Guo, H.; Wang, B.; Kang, K.; Wang, L.; Wang, Y.; Ji, X. Dual signal amplification strategy-based electrochemical aptasensor utilizing redox molecule/MOF composites for multi-pesticide detection. Sens. Actuators B 2025, 423, 136757. [Google Scholar] [CrossRef]
- Chen, R.; Wang, X.; Wu, K.; Liu, S.; Zhang, Y. Voltammetric study and modeling of the electrochemical oxidation process and the adsorption effects of luminol and luminol derivatives on glassy carbon electrodes. Anal. Chem. 2022, 94, 17625–17633. [Google Scholar] [CrossRef]
- Hu, Z.; Cheng, M.; Zheng, Y.; Lin, L.; Tang, S.; Xu, H.; Zhu, X. A highly sensitive aptamer-antibody birecognized ECL sensing platform based on the cascaded reaction between CeO2@ mrGO and Co-SAC@ NC for E. coli O157: H7 in untreated milk. Sens. Actuators B 2025, 423, 136756. [Google Scholar] [CrossRef]
- Tao, Q.; Tang, N.; Jiang, Y.; Chen, B.; Liu, Y.; Xiong, X.; Liu, S. Double bipolar electrode electrochemiluminescence color switch for food-borne pathogens detection. Biosens. Bioelectron. 2023, 237, 115452. [Google Scholar] [CrossRef]
- Song, L.; Cao, X.; Yang, Y.; Chu, W.; Zou, X.; Cui, L.; Zhang, C.Y. Construction of a self-enhanced electrochemiluminescent sensor based on tandem signal amplification and a self-luminescent lanthanide covalent-organic polymer for ochratoxin a assay. Anal. Chem. 2025, 97, 4217–4223. [Google Scholar] [CrossRef]
- Xiang, S.; Li, J.; Wang, F.; Yang, H.; Jiang, Y.; Zhang, P.; Cai, R.; Tan, W. Novel ultralow-potential electrochemiluminescence aptasensor for the highly sensitive detection of zearalenone using a resonance energy transfer system. Anal. Chem. 2023, 95, 15125–15132. [Google Scholar] [CrossRef]
- Han, J.; Sun, J.; Huang, J.; Dong, H.; Bai, M.; Guo, Q.; Gao, X.; Wang, G.; Yu, Y.; Li, F.; et al. “Off-on” signal-switchable electrochemiluminescence aptasensor based on Cu2O-ABEI-AgNPs mediated signal amplification for the detection of profenofos. Sens. Actuators B 2024, 404, 135153. [Google Scholar] [CrossRef]
- Zhou, S.; Jiang, C.; Han, J.; Mu, Y.; Gong, J.R.; Zhang, J. High-Performance Self-Powered PEC Photodetectors Based on 2D BiVO4/MXene Schottky Junction. Adv. Funct. Mater. 2025, 35, 2416922. [Google Scholar] [CrossRef]
- Cui, A.; Dong, L.; Hou, Y.; Mu, X.; Sun, Y.; Wang, H.; Zhong, X.; Shan, G. NIR-driven multifunctional PEC biosensor based on aptamer-modified PDA/MnO2 photoelectrode for bacterial detection and inactivation. Biosens. Bioelectron. 2024, 257, 116320. [Google Scholar] [CrossRef] [PubMed]
- Ge, R.; Dai, H.; Zhang, S.; Wei, J.; Jiao, T.; Chen, Q.; Chen, Q.; Chen, X. A collection of RPA-based photoelectrochemical assays for the portable detection of multiple pathogens. Anal. Chem. 2023, 95, 7379–7386. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Pellei, M.; Zhang, S.; Wang, M.; Gabrielli, S.; Cimarelli, C.; Guo, C.; Du, M.; Zhang, Z. Trinuclear copper cluster-based COF with a high content of Cu-N2 single-atom sites: A multivariate signal-amplified photoelectrochemical aptasensor for the sensitive detection of mycotoxins. Chem. Eng. J. 2025, 505, 159603. [Google Scholar] [CrossRef]
- Ye, Z.; Qin, H.; Wei, X.; Tao, T.; Li, Q.; Mao, S. Antibiotic residue detection by novel photoelectrochemical extended-gate field-effect transistor sensor. J. Hazard. Mater. 2025, 485, 136897. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Xu, K.; Xiao, K.; Xu, Q.; Wang, L.; Li, P.; Zhou, J.; Zhao, D.; Bai, L.; Cheng, Y.; et al. Biomolecule sensors based on organic electrochemical transistors. npj Flexible Electron. 2025, 9, 9. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, S.; Liu, Y.; Chen, J.H.; Chen, J.; Shi, P.; Li, X.; Zhou, H. Organic photoelectrochemical transistor biosensor based on BiVO4-ZnIn2S4 material for efficient and sensitive detection of MCF-7 cells. Biosens. Bioelectron. 2025, 271, 117011. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Zhang, M.; Cao, Y.; Yin, H.; Ai, S. In2S3/MXene-Gated Organic Photoelectrochemical Transistor With Target-Induced Dipedal DNA Walker Modulation for DBP Biosensing. Adv. Funct. Mater. 2024, 34, 2411008. [Google Scholar] [CrossRef]
- You, F.; Li, R.; Ding, L.; Lai, J.; Yuan, R.; Qian, J.; Long, L.; Wang, K. Ultrasensitive and selective detection of ciprofloxacin in milk based on organic photoelectrochemical transistor aptasensor enhanced by high capacitance Ti3C2/TiO2. Sens. Actuators B 2024, 402, 135122. [Google Scholar] [CrossRef]
- Ding, L.; Liu, Y.; Lai, J.; Zhu, W.; Fan, C.; Hao, N.; Wei, J.; Qian, J.; Wang, K. Turning on high-sensitive organic electrochemical transistor-based photoelectrochemical-type sensor over modulation of Fe-MOF by PEDOT. Adv. Funct. Mater. 2022, 32, 2202735. [Google Scholar] [CrossRef]
- Guo, Y.; Li, C.; Guo, W.; Zhang, X.; Wang, L.; Zhang, W.; Zou, X.; Sun, Z. Advanced electrochemical biosensing toward Staphylococcus aureus based on the RPA-CRISPR/Cas12a system and conductive nanocomposite. J. Agric. Food Chem. 2024, 72, 22918–22925. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, M.; Mao, B.; Huang, B.; Wen, H.; Ren, J. The construction of COFs functionalized CRISPR electrochemical sensor for ultrasensitive detection of bacteria by hyper-branched rolling circle amplification. Sens. Actuators B 2024, 409, 135610. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Zhang, X.; Hu, X.; Huang, X.; Liang, N.; Shen, T.; Zou, X.; Shi, J. A DNA tetrahedral scaffolds-based electrochemical biosensor for simultaneous detection of AFB1 and OTA. Food Chem. 2024, 442, 138312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhi, H.; Wang, F.; Zhu, M.; Meng, H.; Wan, P.; Feng, L. Target-responsive smart nanomaterials via a Au-S binding encapsulation strategy for electrochemical/colorimetric dual-mode paper-based analytical devices. Anal. Chem. 2022, 94, 2569–2577. [Google Scholar] [CrossRef]
- Devi, W.S.; Kaur, R.; Sharma, A.; Thakur, S.; Mehta, S.K.; Raja, V.; Ataya, F.S. Non-enzymatic g-C3N4 supported CuO derived-biochar based electrochemical sensors for trace level detection of malathion. Biosens. Bioelectron. 2025, 267, 116808. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Shi, J.; Li, Z.; Huang, X.; Zou, X.; Tan, W.; Zhang, X.; Hu, X.; Wang, X.; et al. Impedimetric aptasensor based on highly porous gold for sensitive detection of acetamiprid in fruits and vegetables. Food Chem. 2020, 322, 126762. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Tian, L.; Zhang, Y.; Guo, Q.; Sun, X.; Guo, Y.; Li, F.; Yang, Q.; Zhang, Y. Coreactant-free electrochemiluminescent biosensor for detection of Staphylococcus aureus based on host-guest structure of Arg/ATT-AuNCs and DNA nanomachines. Chem. Eng. J. 2025, 506, 160268. [Google Scholar] [CrossRef]
- He, L.; Wang, Y.; Zhang, C.; Niu, Y.; Wang, Y.; Ma, H.; Li, N.; Ye, J.; Ma, Y. Self-assembled tetraphenylethene-based nanoaggregates with tunable electrochemiluminescence for the ultrasensitive detection of E. coli. Anal. Chem. 2024, 96, 4809–4816. [Google Scholar] [CrossRef]
- You, F.; Wen, Z.; Yuan, R.; Qian, J.; Long, L.; Wang, K. Sensitive and stable detection of deoxynivalenol based on electrochemiluminescence aptasensor enhanced by 0D/2D homojunction effect in food analysis. Food Chem. 2023, 403, 134397. [Google Scholar] [CrossRef]
- Jin, L.; Zhu, Q.; Xia, W.; Xiao, Z.; Wu, M. Ultrasensitive Electrochemiluminescence Biosensor for Ochratoxin A Detection based on the Synergistic Amplification of DNA Network and Silver Nanoclusters. Sens. Actuators B 2025, 429, 137330. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Li, P.; Li, C.; Li, D.; Dong, H.; Guo, Z.; Geng, L.; Zhang, X.; Fang, M.; et al. Metal-organic framework-based aptasensor utilizing a novel electrochemiluminescence system for detecting acetamiprid residues in vegetables. Biosens. Bioelectron. 2024, 259, 116371. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Liu, P.; Zhao, K.; Ye, S.; Liang, G. Rapid, ultrasensitive and non-enzyme electrochemiluminescence detection of hydrogen peroxide in food based on the ssDNA/g-C3N4 nanosheets hybrid. Food Chem. 2021, 357, 129753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhai, T.; Guo, Y.; Weng, Y.; Zhou, N.; Lin, H.; Tan, H.; Lu, K.; Zhou, Y. Faraday cage-type photocurrent polarity switching photoelectrochemical sensing platform for highly selective and sensitive detection of Vibrio parahaemolyticus. Food Chem. 2025, 475, 143275. [Google Scholar] [CrossRef]
- Ge, R.; Zhang, S.M.; Dai, H.J.; Wei, J.; Jiao, T.H.; Chen, Q.M.; Chen, Q.S.; Chen, X.M. G-Quadruplex/hemin-mediated polarity-switchable and photocurrent-amplified system for Escherichia coli O157: H7 detection. J. Agric. Food Chem. 2023, 71, 16807–16814. [Google Scholar] [CrossRef]
- Liu, S.; Meng, S.; Wang, M.; Li, W.; Dong, N.; Liu, D.; Li, Y.; You, T. In-depth interpretation of aptamer-based sensing on electrode: Dual-mode electrochemical-photoelectrochemical sensor for the ratiometric detection of patulin. Food Chem. 2023, 410, 135450. [Google Scholar] [CrossRef]
- Luo, L.; Liu, X.; Ma, S.; Li, L.; You, T. Quantification of zearalenone in mildewing cereal crops using an innovative photoelectrochemical aptamer sensing strategy based on ZnO-NGQDs composites. Food Chem. 2020, 322, 126778. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, J.; Xu, J.; Shan, L.; Lv, J.; Wu, C.; Zhang, L.; Li, L.; Yu, J. Ultrasensitive paper-based photoelectrochemical biosensor for acetamiprid detection enabled by spin-state manipulation and polarity-switching. Anal. Chem. 2024, 96, 12262–12269. [Google Scholar] [CrossRef]
- Wang, G.; Li, L.; Zheng, H.; Li, Q.; Huang, J.; Zhang, L.; Yang, H.; Cui, K.; Yu, J. Bifunctional strategy toward constructing perovskite/upconversion lab-on-paper photoelectrochemical device for sensitive detection of malathion. ACS nano 2023, 17, 13418–13429. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, K.; Zhang, K.; Li, P.; Wang, L.; Wu, C.; Xu, K. Ultrasensitive aflatoxin B1 detection based on vertical organic electrochemical transistor. Food Chem. 2025, 464, 141648. [Google Scholar] [CrossRef]
- Lai, J.; Ding, L.; Liu, Y.; Fan, C.; You, F.; Wei, J.; Qian, J.; Wang, K. A miniaturized organic photoelectrochemical transistor aptasensor based on nanorod arrays toward high-sensitive T-2 toxin detection in milk samples. Food Chem. 2023, 423, 136285. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.; Ju, P.; Bi, F.; Jiang, T.; Wen, S.; Cai, Y.; Wang, L.; Qiu, M. Integrated OPECT and Smartphone Colorimetry Dual-Mode Detection of Okadaic Acid Based on Ce-MOF Modified MXene@SnO2 Z-Scheme Heterostructure. Adv. Funct. Mater. 2024, 35, 2415174. [Google Scholar] [CrossRef]
- Jiang, T.; Ju, P.; Bi, F.; Chi, J.; Wen, S.; Jiang, F.; Chi, Z. Target-induced enzymatic cleavage cycle amplification reaction-gated organic photoelectrochemical transistor biosensor for rapid detection of okadaic acid. Biosens. Bioelectron. 2025, 267, 116745. [Google Scholar] [CrossRef]
- Wang, D.; Shen, Y.; Zhang, Z.; Wang, J. Integrating organic photoelectrochemical transistor with nanozyme-mediated reaction for ultrasensitive tobramycin detection. Sens. Actuators B 2025, 433, 137541. [Google Scholar] [CrossRef]
- Hou, X.; Gao, X.; Yang, P.; Niu, Q.; Liu, Q.; Yang, X. Signal Modulation Induced by a Hole Transfer Layer Participant Photoactive Gate: A Highly Sensitive Organic Photoelectrochemical Transistor Sensing Platform. Anal. Chem. 2024, 96, 11083–11091. [Google Scholar] [CrossRef]
- Manikandan, R.; Jang, H.G.; Kim, C.S.; Yoon, J.H.; Lee, J.; Paik, H.J.; Chang, S.C. Nano-engineered paper-based electrochemical biosensors: Versatile diagnostic tools for biomarker detection. Coord. Chem. Rev. 2025, 523, 216261. [Google Scholar] [CrossRef]
- Han, E.; Li, L.; Gao, T.; Pan, Y.; Cai, J. Nitrite determination in food using electrochemical sensor based on self-assembled MWCNTs/AuNPs/poly-melamine nanocomposite. Food Chem. 2024, 437, 137773. [Google Scholar] [CrossRef]
- Qin, Y.; Shen, J.; Qin, Y.; Hayilati, B.; Yao, J.; Zhang, M. Research progress on the application of aptamer optimization technology and portable sensing devices in food safety detection. Crit. Rev. Food Sci. Nutr. 2024, 1–33. [Google Scholar] [CrossRef]
- Wang, K.; Wang, S.; Margolis, S.; Cho, J.M.; Zhu, E.; Dupuy, A.; Yin, J.; Park, S.K.; Magyar, C.E.; Adeyiga, O.B.; et al. Rapid prediction of acute thrombosis via nanoengineered immunosensors with unsupervised clustering for multiple circulating biomarkers. Sci. Adv. 2024, 10, eadq6778. [Google Scholar] [CrossRef]
- Sharma, A.S.; Ali, S.; Sabarinathan, D.; Murugavelu, M.; Li, H.; Chen, Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5765–5801. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Yang, G.; Muhammad, I.; Qu, F. Aptamer-based biosensing detection for exosomes: From selection to aptasensors. TrAC Trends Anal. Chem. 2024, 170, 117422. [Google Scholar] [CrossRef]
- Su, J.; Sun, C.; Du, J.; Xing, X.; Wang, F.; Dong, H. RNA-cleaving DNAzyme-based amplification strategies for biosensing and therapy. Adv. Healthcare Mater. 2023, 12, 2300367. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.W.; Zou, X.M.; Song, S.H.; Chen, G.H. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues. J. Agric. Food Chem. 2018, 66, 1307–1319. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, Q.; Chen, X.; Jian, Y.; Wei, S.; Zuo, X.; Liu, C.; Kong, D.; Lin, F. Target-mediated rolling circle amplification/transcription coupling with double signal amplification of exonuclease III-assisted CRISPR/Cas12a-Cas13a for simultaneously ultrasensitive detection of aflatoxin B1 and ochratoxin A. Food Control 2025, 172, 111200. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Z.; Tian, Y.; Mou, Y.; Guo, Y.; Sun, X.; Li, F. Ratiometric fluorescent sensor based on a truncated specific aptamer by MGO-SELEX screening for streptomycin detection. Sens. Actuators B 2024, 406, 135427. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, J.; Ji, Z.; Zhang, J.; Yang, X.; Shi, C.; Sun, X.; Guo, Y. 2D/0D heterojunction fluorescent probe with schottky barrier based on Ti3C2Tx MXene loaded graphene quantum dots for detection of H2S during food spoilage. Adv. Funct. Mater. 2025, 35, 2412082. [Google Scholar] [CrossRef]
- Nair, R.V.; Chandran, P.R.; Mohamed, A.P.; Pillai, S. Sulphur-doped graphene quantum dot based fluorescent turn-on aptasensor for selective and ultrasensitive detection of omethoate. Anal. Chim. Acta 2021, 1181, 338893. [Google Scholar] [CrossRef]
- Yang, J.; Liu, M.; Wu, J.; Ma, T.; Li, Y.; Zhang, Y.; Sun, J.; Li, X.; Fang, Y.; Wang, Y.; et al. Signal-on aptasensors on paper-based platform: Application of multilayer MXene nanoquencher and stabilized luminescent carbon dots. J. Hazard. Mater. 2025, 489, 137720. [Google Scholar] [CrossRef]
- Tong, X.; Lin, X.; Duan, N.; Wang, Z.; Wu, S. Laser-printed paper-based microfluidic chip based on a multicolor fluorescence carbon dot biosensor for visual determination of multiantibiotics in aquatic products. ACS Sens. 2022, 7, 3947–3955. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, J.; Zheng, X.; Li, G.; Xing, C.; Li, P.; Yuan, J. Recent design strategies and applications of organic fluorescent probes for food freshness detection. Food Res. Int. 2023, 174, 113641. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, Y.; Yao, L.; Shang, H.; Zheng, Z.; Chen, W.; Xu, J. Self-assembly of multivalent aptamer-tethered DNA monolayers dedicated to a fluorescence polarization-responsive circular isothermal strand displacement amplification for Salmonella Assay. Anal. Chem. 2023, 95, 2570–2578. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y.; Qiao, X.; Yuan, Y.; Sheng, Q.; Yue, T. Target-induced AIE effect coupled with CRISPR/Cas12a system dual-signal biosensing for the ultrasensitive detection of Gliotoxin. Anal. Chem. 2023, 95, 11723–11731. [Google Scholar] [CrossRef]
- Ge, G.; Wang, T.; Liu, Z.; Liu, X.; Li, T.; Chen, Y.; Fan, J.; Bukye, E.; Huang, X.; Song, L. A self-assembled DNA double-crossover-based fluorescent aptasensor for highly sensitivity and selectivity in the simultaneous detection of aflatoxin M1 and aflatoxin B1. Talanta 2023, 265, 124908. [Google Scholar] [CrossRef] [PubMed]
- Amalraj, A.; Pavadai, R.; Subramanian, S.; Perumal, P. Fabrication of multi-functional CuO@ PDA-MoS2 mediated dual-functional fluorescence Aptamer for the detection of Hg2+ ions and chloramphenicol through desulfurization cleavage reaction and exonuclease I activity. Appl. Surf. Sci. 2022, 602, 154222. [Google Scholar] [CrossRef]
- He, H.; Sun, D.W.; Wu, Z.; Pu, H.; Wei, Q. On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends Food Sci. Technol. 2022, 119, 243–256. [Google Scholar] [CrossRef]
- Niu, X.; Suo, Z.; Li, J.; Wei, M.; Jin, H.; He, B. Self-assembled programmable DNA nanoflower for in situ synthesis of gold nanoclusters and integration with Mn-MOF to sensitively detect AFB1. Chem. Eng. J. 2024, 479, 147806. [Google Scholar] [CrossRef]
- Li, R.; Zhu, L.; Yang, M.; Liu, A.; Xu, W.; He, P. Silver nanocluster-based aptasensor for the label-free and enzyme-free detection of ochratoxin A. Food Chem. 2024, 431, 137126. [Google Scholar] [CrossRef]
- Huang, L.; Li, P.; Lin, C.; Wu, Y.; Chen, Z.; Fu, F. DNA-templated fluorescent silver nanoclusters on-off switch for specific and sensitive determination of organic mercury in seafood. Biosens. Bioelectron. 2021, 183, 113217. [Google Scholar] [CrossRef]
- Li, F.; Tu, L.; Zhang, Y.; Huang, D.; Liu, X.; Zhang, X.; Du, J.; Fan, R.; Yang, C.; Krämer, K.W.; et al. Size-dependent lanthanide energy transfer amplifies upconversion luminescence quantum yields. Nat. Photonics 2024, 18, 440–449. [Google Scholar] [CrossRef]
- Rong, Y.; Hassan, M.M.; Wu, J.; Chen, S.; Yang, W.; Li, Y.; Zhu, J.; Huang, J.; Chen, Q. Enhanced detection of acrylamide using a versatile solid-state upconversion sensor through spectral and visual analysis. J. Hazard. Mater. 2024, 466, 133369. [Google Scholar] [CrossRef]
- Zhang, P.; Qin, K.; Lopez, A.; Li, Z.; Liu, J. General label-free fluorescent aptamer binding assay using cationic conjugated polymers. Anal. Chem. 2022, 94, 15456–15463. [Google Scholar] [CrossRef]
- Esmaelpourfarkhani, M.; Hazeri, Y.; Ramezani, M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. A novel turn-off Tb3+/ssDNA complex-based time-resolved fluorescent aptasensor for oxytetracycline detection using the powerful sensitizing property of the modified complementary strand on Tb3+ emission. Microchem. J. 2024, 199, 110110. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, W.; Zhang, X.; Mei, L.; Liu, J.; Wang, F. Machine learning-driven fluorescent sensor array using aqueous CsPbBr3 perovskite quantum dots for rapid detection and sterilization of foodborne pathogens. J. Hazard. Mater. 2025, 483, 136655. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Yang, Q.; Liu, X.; Wang, Y.; Wang, J.; Wang, X. An ultrasensitive fluorescence nano-biosensor based on RBP 41-quantum dot microspheres for rapid detection of Salmonella in the food matrices. Food Chem. 2025, 468, 142504. [Google Scholar] [CrossRef]
- Bi, X.; Li, L.; Liu, X.; Luo, L.; Cheng, Z.; Sun, J.; Cai, Z.; Liu, J.; You, T. Inner filter effect-modulated ratiometric fluorescence aptasensor based on competition strategy for zearalenone detection in cereal crops: Using mitoxantrone as quencher of CdTe QDs@SiO2. Food Chem. 2021, 349, 129171. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Li, L.; Luo, L.; Liu, X.; Li, J.; You, T. A ratiometric fluorescence aptasensor based on photoinduced electron transfer from CdTe QDs to WS2 NTs for the sensitive detection of zearalenone in cereal crops. Food Chem. 2022, 385, 132657. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Hu, X.; Li, W.; Mwakosya, A.W.; Guo, Z.; Xu, Y.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; et al. Fluorescence and colorimetric dual-mode sensor for visual detection of malathion in cabbage based on carbon quantum dots and gold nanoparticles. Food Chem. 2021, 343, 128494. [Google Scholar] [CrossRef]
- Yin, M.; Wang, W.; Wei, J.; Chen, X.; Chen, Q.; Chen, X.; Oyama, M. Novel dual-emissive fluorescent immunoassay for synchronous monitoring of okadaic acid and saxitoxin in shellfish. Food Chem. 2022, 368, 130856. [Google Scholar] [CrossRef]
- Li, Y.; Kou, J.; Han, X.; Qiao, J.; Zhang, W.; Man, S.; Ma, L. Argonaute-triggered visual and rebuilding-free foodborne pathogenic bacteria detection. J. Hazard. Mater. 2023, 454, 131485. [Google Scholar] [CrossRef]
- Guo, W.; Guo, Y.; Xu, H.; Li, C.; Zhang, X.; Zou, X.; Sun, Z. Ultrasensitive “On-Off” ratiometric fluorescence biosensor based on RPA-CRISPR/Cas12a for detection of Staphylococcus aureus. J. Agric. Food Chem. 2025, 73, 2167–2173. [Google Scholar] [CrossRef]
- Huang, N.; Sheng, W.; Bai, D.; Sun, M.; Ren, L.; Wang, S.; Zhang, W.; Jin, Z. Multiplex bio-barcode based fluorometric immunoassay for simultaneous determination of zearalenone, fumonisin B1, ochratoxin A, and aflatoxin B1 in cereals. Food Control 2023, 150, 109759. [Google Scholar] [CrossRef]
- Lin, X.; Kang, L.; Feng, J.; Duan, N.; Wang, Z.; Wu, S. Deep learning-assisted fluorescence single-particle detection of fumonisin B1 powered by entropy-driven catalysis and argonaute. Anal. Chem. 2025, 97, 4066–4074. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, N.; Ye, L.; Zhou, L.; Chen, G.; Tang, J.; Zhang, H.; Yang, H. Triple modal aptasensor arrays driven by CHA-mediated DNAzyme for signal-amplified atrazine pesticide accumulation monitoring in agricultural crops. J. Hazard. Mater. 2024, 476, 135172. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, J.; Wu, J.; Wang, L.; Yao, C.; Hu, J.; Zhang, H. A microfluidic paper-based fluorescent sensor integrated with a smartphone platform for rapid on-site detection of omethoate pesticide. Food Chem. 2025, 463, 141205. [Google Scholar] [CrossRef]
- Wu, Q.; Huang, F.; Jiang, Y.; Chen, Y.; Jiang, P.; Lou, Y.; Zheng, Y.; Zheng, L. Firefly lantern-inspired AIE-enhanced gold nanocluster microspheres for ultrasensitive detection of foodborne pathogenic bacteria. Sens. Actuators B 2025, 422, 136584. [Google Scholar] [CrossRef]
- Kang, Q.; Zhang, S.Q.; Lin, T.; Li, J.Z.; Ma, C.J.; Jiao, J.B.; Li, C.; Du, X.J.; Wang, S. Ultrasensitive detection assay for Cronobacter sakazakii based on nucleic acid-driven aggregation-induced emission of gold nanoclusters and cascaded signal amplification. Sens. Actuators B 2024, 408, 135565. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Ren, X.; Li, W.; Sun, J.; Wang, X.; Huang, Y.; Guo, Y.; Zeng, H. Novel fluorescence immunoassay for the detection of zearalenone using HRP-mediated fluorescence quenching of gold-silver bimetallic nanoclusters. Food Chem. 2021, 355, 129633. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, C.; Zhao, F.; Qiao, M.; Liu, Y.; Wei, M.; Jin, B. Dual-ratiometric fluorescent aptasensor based on gold nanoclusters and dual-amplification strategy for simultaneous detection of ochratoxin A and aflatoxin B1. Sens. Actuators B 2025, 427, 137164. [Google Scholar] [CrossRef]
- Wu, H.; Xie, R.; Hao, Y.; Pang, J.; Gao, H.; Qu, F.; Tian, M.; Guo, C.; Mao, B.; Chai, F. Portable smartphone-integrated AuAg nanoclusters electrospun membranes for multivariate fluorescent sensing of Hg2+, Cu2+ and l-histidine in water and food samples. Food Chem. 2023, 418, 135961. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Shen, R.; Li, W.; Gao, S.; Xiao, Z.; Lv, Q.; Song, X.; Xu, J.; Xu, G.; et al. Accurately tunable AuNC-ZIF content architecture based on coordination-dissociation mechanism enables highly brightness dual-site fluorescent biosensor. Adv. Sci. 2025, 12, 2408400. [Google Scholar] [CrossRef]
- Hu, Q.; Wu, Q.; Huang, F.; Xu, Z.; Zhou, L.; Zhao, S. Multicolor coding up-conversion nanoplatform for rapid screening of multiple foodborne pathogens. ACS Appl. Mater. Interfaces 2021, 13, 26782–26789. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Sun, J.; Fu, X.; Sheng, L.; Ye, Y.; Ji, J.; Zhang, Y.; Wang, J.; Ping, J.; Sun, X. A simplified amplification-free strategy with lyophilized CRISPR-CcrRNA system for drug-resistant Salmonella detection. Small 2023, 19, 2207343. [Google Scholar] [CrossRef]
- Lin, X.; Li, C.; Tong, X.; Duan, N.; Wang, Z.; Wu, S. A portable paper-based aptasensor for simultaneous visual detection of two mycotoxins in corn flour using dual-color upconversion nanoparticles and Cu-TCPP nanosheets. Food Chem. 2023, 404, 134750. [Google Scholar] [CrossRef]
- Qin, M.; Li, S.; Ma, P.; Lin, X.; Khan, I.M.; Ding, N.; Zhang, Y.; Wang, Z. An ultrasensitive dual-mode aptasensor for patulin based on the upconversion particles and G-Quadruplex-hemin DNAzyme. Talanta 2024, 279, 126653. [Google Scholar] [CrossRef]
- Li, H.; Bei, Q.; Zhang, W.; Marimuthu, M.; Hassan, M.M.; Haruna, S.A.; Chen, Q. Ultrasensitive fluorescence sensor for Hg2+ in food based on three-dimensional upconversion nanoclusters and aptamer-modulated thymine-Hg2+-thymine strategy. Food Chem. 2023, 422, 136202. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, L.; Ahmad, W.; Rong, Y.; Li, H.; Hu, Y.; Chen, Q. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chem. 2021, 349, 129157. [Google Scholar] [CrossRef]
- Zou, Y.; Shi, Y.; Wang, T.; Ji, S.; Zhang, X.; Shen, T.; Huang, X.; Xiao, J.; Farag, M.A.; Shi, J.; et al. Quantum dots as advanced nanomaterials for food quality and safety applications: A comprehensive review and future perspectives. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13339. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Ali, S.; Jiao, T.; Wang, Z.; Xu, Y.; Ouyang, Q.; Chen, Q. Facile synthesis of fluorescence-SERS dual-probe nanocomposites for ultrasensitive detection of sulfur-containing gases in water and beer samples. Food Chem. 2023, 420, 136095. [Google Scholar] [CrossRef]
- Yang, L.; Hou, H.; Li, J. Frontiers in fluorescence imaging: Tools for the in situ sensing of disease biomarkers. J. Mater. Chem. B 2025, 13, 1133–1158. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Zhang, L.; Wu, R.; Li, L.S. Recent progress on eco-friendly quantum dots for bioimaging and diagnostics. Nano Res. 2024, 17, 10309–10331. [Google Scholar] [CrossRef]
- Tang, Y.; Xiang, Y.; Yang, Y.; Zhang, Y.; Wei, B.; Qin, X.; Fang, M.; Wang, Q.; Li, X.; Yang, F. Nanostructured bubbles-enhanced fluorescence for ultrasensitive portable microRNA detection. Adv. Funct. Mater. 2025, 35, 2413832. [Google Scholar] [CrossRef]
- Huang, R.; Zigale, T.T.; Meng, H.; Wang, L.; Dong, Q.; Zeng, K.; Zhang, Z. Cobalt Single-Atom Nanozyme-Enabled Multimodal Lateral Flow Immunoassay for On-Site Ultrasensitive Detection of Tetracycline Residues in Agri-Food Products. J. Agric. Food Chem. 2025, 73, 16648–16659. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Wang, X.; Wang, Z.; Gong, S. CRISPR-Cas-based colorimetric strategies for nucleic acids detection. TrAC Trends Anal. Chem. 2024, 182, 118058. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Tang, H.; Xie, C.; Zhao, Y.; Wu, P. Non-colorimetric sensing with 3,3’,5,5’-tetramethylbenzidine. Sens. Actuators B 2024, 422, 136643. [Google Scholar] [CrossRef]
- Dang, T.V.; Jang, I.S.; Nguyen, Q.H.; Choi, H.S.; Yu, B.J.; Kim, M.I. Signal-off colorimetric and signal-on fluorometric dual-mode aptasensor for ultrasensitive detection of Salmonella Typhimurium using graphitic carbon nitride. Food Chem. 2025, 465, 142176. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.; Alattar, A.; Alshaman, R.; Ghabban, A.; Alanazi, S.; Al-Brahimi, H.; Alatwi, M.; Jlawi, A.; Albalawi, A.; Alatawi, A.M.A.; et al. Sensing the invisible: Ultrasensitive and selective colorimetric detection of E. coli O157: H7 based on masking the peroxidase-mimetic activity of aptamer-modified Au/Fe3O4. Food Chem. 2024, 443, 138564. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, X.; Zhou, S.; Men, D.; Duan, Y.; Liu, H.; Zhao, B.; Huo, D.; Hou, C. Ultrasensitive detection of mycotoxins using a novel single-Atom, CRISPR/Cas12a-Based nanozymatic colorimetric biosensor. Chem. Eng. J. 2024, 497, 154418. [Google Scholar] [CrossRef]
- He, Y.Q.; Chen, Y.; Meng, X.Z.; Yi, H.C.; Gu, H.W.; Yin, X.L. A versatile and smartphone-integrated detection platform based on Exo III-assisted recycling and DNAzyme amplification. Sens. Actuators B 2023, 376, 132976. [Google Scholar] [CrossRef]
- Lai, T.; Sun, Q.; Lv, Z.; Xie, L.; Niu, S.; Zhang, J.; Tang, J.; Li, S.; Luo, Y. Visual, fast and highly sensitive detection of zearalenone by two-color optical sensor based on label-free split aptazyme. Sens. Actuators B 2025, 424, 136880. [Google Scholar] [CrossRef]
- Wang, G.; Guo, J.; Zou, J.; Lei, Z. CeO2 nanocages with tetra-enzyme mimetic activities for dual-channel ratiometric colorimetric detection of microcystins-LR. Anal. Chim. Acta 2024, 1306, 342599. [Google Scholar] [CrossRef]
- Liu, D.M.; Dong, C. Gold nanoparticles as colorimetric probes in food analysis: Progress and challenges. Food Chem. 2023, 429, 136887. [Google Scholar] [CrossRef]
- Chang, C.C.; Li, C.F.; Yang, Z.H.; Lin, P.Y.; Chang, H.C.; Yang, C.W. Target-induced recycling assembly of split aptamer fragments by DNA toehold-mediated displacement for the amplified colorimetric detection of estradiol. Sens. Actuators B 2022, 364, 131823. [Google Scholar] [CrossRef]
- Soni, G.K.; Sharma, R.K. One-pot rapid and ultrasensitive sensing strategy for endocrine disruptor bisphenol A using cationic AuNPs and aptamer. Sens. Actuators B 2023, 390, 133968. [Google Scholar] [CrossRef]
- Sen, A.; Sester, C.; Poulsen, H.; Hodgkiss, J.M. Accounting for interaction kinetics between gold nanoparticles and aptamers enables high-performance colorimetric sensors. ACS Appl. Mater. Interfaces 2022, 14, 32813–32822. [Google Scholar] [CrossRef]
- Yan, C.; Sun, Y.; Yao, M.; Jin, X.; Yang, Q.; Wu, W. pH-responsive nanoparticles and automated detection apparatus for dual detection of pathogenic bacteria. Sens. Actuators B 2022, 354, 131117. [Google Scholar] [CrossRef]
- Alkhamis, O.; Canoura, J.; Bukhryakov, K.V.; Tarifa, A.; DeCaprio, A.P.; Xiao, Y. DNA aptamer-cyanine complexes as generic colorimetric small-molecule sensors. Angew. Chem. 2022, 134, e202112305. [Google Scholar] [CrossRef]
- Chovelon, B.; Peyrin, E.; Ragot, M.; Salem, N.; Nguyen, T.G.; Auvray, B.; Henry, M.; Petrillo, M.A.; Fiore, E.; Bessy, Q.; et al. Nile blue as reporter dye in salt aggregation based-colorimetric aptasensors for peptide, small molecule and metal ion detection. Anal. Chim. Acta 2023, 1243, 340840. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, Q.G.; Xiao, S.J.; Yang, G.P.; Liu, X.; Zheng, Q.Q.; Fan, J.Q.; Liang, R.P.; Qiu, J.D. DNAzyme-derived aptamer reversely regulates the two types of enzymatic activities of covalent-organic frameworks for the colorimetric analysis of uranium. Anal. Chem. 2023, 95, 4703–4711. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, L.; Ahmad, W.; Yang, Y.; Chen, Q. Upconversion nanoprobes based on a horseradish peroxidase-regulated dual-mode strategy for the ultrasensitive detection of Staphylococcus aureus in meat. J. Agric. Food Chem. 2021, 69, 9947–9956. [Google Scholar] [CrossRef]
- Pang, L.; Liang, Y.; Wang, Z.; Zhang, W.; Zhao, Q.; Yang, X.; Jiang, Y. G-triplex/hemin DNAzyme mediated colorimetric aptasensor for Escherichia coli O157: H7 detection based on exonuclease III-assisted amplification and aptamers-functionalized magnetic beads. Talanta 2024, 269, 125457. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, X.; Shi, Y.; Hu, X.; Wang, X.; Liang, N.; Shen, T.; Zou, X.; Shi, J. A dual-modal biosensor coupling cooperative catalysis strategy for sensitive detection of AFB1 in agri-products. Food Chem. 2023, 426, 136553. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Song, X.; Wang, S.; Liu, H.; Xiong, C.; Wang, S.; Zhang, X.; Chen, M.M. Portable dual-mode paper chips for highly sensitive and rapid determination of aflatoxin B1 via an aptamer-gated MOFs. Food Chem. 2024, 457, 140182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, Y.; Huang, X.; Hu, X.; Huang, X.; Yin, L.; Huang, Q.; Wen, Y.; Li, B.; Shi, J.; et al. Switchable aptamer-fueled colorimetric sensing toward agricultural fipronil exposure sensitized with affiliative metal-organic framework. Food Chem. 2023, 407, 135115. [Google Scholar] [CrossRef]
- Peng, L.; Zhu, A.; Ahmad, W.; Adade, S.Y.S.S.; Chen, Q.; Wei, W.; Chen, X.; Wei, J.; Jiao, T.; Chen, Q. A three-channel biosensor based on stimuli-responsive catalytic activity of the Fe3O4@ Cu for on-site detection of tetrodotoxin in fish. Food Chem. 2024, 460, 140566. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, Y.; Li, J.; Wu, J. A trigger-based aggregation of aptamer-functionalized gold nanoparticles for colorimetry: An example on detection of Escherichia coli O157: H7. Sens. Actuators B 2021, 339, 129865. [Google Scholar] [CrossRef]
- Zhu, W.; Li, L.; Zhou, Z.; Yang, X.; Hao, N.; Guo, Y.; Wang, K. A colorimetric biosensor for simultaneous ochratoxin A and aflatoxins B1 detection in agricultural products. Food Chem. 2020, 319, 126544. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, J.; Liu, S.; Li, B. A label-free visual aptasensor for zearalenone detection based on target-responsive aptamer-cross-linked hydrogel and color change of gold nanoparticles. Food Chem. 2022, 389, 133078. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Li, X.; Li, X. AuNP aggregation-induced quantitative colorimetric aptasensing of sulfadimethoxine with a smartphone. Chin. Chem. Lett. 2022, 33, 3078–3082. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Nan, M.; Li, Y.; Yun, J.; Wang, Y.; Bi, Y. Novel colorimetric aptasensor based on unmodified gold nanoparticle and ssDNA for rapid and sensitive detection of T-2 toxin. Food Chem. 2021, 348, 129128. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, R.; Hou, Y.; Qin, Y.; Li, S.; Yang, S.; Gao, Z. DNA hydrogels combined with microfluidic chips for melamine detection. Anal. Chim. Acta 2022, 1228, 340312. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Geng, W.; Zhang, M.; He, Z.; Haruna, S.A.; Ouyang, Q.; Chen, Q. Qualitative and quantitative analysis of volatile metabolites of foodborne pathogens using colorimetric-bionic sensor coupled robust models. Microchem. J. 2022, 177, 107282. [Google Scholar] [CrossRef]
- Sun, Y.; Qi, S.; Dong, X.; Qin, M.; Zhang, Y.; Wang, Z. Colorimetric aptasensor targeting zearalenone developed based on the hyaluronic Acid-DNA hydrogel and bimetallic MOFzyme. Biosens. Bioelectron. 2022, 212, 114366. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lin, H.; Wang, F.; Adade, S.Y.S.S.; Peng, T.; Chen, Q. Discrimination of toxigenic and non-toxigenic Aspergillus flavus in wheat based on nanocomposite colorimetric sensor array. Food Chem. 2024, 430, 137048. [Google Scholar] [CrossRef]
- Vijitvarasan, P.; Cheunkar, S.; Oaew, S. A point-of-use lateral flow aptasensor for naked-eye detection of aflatoxin B1. Food Control 2022, 134, 108767. [Google Scholar] [CrossRef]
- Zhai, X.; Sun, Y.; Cen, S.; Wang, X.; Zhang, J.; Yang, Z.; Li, Y.; Wang, X.; Zhou, C.; Arslan, M.; et al. Anthocyanins-encapsulated 3D-printable bigels: A colorimetric and leaching-resistant volatile amines sensor for intelligent food packaging. Food Hydrocolloids 2022, 133, 107989. [Google Scholar] [CrossRef]
- Lu, W.; Lou, S.; Yang, B.; Guo, Z.; Tian, Z. Light-activated oxidative capacity of isoquinoline alkaloids for universal, homogeneous, reliable, colorimetric assays with DNA aptamers. Talanta 2024, 279, 126667. [Google Scholar] [CrossRef]
- Li, M.; Qiu, Y.; Liu, G.; Xiao, Y.; Tian, Y.; Fang, S. Plasmonic colorimetry and G-quadruplex fluorescence-based aptasensor: A dual-mode, protein-free and label-free detection for OTA. Food Chem. 2024, 448, 139115. [Google Scholar] [CrossRef] [PubMed]
- Mazur, F.; Han, Z.; Tjandra, A.D.; Chandrawati, R. Digitalization of colorimetric sensor technologies for food safety. Adv. Mater. 2024, 36, 2404274. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Wei, S.; Wu, T. Exploration and application of the catalytic superiority of non-g-quadruplex hemin aptamers. Anal. Chem. 2025, 97, 3680–3686. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Q.; Belwal, T.; Lin, X.; Luo, Z. Insights into chemometric algorithms for quality attributes and hazards detection in foodstuffs using Raman/surface enhanced Raman spectroscopy. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2476–2507. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Guo, W.; Guo, Y.; Zou, X.; Sun, Z. Recyclable magnetic HNTs@ MIPs-Based SERS sensors for selective, sensitive, and reliable detection of capsaicin for gutter oil discrimination. Food Biosci. 2025, 66, 106179. [Google Scholar] [CrossRef]
- Ashiagbor, K.; Jayan, H.; Yosri, N.; Amaglo, N.K.; Zou, X.; Guo, Z. Advancements in SERS based systematic evolution of ligands by exponential enrichment for detection of pesticide residues in fruits and vegetables. Food Chem. 2024, 463, 141394. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, W.; Zhang, Y.; Zheng, S.; Liao, J.; Shan, H.; Tian, B.; Wu, T.; Zhang, L.; Tu, Z.; et al. Simple and rapid co-freezing construction of SERS signal probes for the sensitive detection of pathogens. Chem. Eng. J. 2023, 466, 143066. [Google Scholar] [CrossRef]
- Jiao, T.; Dong, C.; Zhu, A.; Ahmad, W.; Peng, L.; Wu, X.; Chen, Q.; Wei, J.; Chen, X.; Qin, O.; et al. AFB1-responsive mesoporous silica nanoparticles for AFB1 quantification based on aptamer-regulated release of SERS reporter. Food Chem. 2025, 463, 141417. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, S.; Gao, S. High-throughput broad-spectrum analysis of tetracyclines via surface-enhanced Raman spectroscopy imaging technology. Chem. Eng. J. 2024, 484, 149517. [Google Scholar] [CrossRef]
- Lou, B.; Liu, Y.; Shi, M.; Chen, J.; Li, K.; Tan, Y.; Chen, L.; Wu, Y.; Wang, T.; Liu, X.; et al. Aptamer-based biosensors for virus protein detection. TrAC Trends Anal. Chem. 2022, 157, 116738. [Google Scholar] [CrossRef]
- Dillen, A.; Scarpellini, C.; Daenen, W.; Driesen, S.; Zijlstra, P.; Lammertyn, J. Integrated signal amplification on a fiber optic SPR sensor using duplexed aptamers. ACS Sens. 2023, 8, 811–821. [Google Scholar] [CrossRef]
- Dursun, A.D.; Borsa, B.A.; Bayramoglu, G.; Arica, M.Y.; Ozalp, V.C. Surface plasmon resonance aptasensor for Brucella detection in milk. Talanta 2022, 239, 123074. [Google Scholar] [CrossRef]
- Li, J.; Yang, H.; Cai, R.; Tan, W. Novel nucleic acid-assisted ion-responsive ECL biosensor based on hollow AuAg nanoboxes with excellent SPR and Effective coreaction acceleration. Anal. Chem. 2024, 96, 11076–11082. [Google Scholar] [CrossRef]
- Qin, M.; Ding, N.; Ma, P.; Jiang, H.; Li, Y.; Chen, P.; Wang, Z.; Yang, J. Development of a dual-mode lateral flow assay based on structure-guided aptamers for the detection of capsaicin in gutter oils. Biosens. Bioelectron. 2025, 271, 117100. [Google Scholar] [CrossRef]
- Wang, C.; Gu, C.; Zhao, X.; Yu, S.; Zhang, X.; Xu, F.; Ding, L.; Huang, X.; Qian, J. Self-designed portable dual-mode fluorescence device with custom python-based analysis software for rapid detection via dual-color FRET aptasensor with IoT capabilities. Food Chem. 2024, 457, 140190. [Google Scholar] [CrossRef]
- Fu, X.; Yin, L.; Zhang, Y.; Sun, Z.; Xue, S.; Jayan, H.; Guo, Z. SERS-fluorescence dual-mode aptasensor based on Hollow mesoporous silica combined with gating mechanism for the detection of Aflatoxin B1. Food Biosci. 2025, 68, 106805. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Liu, S.; Meng, S.; Liu, D.; You, T. Photo-enhanced electrochemical and colorimetric dual-modal aptasensing for aflatoxin B1 detection based on graphene-gold Schottky contact. Chem. Commun. 2023, 59, 9622–9625. [Google Scholar] [CrossRef]
- Wang, S.; Hu, J.; Xiao, S.; Wang, M.; Yu, J.; Jia, Z.; Yu, Z.; Gan, N. Fluorescent/electrochemical dual-signal response biosensing strategy mediated by DNAzyme-ferrocene-triggered click chemistry for simultaneous rapid screening and quantitative detection of Vibrio parahaemolyticus. Sens. Actuators B 2023, 380, 133393. [Google Scholar] [CrossRef]
- Wu, G.; Qiu, H.; Du, C.; Zheng, Z.; Liu, Q.; Wang, Z.; Luo, P.; Shen, Y. Intelligent onsite dual-modal assay based on oxidase-like fluorescence carbon dots-driven competitive effect for ethyl carbamate detection. J. Hazard. Mater. 2024, 474, 134707. [Google Scholar] [CrossRef]
- Li, J.; Lin, X.; Wu, J.; Ying, D.; Duan, N.; Wang, Z.; Wu, S. Multifunctional magnetic composite nanomaterial for colorimetric-SERS dual-mode detection and photothermal sterilization of vibrio parahaemolyticus. Chem. Eng. J. 2023, 477, 147113. [Google Scholar] [CrossRef]
- Spagnolo, S.; Davoudian, K.; Franier, B.D.L.; Kocsis, R.; Hianik, T.; Thompson, M. Nanoparticle-Enhanced Acoustic Wave Biosensor Detection of Pseudomonas aeruginosa in Food. Biosensors 2025, 15, 146. [Google Scholar] [CrossRef]
- Xu, Y.; He, P.; Ahmad, W.; Hassan, M.M.; Ali, S.; Li, H.; Chen, Q. Catalytic hairpin activated gold-magnetic/gold-core-silver-shell rapid self-assembly for ultrasensitive Staphylococcus aureus sensing via PDMS-based SERS platform. Biosens. Bioelectron. 2022, 209, 114240. [Google Scholar] [CrossRef]
- Zhu, A.; Ahmad, W.; Xu, Y.; Wei, W.; Jiao, T.; Ouyang, Q.; Chen, Q. Trace detection of S. aureus cells in food samples via RCA-assisted SERS signal amplification with core-shell nanoprobe. Talanta 2025, 286, 127458. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Gao, L.; Yin, L.; Arslan, M.; El-Seedi, H.R.; Zou, X. Novel mesoporous silica surface loaded gold nanocomposites SERS aptasensor for sensitive detection of zearalenone. Food Chem. 2023, 403, 134384. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Yin, L.; Gao, S.; Zhou, R.; Zhang, Y.; Jayan, H.; El-Seedi, H.R.; Zou, X.; Guo, Z. A film-like SERS aptasensor for sensitive detection of patulin based on GO@ Au nanosheets. Food Chem. 2024, 441, 138364. [Google Scholar] [CrossRef]
- Wei, X.; Song, W.; Fan, Y.; Sun, Y.; Li, Z.; Chen, S.; Shi, J.; Zhang, D.; Zou, X.; Xu, X. A SERS aptasensor based on a flexible substrate for interference-free detection of carbendazim in apple. Food Chem. 2024, 431, 137120. [Google Scholar] [CrossRef]
- Ma, H.; Hu, L.; Ding, F.; Liu, J.; Su, J.; Tu, K.; Peng, J.; Lan, W.; Pan, L. Introducing high-performance star-shaped bimetallic nanotags into SERS aptasensor: An ultrasensitive and interference-free method for chlorpyrifos detection. Biosens. Bioelectron. 2024, 263, 116577. [Google Scholar] [CrossRef]
- Wu, M.; Jing, T.; Tian, J.; Qi, H.; Shi, D.; Zhao, C.; Chen, T.; Zhao, Z.; Zhang, P.; Guo, Z. Synergistic effect of silver plasmon resonance and pn heterojunction enhanced photoelectrochemical aptasensing platform for detecting chloramphenicol. Adv. Compos. Hybrid Mater. 2022, 5, 2247–2259. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Sun, R.; Wei, J.; Oyama, M.; Chen, Q.; Chen, X. Electrochemiluminescent aptasensor for aflatoxin B1 by integrating anodized aluminum oxide for nanopore screening and gold nanoparticles for surface plasmon resonance amplification. Sens. Actuators B 2024, 415, 136007. [Google Scholar] [CrossRef]
- Caglayan, M.O.; Üstündağ, Z.; Şahin, S. Spectroscopic ellipsometry methods for brevetoxin detection. Talanta 2022, 237, 122897. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, J.; Yang, F.; Yang, G.; Wu, Y.; Li, Z.; Yao, J. Tapered optical fiber LRSPR biosensor based on gold nanoparticle amplification for label-free BSA detection. Sens. Actuators B 2025, 426, 136986. [Google Scholar] [CrossRef]
- Yao, J.; Feng, X.; Wang, S.; Liang, Y.; Zhang, B. Plasmon-Enhanced Photoelectrochemistry of Photosystem II on a Hierarchical Tin Oxide Electrode for Ultrasensitive Detection of 17β-Estradiol. Anal. Chem. 2024, 96, 18029–18036. [Google Scholar] [CrossRef]
- Dong, J.; Xu, L.; Dang, S.; Sun, S.; Zhou, Y.; Yan, P.; Yan, Y.; Li, H. A sensitive photoelectrochemical aptasensor for enrofloxacin detection based on plasmon-sensitized bismuth-rich bismuth oxyhalide. Talanta 2022, 246, 123515. [Google Scholar] [CrossRef]
- Kang, Q.; Zhang, S.; Ma, C.; Guo, R.; Yu, X.; Lin, T.; Pang, W.; Liu, Y.; Jiao, J.; Xu, M.; et al. A dual-mode colorimetric and fluorescence biosensor based on a nucleic acid multiplexing platform for the detection of listeria monocytogenes. Anal. Chem. 2025, 97, 1853–1860. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, Y.; Zhao, Y.; Hou, H.; Zhang, G.; Bi, J.; Yan, S.; Hao, H. Hybrid chain reaction-based and Au/Bi4NbO8Cl/In2S3 layer-by-layer assembled dual-mode photoelectrochemical-electrochemical aptasensor for the detection of Salmonella enteritidis. Talanta 2025, 281, 126815. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F.; Li, Z.; Hu, B.; Zheng, Q.; Piao, Y.; Feng, L.; Cao, J. Dual-mode electrochemical/colorimetric microfluidic sensor integrated tetrahedral DNA nanostructures with Au/Ni-Co LDH NCs nanozyme for ultrasensitive detection of aflatoxin B1. Sens. Actuators B 2023, 393, 134322. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, B.; Ye, Y.; Qi, X.; Zhang, Y.; Xia, X.; Wang, X.; Zhou, N. A fluorescence and surface-enhanced Raman scattering dual-mode aptasensor for rapid and sensitive detection of ochratoxin A. Biosens. Bioelectron. 2022, 207, 114164. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Ahmad, W.; Rong, Y.; Wu, J.; Ouyang, Q.; Chen, Q. A dual-mode fluorescence and colorimetric sensing platform for efficient detection of ofloxacin in aquatic products using iron alkoxide nanozyme. Food Chem. 2024, 442, 138417. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, M.; Chen, Q.; Ouyang, Q. Multifunctional metal-organic frameworks driven three-dimensional folded paper-based microfluidic analysis device for chlorpyrifos detection. J. Agric. Food Chem. 2024, 72, 14375–14385. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Wang, X.; Song, W.; Chen, L.; Liu, X.; Yang, L.; Wang, M.; Liu, R. Polydopamine engineered interfaces in metal-organic framework@ plasmonic nanoparticles for improved SERS sensing. Sens. Actuators B 2025, 428, 137248. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, H.; Wu, Y.; Luo, S.; Hong, Q.; Zhang, X.; Sun, Z. Conductive MoS2-Au nanocomposite-based electrochemical biosensor for CRISPR/Cas12a-driven Staphylococcus aureus detection. Sens. Actuators B 2025, 442, 138078. [Google Scholar] [CrossRef]
- Jiang, L.; Hassan, M.M.; Ali, S.; Li, H.; Sheng, R.; Chen, Q. Evolving trends in SERS-based techniques for food quality and safety: A review. Trends Food Sci. Technol. 2021, 112, 225–240. [Google Scholar] [CrossRef]
- Guo, A.; Wu, Y.; Xie, Y.; Guo, W.; Guo, Y.; Zhang, X.; Sun, Z. CRISPR-based fluorescent aptasensor combined with smartphone for on-site visual detection of DEHP in packaged foods. Spectrochim. Acta Part A 2025, 344, 126649. [Google Scholar] [CrossRef]
- Sun, Z.; Li, C.; Wu, Z.; Jiang, X.; Zhao, F.; Guo, W.; Yang, N. High-precision microfluidic impedance sensing for pretreatment and detection of multiple mycotoxins. Anal. Chem. 2025, 97, 10646–10654. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Zhou, L.; Wu, G.; Gong, S.; Gao, Z.; Wu, J.; Ma, C.; Zou, Y.; Liu, X.; et al. Highly sensitive and interference-free detection of multiple drug molecules in serum using dual-modified SERS substrates combined with AI algorithm analysis. Anal. Chem. 2025, 97, 3739–3747. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Tang, Q.; Guo, Y.; Zhang, Z.; Zhang, W.; Sun, Z. Molecularly imprinted electrochemical sensor for ethyl carbamate detection in Baijiu based on “on-off” nanozyme-catalyzing process. Food Chem. 2024, 453, 139626. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, Y.; Guo, Y.; Guo, W.; Zhang, X.; Zhang, W.; Sun, Z. Ultrasensitive electrochemical sensor with renewable ratio signal for real-time monitoring of cyanide in Baijiu. Food Chem. 2025, 145243. [Google Scholar] [CrossRef] [PubMed]
- Vandezande, W.; Dillen, A.; Lammertyn, J.; Roeffaers, M.B. FO-SPR model for full-spectrum signal analysis of back-reflecting FO-SPR sensors to monitor MOF deposition. ACS Sens. 2024, 9, 2110–2121. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, X.; Gu, C.; Xu, F.; Zhang, W.; Huang, X.; Qian, J. Fabrication of a versatile aptasensing chip for aflatoxin B1 in photothermal and electrochemical dual modes. Food Anal. Methods 2022, 15, 3390–3399. [Google Scholar] [CrossRef]
- Xu, Y.; Hassan, M.M.; Ali, S.; Li, H.; Ouyang, Q.; Chen, Q. Self-cleaning-mediated SERS chip coupled chemometric algorithms for detection and photocatalytic degradation of pesticides in food. J. Agric. Food Chem. 2021, 69, 1667–1674. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Z.; Mao, Y.; Teng, W.; Li, M. DNA-bridged double gold nanoparticles-based immunochromatography for dual-mode detection of ochratoxin A. J. Food Sci. 2023, 88, 4316–4326. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Y.; Ming, L.; Chen, L.; Xue, M.; Zhang, J.; Zhang, H. Dual-mode strategy for the determination of vanillin in milk–based products based on molecular-imprinted nanozymes. Food Chem. 2025, 469, 142615. [Google Scholar] [CrossRef]
- Johnson, N.A.N.; Adade, S.Y.S.S.; Ekumah, J.N.; Kwadzokpui, B.A.; Yi, X.; Chen, Q. Advances in mechanisms, designs, and applications of colorimetric sensor arrays for food quality control and authenticity verification. Trends Food Sci. Technol. 2025, 160, 104999. [Google Scholar] [CrossRef]
Aptasensor | Hazards in Food | Nanomaterials | Linear Range | LOD | Reference |
---|---|---|---|---|---|
EC | S. aureus | MWCNTs-Au | 1.04 × 101–1.04 × 108 CFU/mL | 3 CFU/mL | [70] |
E. coli | GOx-AuNPs-COF-H2 | 102–108 CFU/mL | 10 CFU/mL | [71] | |
AFB1; OTA | DNA-TDN/HPG | 0.05–360 ng/mL; 0.05–420 ng/mL | 3.5 pg/mL; 2.4 pg/mL | [72] | |
OTA | DNA/Au NCs-PCZIF/hemin | 1 pg/mL–500 ng/mL | 0.347 pg/mL | [73] | |
ML | B-CuO/g-C3N4 | 0.18–5.66 pg/mL | 1.2 pg/mL | [74] | |
AD | DNA-HPG/AuE | 0.5–300 nmol/L | 0.34 nmol/L | [75] | |
ECL | S. aureus | Arg/ATT-AuNCs | 1.0 × 101–1.0 × 109 CFU/mL | 1.16 CFU/mL | [76] |
E. coli | tetraphenylethene (TPE) derivatives | 10–107 CFU/mL | 1.99 CFU/mL | [77] | |
DON | Ti3C2 dots/Ti3C2 nanosheet | 0.001–20 ng/mL | 0.3 pg/mL | [78] | |
OTA | Au-P/Ag NCs | 10−5–10−10 mg/mL | 1.36 × 10−11 mg/mL | [79] | |
AD | Fe-MIL-101@ABEI@AuNPs | 1 × 10−3 × 102 nmol/L | 0.3 pmol/L | [80] | |
hydrogen peroxide | ssDNA/g-C3N4 NS | 0.1 fmol/L–10 mmol/L | 33 amol/L | [81] | |
PEC | VP | Bi2S3/GO@Cu2O | 1.0–1.0 × 106 CFU/mL | 1.0 CFU/mL | [82] |
E. coli | graphene oxide-MoS2 | (1.0–25.0) × 107 CFU/mL | 2.0 CFU/mL | [83] | |
Patulin (PAT) | CdTe QDs/Au NRs | 50 fg/mL–500 ng/mL | 30 fg/mL | [84] | |
ZEN | ZnO-NGQDs | 1.0 × 10−13–1.0 × 10−7 g/mL | 3.3 × 10−14 g/mL | [85] | |
AD | BiOI/APWE | 1 fmol/L–20 nmol/L | 0.73 fmol/L | [86] | |
ML | CPBI@UCNP/NiMn-LDH/CdS | 0.01 ng/L–5 μg/L | 4.8 fg/L | [87] | |
OECT/OPECT | AFB1 | Chitosan-graphene | 0.01–100 fg/mL | 0.01 fg/mL | [88] |
T-2 toxin | ZnO | 100 pg/L–1 mg/L | 28.8 pg/L | [89] | |
Okadaic acid | MXene@SnO/Ce-MOF | 0.1 nmol/L–100 µmol/L | 42.9 pmol/L | [90] | |
Okadaic acid | Cd0.5Zn0.5S/ZnIn2S4 QDs | 100 pmol/L–0.5 μmol/L | 12.5 pmol/L | [91] | |
Tobramycin | ZnIn2S4/TiO2 | 0.1 pmol/L–100 nmol/L | 0.18 pmol/L | [92] | |
ofloxacin | CdZnS/S-MXene | 1.0 × 10–13–1.0 × 10–6 mol/L | 3.3 × 10–15 mol/L | [93] |
Aptasensor | Hazards in Food | Nanomaterials | Linear Range | LOD | Reference |
---|---|---|---|---|---|
QDs | E. coli; S. aureus; S. typhimurium; L. monocytogenes; P. aeruginosa | CsPbBr3/PQDs | 1.0 × 103–1.0 × 107 CFU/mL | 94–136 CFU/mL | [121] |
Salmonella | MBs/QDMs | 3–3 × 106 CFU/mL | 2 CFU/mL | [122] | |
ZEN | NGQDs-apt/CdTe QDs@SiO2 | 0.32–320 pg/mL | 0.32 pg/mL | [123] | |
ZEN | CdTe QDs/WS2 NTs | 0.1–100 pg/mL | 0.1 pg/mL | [124] | |
ML | CQDs/GNPs | 1 × 10−9–1 × 10−2 mol/L | 0.13 × 10−9 mol/L | [125] | |
Okadaic acid (OA); Saxitoxin (STX) | S, P-GQDs/OVA-AuNPs | 2.5–128.0 ng/mL; 2.5–29.5 ng/mL | 1.8 ng/mL; 0.6 ng/mL | [126] | |
Organic fluorophore probes | S. typhi; S. aureus | FAM | 100–108 CFU/mL | 1 CFU/mL | [127] |
S. aureus | FAM/Eu-MOF | 7.9–7.9 × 108 CFU/mL | 3 CFU/mL | [128] | |
ZEN; FB1; OTA; AFB1 | FAM; HEX; ROX; Cy5 | 0.005–11.11 μg/L; 0.41–100 μg/L; 0.005–3.70 μg/L; 0.015–33.33 μg/L | 4 pg/mL; 0.483 ng/mL; 6 pg/mL; 13 pg/mL | [129] | |
FB1 | AIE | 1 pg/mL–100 ng/mL | 0.89 pg/mL | [130] | |
Atrazine | TFT/G4 | 0.01–50 μg/L | 0.25 pg/mL | [131] | |
Omethoate | Cy3/GO | 0–750 nmol/L | 0.16 nmol/L | [132] | |
MNCs | Foodborne pathogens | DMSN@AuNCs@SiO2 | 10–106 CFU/mL | 3 CFU/mL | [133] |
Cronobacter sakazakii | AuNCs/G4 | 1.10 × 10–1.10 × 10 CFU/mL | 1.10 × 10 CFU/mL | [134] | |
ZEN | AuAg NCs | 0.02- 0.625 ng/mL | 0.017 ng/mL | [135] | |
OTA; AFB1 | AuNCs | 0.05–200 ng/mL | 6.7 pg/mL; 8.6 pg/mL | [136] | |
Hg2+; Cu2+ | AuAg NCs/ENM | 1–100 μmol/L | 12.36 nmol/L; 25.90 nmol/L | [137] | |
Triazophos | AuNCs/ZIF-8 | 0.1–1000 ng/mL | 0.07 ng/mL | [138] | |
UCNPs, CPs, TRF | E. coli O157/H7 | UCNPs | 105–108 CFU/mL | 105 CFU/mL | [139] |
Salmonella | TRF | 102–106 CFU/mL | 84 CFU/mL | [140] | |
ZEN; OTA | UCNPs | 0.5–100 ng/mL; 0.1–50 ng/mL | 0.44 ng/mL; 0.098 ng/mL | [141] | |
Patulin (PAT) | OA-UCNPs | 0.1–1 ng/mL | 5.3 pg/mL | [142] | |
Hg2+ | EBSUCNPs/PDANPs | 0.5–20 μg/L | 0.28 μg/L | [143] | |
Carbendazim (CBZ) | UCNPs-MnO2 | 0.1–5000 ng/mL | 0.05 ng/mL | [144] |
Aptasensor | Hazards in Food | Nanomaterials | Linear Range | LOD | Reference |
---|---|---|---|---|---|
TMB, ABTS | S. aureus | HRP-UCNPs-cDNA | 56–5.6 × 106 CFU mL | 20 CFU/mL | [167] |
E. coli | G3/Hemin | 1.3 × 103–1.3 × 107 CFU/mL | 1.3 × 103 CFU/mL | [168] | |
AFB1 | HRP@DNA | 0.001–350 ng/mL | 8 pg/mL | [169] | |
AFB1 | CdS/UiO-66 | 5 pg/mL–50 ng/mL | 9.5 pg/mL | [170] | |
Fipronil | ZIF-8 | 0.2–4 μmol/L | 0.036 μmol/L | [171] | |
Tetrodotoxin | Fe3O4@Cu | 0.5–1000 ng/mL | 0.243 ng/mL | [172] | |
MNPs | E. coli O157/H7 | AuNPs | 1.2 × 102 CFU/mL–9.0 × 103 CFU/mL | 147.6 CFU/mL | [173] |
AFB1; OTA | Fe3O4@GO; Fe3O4@AuNPs | 5–250 ng/mL; 0.5–80 ng/mL | - | [174] | |
ZEN | PDDA/AuNPs | 2.5–100 ng/mL | 0.98 ng/mL | [175] | |
Sulfadimethoxine | AuNPs | 0.2–5 ppm | 0.023 ppm | [176] | |
T-2 toxin | AuNPs | 0.1 ng/mL–5000 ng/mL | 57.8 pg/mL | [177] | |
melamine (MEL) | AuNPs | 0.1–100 μmol/L | 42 nmol/L | [178] | |
pH, dye, stimulus-responsive material | E. coli | Metalloporphyrin dye/pH | - | - | [179] |
ZEN | HA-DNA/MOFzyme | 0.001–200 ng/mL | 0.8 pg/mL | [180] | |
Aflatoxin | NO2BDP@MOF; HBDP@PSN; COOCH3-Diol@PSA | - | - | [181] | |
AFB1 | Polystyrene | 0.05–1 μg/mL | 4.56 ng/mL | [182] | |
Trimethylamine | PVDF-anthocyanins | 20–160 μmol/L | 2.52 μmol/L | [183] | |
Estradiol | Isoquinoline alkaloids | 0.5–5 μmol/L | 326 nmol/L | [184] |
Aptasensor | Hazards in Food | Nanomaterials | Linear Range | LOD | Reference |
---|---|---|---|---|---|
SERS | S. aureus | Au@Ag NPs | 28–2.8 × 106 | 0.25 CFU/mL | [206] |
S. aureus | Au@NTP@SiO2 | 36.0–3.6 × 108 CFU/mL | 2.0 CFU/mL | [207] | |
ZEN | MSN-Rh6G-AuNPs | 3–200 ng/mL | 0.0064 ng/mL | [208] | |
PAT | GO@Au | 1–70 ng/mL | 0.46 ng/mL | [209] | |
CBZ | AuNS/Ag/PVDF/CQD | 0.002–10 μmol/L | 0.86 nmol/L | [210] | |
Chlorpyrifos (CPF) | AuNS@4-MBN@Ag | 2.5 × 10–5.0 × 10 pg/mL | 220.35 pg/mL | [211] | |
SPR | CAP | Ag/BiOI/TiO2 | 1 nM–250 nmol/L | 0.27 nmol/L | [212] |
AFB | MXene/AuNPs | 0.01–100 μg/kg | 15 μg/kg | [213] | |
brevetoxin B | Au | 0.05 nM–2000 nmol/L | 0.8 nmol/L | [214] | |
BSA | AuNPs | 1 ng/mL–10 mg/mL | 19.46 ng/mL | [215] | |
17β-estradiol (E2) | IO-SnO2/Au NPs | 15 pM–30 nmol/L | 0.33 pmol/L | [216] | |
Enrofloxacin (ENR) | Au/Bi24O31Br10 | 0.72–36,000 ng/L | 0.30 ng/L | [217] | |
FL/CM dual-mode | L.monocytogenes | Pt NPs | 101–106 CFU/mL | 10 CFU/mL; 38 CFU/mL | [218] |
PEC/EC dual-mode | Salmonella Enteritidis | Bi4NbO8Cl/In2S3 | 1.5 × 102–1.5 × 107 CFU/mL | 12.9 CFU/mL; 12.3 CFU/mL | [219] |
EC/CM dual-mode | AFB1 | Au/Ni-Co LDH NC | 0.2–100 ng/mL; 50–100 ng/mL | 0.071 pg/mL; 18.6 pg/mL | [220] |
FL/SERS dual-mode | OTA | AuNSs/AuNPs | 1–100 ng/mL; 5–250 pg/mL | 0.17 ng/mL; 1.03 pg/mL | [221] |
FL/CM dual-mode | Ofloxacin (OFL) | MSN/TMB | 0.1–1000 μg/kg; 0.3–1000 μg/kg | 0.048 μg/kg; 0.165 μg/kg | [222] |
FL/CM dual-mode | CPF | UCNPs-Fe/Zr-MOF | 0.05–500 ng/mL | 0.028 ng/mL; 0.043 ng/mL | [223] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, A.; Zhang, Y.; Jiang, M.; Chen, L.; Jiang, X.; Zou, X.; Sun, Z. Aptasensors for Rapid Detection of Hazards in Food: Latest Developments and Trends. Biosensors 2025, 15, 629. https://doi.org/10.3390/bios15090629
Guo A, Zhang Y, Jiang M, Chen L, Jiang X, Zou X, Sun Z. Aptasensors for Rapid Detection of Hazards in Food: Latest Developments and Trends. Biosensors. 2025; 15(9):629. https://doi.org/10.3390/bios15090629
Chicago/Turabian StyleGuo, Anjie, Yuan Zhang, Meifeng Jiang, Li Chen, Xinrong Jiang, Xiaobo Zou, and Zongbao Sun. 2025. "Aptasensors for Rapid Detection of Hazards in Food: Latest Developments and Trends" Biosensors 15, no. 9: 629. https://doi.org/10.3390/bios15090629
APA StyleGuo, A., Zhang, Y., Jiang, M., Chen, L., Jiang, X., Zou, X., & Sun, Z. (2025). Aptasensors for Rapid Detection of Hazards in Food: Latest Developments and Trends. Biosensors, 15(9), 629. https://doi.org/10.3390/bios15090629