Advanced Electrochemical Sensors for Rapid and Sensitive Monitoring of Tryptophan and Tryptamine in Clinical Diagnostics
Abstract
1. Introduction
2. Trp and Tryp Biomarkers
3. Current Methods of Trp and Tryp Detection
4. Electrochemical Sensors for Trp and Tryp
4.1. Trp-Sensing Electrodes Modified with Metal Nanoparticles
4.2. Trp-Sensing Electrodes Modified with Carbon Derivatives
4.3. Trp-Sensing Electrodes Modified with Carbon-Metal Hybrids
4.4. Trp-Sensing Electrodes Modified with Polymers
4.5. Trp-Sensing Electrodes Modified with Other Materials
4.6. Tryp-Sensing Electrodes Modified Nanomaterials
5. Trp, Tryp, and Their Roles in Oral Pathophysiology
5.1. Oral Pathophysiology
5.2. Electrochemical Sensing Systems in Oral Hygiene and Disease Monitoring
6. Challenges and Perspectives
6.1. Biochemical and Electrochemical Challenges of Trp/Tryp-Sensing
6.2. Sensing in Complex Biofluids: The Case of Saliva
6.3. Biomarker Validation and Clinical Relevance
6.4. Sensor and Platform Engineering Barriers
6.5. Simultaneous Multi-Analyte Detection
- Electrode Architecture: Advanced electrode designs, such as multiplexed microelectrodes, nanostructured surfaces, and spatially resolved electrode arrays, enable the independent and parallel detection of multiple analytes. Incorporating recognition elements such as MIP layers or enzyme-specific coatings further enhances selectivity and reduces cross-talk between signals [24,38].
- Computational Approaches: Machine learning-based signal separation has emerged as a powerful tool to handle complex electrochemical datasets. Algorithms such as principal component analysis, support vector machines, and deep learning models can classify and quantify analytes from overlapping voltammetric signals with high accuracy. These tools enable discrimination between structurally related compounds and allow for robust analysis in complex biofluids.
6.6. AI and Smart Biosensing
- High-Quality Dataset Development: Building open-access, annotated databases of electrochemical sensor responses across diverse populations, biological matrices, and disease states should be prioritized. Such databases will underpin robust and generalizable predictive modeling [134].
- Standardization of Protocols: Harmonized standards for sample preparation, sensor calibration, and data logging will improve reproducibility and enable interoperability across biosensor platforms.
- Feature Engineering and Multi-Omics Integration: Beyond raw voltammetric or amperometric data, AI models can incorporate engineered features (e.g., peak ratios, charge transfer kinetics, response times) along with contextual metadata (age, sex, circadian cycles). Integration with multi-omics datasets (genomics, proteomics, metabolomics) will allow biosensors to capture a more holistic biomarker signature and improve disease prediction accuracy [136].
- Edge Computing and Real-Time Decision Support: Embedding lightweight AI algorithms into portable or wearable biosensors enables on-device signal processing with minimal latency and enhanced data privacy. Such approaches can enable the real-time monitoring of Trp/Tryp fluctuations, critical for continuous health tracking.
- Adaptive Self-Calibration: AI can dynamically adjust for baseline shifts, electrode degradation, and environmental variations, extending sensor lifespan and improving reliability in long-term applications.
- Explainable and Regulatory-Compliant AI: For clinical adoption, models must not only be accurate, but also interpretable. Explainable AI ensures that decision pathways are transparent, facilitating clinician trust and regulatory approval while minimizing risks of false positives or negatives.
- Secure Data Handling: Encryption and adherence to privacy standards are essential for safeguarding sensitive health data, maintaining user trust, and supporting integration into personalized healthcare ecosystems.
6.7. Toward POC and Home-Based Monitoring
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Ascorbic acid |
ABPE | Acetylene black paste electrode |
AD | Alzheimer’s disease |
AgM | Silver molybdate |
AI | Artificial intelligence |
Apt | Aptamer |
AuE | Gold electrode |
AuNPs | Gold nanoparticles |
AuSPE | Gold screen-printed electrode |
Bi2S3 | Bismuth sulfide |
CB | Carbon black |
CC-PSA | Constant-current potentiometric stripping analysis |
CHS | Copper hexahydroxystannate |
CMOS | Complementary metal oxide semiconductor |
CNF | Carbon nanofiber |
CPE | Carbon paste electrode |
CQDs | Carbon quantum dots |
CS | Chitosan |
CV | Cyclic voltammetry |
DA | Dopamine |
DALYs | Disability-adjusted life years |
DAOx | Diamine oxidase |
DGNs | Dendritic gold nanostructures |
DPV | Differential pulse voltammetry |
EGPU | Modified graphite-polyurethane composite electrode |
EIS | Electrochemical impedance spectroscopy |
ELISA | Enzyme-linked immunosorbent assays |
FC | Ferricyanide |
Fc-MWCNTs | Ferrocene-modified multiwalled carbon nanotubes |
Fe3O4@SiO2/DABCO | Magnetic double-charged diazoniabicyclo [2.2.2] octane dichloride silica hybrid |
f-MWCNTs | Functionalized MWCNTs |
FSN | Amine-functionalized silica nanoparticle |
GCE | Glassy carbon electrode |
GCF | Gingival crevicular fluid |
GO | Graphene oxide |
GPE | Graphite paste electrode |
GQDs | Graphene quantum dots |
Gr | Graphene |
GrE | Graphite electrode |
GS | Graphite sheets |
HA-MWCNTs | Hyaluronic acid-multi-walled carbon nanotubes |
HOMINGS | Human Oral Microbe Identification using Next Generation Sequencing |
HPLC | High-performance liquid chromatography |
IDO | Indoleamine 2,3-dioxygenase |
IL | Ionic liquid |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
ILCs | Ionic liquid crystals |
ITO | Indium tin oxide |
Kyn | Kynurenine |
KynA | Kynurenic acid |
L-Lys-Ni | L-Lysine-functionalized nickel |
LOC | Lab-on-chip |
LOD | Limit of detection |
LR | Linear range |
LSV | Linear sweep voltammetry |
MAOx | Monoamine oxidase |
MIPs | Molecularly imprinted polymers |
MnCo2O4-rGOs | Manganese cobaltite entrapped rGOs |
MO | Methyl orange |
MOF | Metal-organic framework |
MWCNTs | Multi-walled carbon nanotubes |
NaBH4 | Sodium borohydride |
NESA | Nicking endonuclease signal amplification |
N-Gr | Nitrogen-doped graphene |
N-HCS | Nitrogen-doped carbon hollow spheres |
Ni NPS/N-C | Nickel nanoparticles/nitrogen-carbon nanohybrid |
NiMn-LDH@PLL | NiMn-layered double hydroxide@poly-l-lysine |
NiPC-CPE | Nickel phthalocyanine modified carbon paste electrode |
NIPs | Non-imprinted polymers |
NPs | Nanoparticles |
OD | 1,8-ocatane diamine |
OSCC | Oral squamous cell carcinoma |
PA | Picolinic acid |
p-AMT | Poly(5-amino-2-mercapto-1,3,4-thiadiazole) |
P-Arg | Poly(L-arginine) |
PCL | Polycaprolactone |
PDN | Polydopamine nanospheres |
PEDOT | Poly(3,4-ethylenedioxythiophene) |
PEDOT:PSS | Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) |
PGE | Pencil graphite electrode |
PMU | Poly-murexide |
POC | Point-of-care |
POM | Polyoxometalate |
PProDOT | Poly(3,4-proplenedioxy thiophene) |
PPy-SG | Polypyrrole-sulfonated graphene |
Pt | Platinum |
PT | Polythiophene |
PTB | Poly(toluidine blue) |
PTC | Papillary thyroid carcinoma |
PVF | Polyvinylferrocene |
QA | Quinolinic acid |
rAu-PtNPs | Rod gold-platinum nanoparticles |
Rct | Charge transfer resistance |
rGO | Reduced graphene oxide |
SDLSV | Second derivative linear sweep voltammetry |
SERS | Surface-enhanced Raman scattering |
SGr | Sulfur-doped graphene |
SPCE | Screen printed carbon electrode |
SR | Serotonin |
SWV | Square wave voltammetry |
TiC | Titanium carbide |
TiO2 | Titanium dioxide |
TNF-α | Tumor necrosis factor alpha |
TPE | Thermoplastic electrode |
Trp | Tryptophan |
Tryp | Tryptamine |
Tyr | Tyrosine |
UA | Uric acid |
UPLC-HRMS | Ultra-high-performance liquid chromatography-high-resolution mass spectrometry |
References
- Wang, W.; Liu, L.; Tian, Z.; Han, T.; Sun, C.; Li, Y. Dietary tryptophan and the risk of metabolic syndrome: Total effect and mediation effect of sleep duration. Nat. Sci. Sleep 2021, 13, 2141–2151. [Google Scholar] [CrossRef]
- Höglund, E.; Øverli, Ø.; Winberg, S. Tryptophan metabolic pathways and brain serotonergic activity: A comparative review. Front. Endocrinol. 2019, 10, 158. [Google Scholar] [CrossRef]
- Sarawi, W.S. Neurochemical insights into the role of tryptophan metabolites and kynurenine pathway in insomnia and its psychological and neurological comorbidities. Mol. Neurobiol. 2025, 1–28. [Google Scholar] [CrossRef]
- Lv, J.; Liu, F. The role of serotonin beyond the central nervous system during embryogenesis. Front. Cell. Neurosci. 2017, 11, 74. [Google Scholar] [CrossRef]
- Costa, D.J.E.; Martínez, A.M.; Ribeiro, W.F.; Bichinho, K.M.; Di Nezio, M.S.; Pistonesi, M.F.; Araujo, M.C.U. Determination of tryptamine in foods using square wave adsorptive stripping voltammetry. Talanta 2016, 154, 134–140. [Google Scholar] [CrossRef]
- Shen, J.; Li, X.; Zhong, Y.; Zhang, J.; Qin, H.; Chen, F.; Zhao, X. Neuroendocrine characterization into schizophrenia: Norepinephrine and melatonin as promising biomarkers. Front. Endocrinol. 2025, 16, 1551172. [Google Scholar] [CrossRef] [PubMed]
- Arias, D.; Saxena, S.; Verguet, S. Quantifying the global burden of mental disorders and their economic value. EClinicalMedicine 2022, 54, 101675. [Google Scholar] [CrossRef]
- Cseh, E.K.; Veres, G.; Szentirmai, M.; Nánási, N.; Szatmári, I.; Fülöp, F.; Vécsei, L.; Zádori, D. HPLC method for the assessment of tryptophan metabolism utilizing separate internal standard for each detector. Anal. Biochem. 2019, 574, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.-F.; Bao, G.-M.; Xia, Y.-F.; Peng, X.-X.; Peng, J.-F.; He, J.-X.; Lin, S.; Zeng, L.; Fan, Q.; Xiao, W. Recyclable europium functionalized metal-organic fluorescent probe for detection of tryptophan in biological fluids and food products. Anal. Chim. Acta 2021, 1180, 338897. [Google Scholar] [CrossRef] [PubMed]
- Adu-Gyamfi, C.G.; Snyman, T.; Makhathini, L.; Otwombe, K.; Darboe, F.; Penn-Nicholson, A.; Fisher, M.; Savulescu, D.; Hoffmann, C.; Chaisson, R. Diagnostic accuracy of plasma kynurenine/tryptophan ratio, measured by enzyme-linked immunosorbent assay, for pulmonary tuberculosis. Int. J. Infect. Dis. 2020, 99, 441–448. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Rab, S.; Pratap Singh, R.; Suman, R. Sensors for daily life: A review. Sens. Int. 2021, 2, 100121. [Google Scholar]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Mitea, V.; Howlader, M.M.; Selvaganapathy, P.R.; Deen, M.J. Analyzing electrochemical sensing fundamentals for health applications. Adv. Sensor Res. 2024, 3, 2300100. [Google Scholar] [CrossRef]
- Sangili, A.; Vinothkumar, V.; Chen, S.-M.; Veerakumar, P.; Chang, C.-W.; Panneer Muthuselvam, I.; Lin, K.-C. Highly selective voltammetric sensor for l-tryptophan using composite-modified electrode composed of CuSn(OH)6 microsphere decorated on reduced graphene oxide. J. Phys. Chem. C 2020, 124, 25821–25834. [Google Scholar] [CrossRef]
- Taleb, M.; Ivanov, R.; Bereznev, S.; Kazemi, S.H.; Hussainova, I. Alumina/graphene/Cu hybrids as highly selective sensor for simultaneous determination of epinephrine, acetaminophen and tryptophan in human urine. J. Electroanal. Chem. 2018, 823, 184–192. [Google Scholar] [CrossRef]
- Yokuş, Ö.A.; Kardaş, F.; Akyıldırım, O.; Eren, T.; Atar, N.; Yola, M.L. Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: Application to the simultaneous determination of l-tyrosine and l-tryptophan. Sens. Actuators B Chem. 2016, 233, 47–54. [Google Scholar] [CrossRef]
- Krishnan, R.G.; Saraswathyamma, B. Murexide-derived in vitro electrochemical sensor for the simultaneous determination of neurochemicals. Anal. Bioanal. Chem. 2021, 413, 6803–6812. [Google Scholar] [CrossRef]
- Yang, Y.; Lv, J.; Bai, H.; Ren, L.; Yang, J.; Ding, Y.; Liu, C.; Chen, X. Periodontal status and saliva metabolic signature in patients with Alzheimer’s disease. J. Alzheimer’s Dis. 2023, 95, 603–613. [Google Scholar]
- Kurgan, Ş.; Önder, C.; Balcı, N.; Akdoğan, N.; Altıngöz, S.M.; Serdar, M.A.; Günhan, M. Influence of periodontal inflammation on tryptophan-kynurenine metabolism: A cross-sectional study. Clin. Oral Investig. 2022, 26, 5721–5732. [Google Scholar]
- Khan, Z.A.; Hong, P.J.-S.; Lee, C.H.; Hong, Y. Recent advances in electrochemical and optical sensors for detecting tryptophan and melatonin. Int. J. Nanomed. 2021, 16, 6861–6888. [Google Scholar] [CrossRef]
- Negut, C.C.; Stefan-van Staden, R.-I. Review—Recent trends in supramolecular recognition of dopamine, tyrosine, and tryptophan, using electrochemical sensors. J. Electrochem. Soc. 2021, 168, 067517. [Google Scholar] [CrossRef]
- Xu, W.; Cheng, M.; Zhang, S.; Wu, Q.; Liu, Z.; Dhinakaran, M.K.; Liang, F.; Kovaleva, E.G.; Li, H. Recent advances in chiral discrimination on host–guest functionalized interfaces. Chem. Commun. 2021, 57, 7480–7492. [Google Scholar] [CrossRef] [PubMed]
- Maistrenko, V.N.; Sidel’nikov, A.V.; Zil’berg, R.A. Enantioselective voltammetric sensors: New solutions. J. Anal. Chem. 2018, 73, 1–9. [Google Scholar] [CrossRef]
- Dinu, A.; Apetrei, C. A review of sensors and biosensors modified with conducting polymers and molecularly imprinted polymers used in electrochemical detection of amino acids: Phenylalanine, tyrosine, and tryptophan. Int. J. Mol. Sci. 2022, 23, 1218. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-Tryptophan: Basic metabolic functions, behavioral research and therapeutic indications. Int. J. Tryptophan Res. 2009, 2, 45–60. [Google Scholar] [CrossRef]
- Friedman, M. Analysis, nutrition, and health benefits of tryptophan. Int. J. Tryptophan Res. 2018, 11, 1178646918802282. [Google Scholar] [CrossRef]
- Yan, J.; Chen, D.; Ye, Z.; Zhu, X.; Li, X.; Jiao, H.; Duan, M.; Zhang, C.; Cheng, J.; Xu, L. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol. Cancer 2024, 23, 241. [Google Scholar] [CrossRef]
- Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan biochemistry: Structural, nutritional, metabolic, and medical aspects in humans. J. Amino Acids 2016, 2016, 8952520. [Google Scholar] [CrossRef]
- Jenkins, T.A.; Nguyen, J.C.D.; Polglaze, K.E.; Bertrand, P.P. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 2016, 8, 56. [Google Scholar] [CrossRef]
- Tankiewicz, A.; Dziemiańczyk, D.; Buczko, P.; Szarmach, I.; Grabowska, S.; Pawlak, D. Tryptophan and its metabolites in patients with oral squamous cell carcinoma: Preliminary study. Adv. Med. Sci. 2006, 51, 221–224. [Google Scholar]
- Edmonds, E.J.; Bell, R.W.; Beerstecher, E. Salivary tryptophan and its relationship to DMF. J. Dent. Res. 1957, 36, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Kałuzna-Czaplinska, J.; Michalska, M.; Rynkowski, J. Determination of tryptophan in urine of autistic and healthy children by gas chromatography/mass spectrometry. Med. Sci. Monit. 2010, 16, CR488–CR492. [Google Scholar] [PubMed]
- Cowen, P.J.; Parry-Billings, M.; Newsholme, E.A. Decreased plasma tryptophan levels in major depression. J. Affect. Disord. 1989, 16, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Mor, A.; Tankiewicz-Kwedlo, A.; Krupa, A.; Pawlak, D. Role of kynurenine pathway in oxidative stress during neurodegenerative disorders. Cells 2021, 10, 1603. [Google Scholar] [CrossRef]
- Meng, X.; Guo, W.; Qin, X.; Liu, Y.; Zhu, X.; Pei, M.; Wang, L. A molecularly imprinted electrochemical sensor based on gold nanoparticles and multiwalled carbon nanotube–chitosan for the detection of tryptamine. RSC Adv. 2014, 4, 38649. [Google Scholar] [CrossRef]
- van der Goot, A.T.; Nollen, E.A.A. Tryptophan metabolism: Entering the field of aging and age-related pathologies. Trends Mol. Med. 2013, 19, 336–344. [Google Scholar] [CrossRef]
- la Cour, R.; Jørgensen, H.; Schjoerring, J.K. Improvement of tryptophan analysis by liquid chromatography-single quadrupole mass spectrometry through the evaluation of multiple parameters. Front. Chem. 2019, 7, 797. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Geng, W.; Liu, H. Rapid detection of tryptamine by optosensor with molecularly imprinted polymers based on carbon dots-embedded covalent-organic frameworks. Sens. Actuators B Chem. 2019, 285, 546–552. [Google Scholar] [CrossRef]
- Dai, Z.; Sun, S.; Chen, H.; Liu, M.; Zhang, L.; Wu, Z.; Li, J.; Wu, G. Analysis of tryptophan and its metabolites by high-performance liquid chromatography. Methods Mol. 2019, 2030, 131–142. [Google Scholar] [CrossRef]
- Petrova, O.E.; Sauer, K. High-performance liquid chromatography (HPLC)-based detection and quantitation of cellular c-di-GMP. Methods Mol. Biol. 2017, 1657, 33–43. [Google Scholar]
- Urban, P.L. Quantitative mass spectrometry: An overview. Philos. Trans. Math. Phys. Eng. Sci. 2016, 374, 20150382. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhong, W. Recent (2018–2020) development in capillary electrophoresis. Anal. Bioanal. Chem. 2022, 414, 115–130. [Google Scholar] [CrossRef]
- Mousavi, S.-F.; Alimoradi, M.; Shirmardi, A.; Zare-Shahabadi, V. Preparation, characterization and electrochemical application of an Ag/zeolite nanocomposite: Application to sub-micromolar quantitation of tryptophan. J. Porous Mater. 2020, 27, 1505–1514. [Google Scholar] [CrossRef]
- Nie, X.; Zhang, R.; Tang, Z.; Wang, H.; Deng, P.; Tang, Y. Sensitive and selective determination of tryptophan using a glassy carbon electrode modified with nano-CeO2/reduced graphene oxide composite. Microchem. J. 2020, 159, 105367. [Google Scholar] [CrossRef]
- Khoshnevisan, K.; Torabi, F.; Baharifar, H.; Sajjadi-Jazi, S.M.; Afjeh, M.S.; Faridbod, F.; Larijani, B.; Khorramizadeh, M.R. Determination of the biomarker L-tryptophan level in diabetic and normal human serum based on an electrochemical sensing method using reduced graphene oxide/gold nanoparticles/18-crown-6. Anal. Bioanal. Chem. 2020, 412, 3615–3627. [Google Scholar] [CrossRef]
- Li, J.; Jiang, J.; Xu, Z.; Liu, M.; Tang, S.; Yang, C.; Qian, D. Facile synthesis of Pd−Cu@Cu2O/N-RGO hybrid and its application for electrochemical detection of tryptophan. Electrochim. Acta 2018, 260, 526–535. [Google Scholar] [CrossRef]
- Vilian, A.T.E.; Hwang, S.-K.; Ranjith, K.S.; Lee, M.J.; Park, B.; Huh, Y.S.; Han, Y.-K. Simples fabrication of hierarchical NiCoSe4 nanorods grown on carbon nanofibers as excellent electrocatalysts for tryptophan oxidation. Carbon 2021, 178, 103–112. [Google Scholar] [CrossRef]
- He, Q.; Tian, Y.; Wu, Y.; Liu, J.; Li, G.; Deng, P.; Chen, D. Electrochemical sensor for rapid and sensitive detection of tryptophan by a Cu2O nanoparticles-coated reduced graphene oxide nanocomposite. Biomolecules 2019, 9, 176. [Google Scholar] [CrossRef]
- Majidi, M.R.; Karami, P.; Johari-Ahar, M.; Omidi, Y. Direct detection of tryptophan for rapid diagnosis of cancer cell metastasis competence by an ultra-sensitive and highly selective electrochemical biosensor. Anal. Methods 2016, 8, 7910–7919. [Google Scholar] [CrossRef]
- Sundaresan, R.; Mariyappan, V.; Chen, S.-M.; Keerthi, M.; Ramachandran, R. Electrochemical sensor for detection of tryptophan in the milk sample based on MnWO4 nanoplates encapsulated RGO nanocomposite. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126889. [Google Scholar] [CrossRef]
- Rezaei, F.; Ashraf, N.; Zohuri, G.H. A smart electrochemical sensor based upon hydrophilic core–shell molecularly imprinted polymer for determination of L-tryptophan. Microchem. J. 2023, 185, 108260. [Google Scholar] [CrossRef]
- Hashkavayi, A.B.; Raoof, J.B.; Ojani, R. Construction of a highly sensitive signal-on aptasensor based on gold nanoparticles/functionalized silica nanoparticles for selective detection of tryptophan. Anal. Bioanal. Chem. 2017, 409, 6429–6438. [Google Scholar] [CrossRef] [PubMed]
- Hashkavayi, A.B.; Raoof, J.B.; Park, K.S. Sensitive electrochemical detection of tryptophan using a hemin/G-quadruplex aptasensor. Chemosensors 2020, 8, 100. [Google Scholar] [CrossRef]
- Arroquia, A.; Acosta, I.; Armada, M.P.G. Self-assembled gold decorated polydopamine nanospheres as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. Mater. Sci. Eng. C. 2020, 109, 110602. [Google Scholar] [CrossRef]
- Majidi, M.R.; Omidi, Y.; Karami, P.; Johari-Ahar, M. Reusable potentiometric screen-printed sensor and label-free aptasensor with pseudo-reference electrode for determination of tryptophan in the presence of tyrosine. Talanta 2016, 150, 425–433. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, H.; Bo, X.; Guo, L. Electrochemical sensor for amino acids based on gold nanoparticles/macroporous carbon composites modified glassy carbon electrode. J. Electroanal. Chem. 2012, 687, 117–122. [Google Scholar] [CrossRef]
- Mattioli, I.A.; Baccarin, M.; Cervini, P.; Cavalheiro, É.T.G. Electrochemical investigation of a graphite-polyurethane composite electrode modified with electrodeposited gold nanoparticles in the voltammetric determination of tryptophan. J. Electroanal. Chem. 2019, 835, 212–219. [Google Scholar] [CrossRef]
- Khan, M.Z.H.; Liu, X.; Tang, Y.; Zhu, J.; Hu, W.; Liu, X. A glassy carbon electrode modified with a composite consisting of gold nanoparticle, reduced graphene oxide and poly(L-arginine) for simultaneous voltammetric determination of dopamine, serotonin and L-tryptophan. Mikrochim. Acta 2018, 185, 439. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Yang, L. A superior sensor for the electrochemical detection of tryptophan in food samples using Ag-doped TiO2 nanoparticles modified glassy carbon electrode. Int. J. Electrochem. Sci. 2021, 16, 210534. [Google Scholar] [CrossRef]
- Anithaa, A.C.; Mayil Vealan, S.B.; Sekar, C. Enhancement of electrocatalytic activity in tungsten trioxide nanoparticles by UV-light irradiation: Application for simultaneous detection of tyrosine and tryptophan. Sens. Actuators A Phys. 2021, 331, 113011. [Google Scholar] [CrossRef]
- Dheepthi Gunavathana, S.; Girija, S.; Wilson, J.; Cyrac Peter, A. ZnO nanorods bonded polythiophene nanocomposite: An enhanced electrochemical voltammetric biosensing of L-tryptophan. Bull. Mater. Sci. 2022, 45, 57. [Google Scholar] [CrossRef]
- Parisa, B.; Shishehbore, M.R.; Beitollahi, H.; Sheibani, A. The application of ferrocene derivative and CeO–ZnO nanocomposite-modified carbon paste electrode for simultaneous detection of penicillamine and tryptophan. Russ. J. Electrochem. 2022, 58, 235–247. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.-E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhi, L. Functionalized graphene materials: Definition, classification, and preparation strategies. Acta Phys. Chim. Sin. 2022, 38, 2101004. [Google Scholar] [CrossRef]
- Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced graphene oxide today. J. Mater. Chem. C 2020, 8, 1198–1224. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, X.; Wang, Q.; Zhe, T.; Bai, Y.; Bu, T.; Zhang, M.; Wang, L. Electrochemical behavior of reduced graphene oxide/cyclodextrins sensors for ultrasensitive detection of imidacloprid in brown rice. Food Chem. 2020, 333, 127495. [Google Scholar] [CrossRef]
- Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Xu, Z.; Liu, M.; Wang, D. Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing oftryptophan. Biosens. Bioelectron. 2013, 42, 198–206. [Google Scholar] [CrossRef]
- Kubendhiran, S.; Karikalan, N.; Chen, S.-M.; Sundaresan, P.; Karthik, R. Synergistic activity of single crystalline bismuth sulfide and sulfur doped graphene towards the electrocatalysis of tryptophan. J. Catal. 2018, 367, 252–263. [Google Scholar] [CrossRef]
- Yola, M.L.; Atar, N. Functionalized graphene quantum dots with bi-metallic nanoparticles composite: Sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J. Electrochem. Soc. 2016, 163, B718–B725. [Google Scholar] [CrossRef]
- Joseph, T.; Thomas, J.; Thomas, T.; Thomas, N. Selective nanomolar electrochemical detection of serotonin, dopamine andtryptophan using TiO2/RGO/CPE—Influence of reducing agents. New J. Chem. 2021, 45, 22166–22180. [Google Scholar] [CrossRef]
- Rebekah, A.; Kokulnathan, T.; Wang, T.-J.; Viswanathan, C.; Ponpandian, N. MnCo2O4-rGO hybrid magnetic nanocomposite modified glassy carbon electrode for sensitive detection of L-tryptophan. J. Electrochem. Soc. 2019, 166, B845–B852. [Google Scholar] [CrossRef]
- Tadayon, F.; Sepehri, Z. A new electrochemical sensor based on a nitrogen-doped graphene/CuCo2O4 nanocomposite for simultaneous determination of dopamine, melatonin and tryptophan. RSC Adv. 2015, 5, 65560–65568. [Google Scholar] [CrossRef]
- Fazl, F.; Gholivand, M.B. High performance electrochemical method for simultaneous determination dopamine, serotonin, and tryptophan by ZrO2–CuO co-doped CeO2 modified carbon paste electrode. Talanta 2022, 239, 122982. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Chen, T.-W.; Chen, S.-M.; Kumar, J.V.; Sakthinathan, S.; Nagarajan, E.R. Hydrothermal synthesis of silver molybdate/reduced graphene oxide hybrid composite: An efficient electrode material for the electrochemical detection of tryptophan in food and biological samples. Compos. B Eng. 2019, 169, 249–257. [Google Scholar] [CrossRef]
- Faridan, A.; Bahmaei, M.; Mehrdad Sharif, A. Simultaneous determination of trace amounts ascorbic acid, melatonin and tryptophan using modified glassy carbon electrode based on Cuo-CeO2-rGO-MWCNTS nanocomposites. Anal. Bioanal. Chem. 2022, 14, 201–215. [Google Scholar]
- Zhang, S.; Ling, P.; Chen, Y.; Liu, J.; Yang, C. 2D/2D porous Co3O4/rGO nanosheets act as an electrochemical sensor for voltammetric tryptophan detection. Diam. Relat. Mater. 2023, 135, 109811. [Google Scholar] [CrossRef]
- Prasad, R.; Ganesh, V.; Bhat, B.R. Nickel-oxide multiwall carbon-nanotube/reduced graphene oxide a ternary composite for enzyme-free glucose sensing. RSC Adv. 2016, 6, 62491–62500. [Google Scholar] [CrossRef]
- Naganathan, D.; Thangamani, P.; Selvam, T.; Narayanasamy, T. Ce doped ZnO/f-MWCNT moss ball like nanocomposite: A strategy for high responsive current detection of L-tryptophan. Mikrochim. Acta 2018, 185, 96. [Google Scholar] [CrossRef]
- Cincotto, F.H.; Carvalho, D.A.S.; Canevari, T.C.; Toma, H.E.; Fatibello-Filho, O.; Moraes, F.C. A nano-magnetic electrochemical sensor for the determination of mood disorder related substances. RSC Adv. 2018, 8, 14040–14047. [Google Scholar] [CrossRef]
- Deng, P.; Nie, X.; Wu, Y.; Tian, Y.; Li, J.; He, Q. A cost-saving preparation of nickel nanoparticles/nitrogen-carbon nanohybrid as effective advanced electrode materials for highly sensitive tryptophan sensor. Microchem. J. 2021, 160, 105744. [Google Scholar] [CrossRef]
- D’Souza, O.J.; Mascarenhas, R.J.; Thomas, T.; Namboothiri, I.N.N.; Rajamathi, M.; Martis, P.; Dalhalle, J. Electrochemical determination of L-tryptophan based on a multiwall carbon nanotube/Mg–Al layered double hydroxide modified carbon paste electrode as a sensor. J. Electroanal. Chem. 2013, 704, 220–226. [Google Scholar] [CrossRef]
- Zhang, C.; Du, X. Electrochemical sensors based on carbon nanomaterial used in diagnosing metabolic disease. Front. Chem. 2020, 8, 651. [Google Scholar] [CrossRef] [PubMed]
- Mehmandoust, M.; Erk, N.; Alizadeh, M.; Salmanpour, S. Voltammetric carbon nanotubes based sensor for determination of tryptophan in the milk sample. J. Food Meas. 2021, 15, 5288–5295. [Google Scholar] [CrossRef]
- Li, Y.-J.; Yang, L.-L.; Ni, L.; Xiong, J.-M.; He, J.-Y.; Zhou, L.-D.; Luo, L.; Zhang, Q.-H.; Yuan, C.-S. Constructing electrochemical sensor using molecular-imprinted polysaccharide for rapid identification and determination of l-tryptophan in diet. Food Chem. 2023, 425, 136486. [Google Scholar] [CrossRef] [PubMed]
- Terán-Alcocer, Á.; Bravo-Plascencia, F.; Cevallos-Morillo, C.; Palma-Cando, A. Electrochemical sensors based on conducting polymers for the aqueous detection of biologically relevant molecules. Nanomaterials 2021, 11, 252. [Google Scholar] [CrossRef]
- Rajalakshmi, K.; Abraham John, S. Sensitive and selective determination of l-tryptophan at physiological pH using functionalized multiwalled carbon nanotubes–nanostructured conducting polymer composite modified electrode. J. Electroanal. Chem. 2014, 734, 31–37. [Google Scholar] [CrossRef]
- Gooding, J.J. Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim. Acta 2005, 50, 3049–3060. [Google Scholar] [CrossRef]
- Shamsipur, M.; Taherpour, A.; Sharghi, H.; Pashabadi, A. Transduction of interaction between trace tryptophan and surface-confined chromium salen using impedance spectroscopy. A sensing device that works based on highly selective inhibition of mediator’s Faradaic process. Anal. Chim. Acta 2018, 1030, 70–76. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, P.; Tian, Y.; Ding, Z.; Li, G.; Liu, J.; Zuberi, Z.; He, Q. Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode. Bioelectrochemistry 2020, 131, 107393. [Google Scholar] [CrossRef]
- Bagheri Hashkavayi, A.; Raoof, J.B. Ultrasensitive and reusable electrochemical aptasensor for detection of tryptophan using of [Fe(bpy)3](p-CH3C6H4SO2)2 as an electroactive indicator. J. Pharm. Biomed. 2019, 163, 180–187. [Google Scholar] [CrossRef]
- Li, S.; Noroozifar, M.; Kerman, K. Nanocomposite of ferricyanide-doped chitosan with multi-walled carbon nanotubes for simultaneous senary detection of redox-active biomolecules. J. Electroanal. Chem. 2019, 849, 113376. [Google Scholar] [CrossRef]
- Zhang, R.; Jamal, R.; Ge, Y.; Zhang, W.; Yu, Z.; Yan, Y.; Liu, Y.; Abdiryim, T. Functionalized PProDOT@nitrogen-doped carbon hollow spheres composites for electrochemical sensing of tryptophan. Carbon 2020, 161, 842–855. [Google Scholar] [CrossRef]
- Tian, Y.; Deng, P.; Wu, Y.; Ding, Z.; Li, G.; Liu, J.; He, Q. A simple and efficient molecularly imprinted electrochemical sensor for the selective determination of tryptophan. Biomolecules 2019, 9, 294. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Liu, J.; Feng, J.; Wu, Y.; Tian, Y.; Li, G.; Chen, D. Sensitive voltammetric sensor for tryptophan detection by using polyvinylpyrrolidone functionalized graphene/GCE. Nanomaterials 2020, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Yang, J.; Zhang, Y.; Zeng, T.; Wan, Q.; Yang, N. Interfacial superassembly of flower-like NiMn-LDH@ poly-l-lysine composites for selective electrochemical sensing of tryptophan. Anal. Chim. Acta 2023, 1237, 340608. [Google Scholar] [CrossRef]
- Duan, S.; Wang, W.; Yu, C.; Liu, M.; Yu, L. Development of electrochemical sensor for detection of L-tryptophan based on exfoliated graphene/PEDOT:PSS. Nano 2019, 14, 1950058. [Google Scholar] [CrossRef]
- Mighani, H. Schiff Base polymers: Synthesis and characterization. J. Polym. Res. 2020, 27, 168. [Google Scholar] [CrossRef]
- Atta, N.F.; Galal, A.; Ahmed, Y.M. An innovative design of an efficient layered electrochemical sensor for determination of tyrosine and tryptophan in the presence of interfering compounds in biological fluids. J. Electrochem. Soc. 2020, 167, 027505. [Google Scholar] [CrossRef]
- Zeinali, H.; Bagheri, H.; Monsef-Khoshhesab, Z.; Khoshsafar, H.; Hajian, A. Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO2-Co3O4@rGO nanocomposite. Mater. Sci. Eng. C. 2017, 71, 386–394. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Q.; Pan, D.; Lin, M.; Kang, Q. Electrochemical determination of tryptophan at room-temperature ionic liquid-titanium carbide nanoparticle gel modified electrode. Ionics 2014, 21, 1711–1718. [Google Scholar] [CrossRef]
- Rezaee, E.; Honarasa, F. Determination of tryptophan by using of activated multi-walled carbon nanotube ionic liquid electrode. Russ. J. Electrochem. 2018, 54, 1073–1080. [Google Scholar] [CrossRef]
- Xue, C.; Jamal, R.; Abdiryim, T.; Liu, X.; Liu, F.; Xu, F.; Cheng, Q.; Tang, X.; Fan, N. An ionic liquid-modified PEDOT/Ti3C2TX based molecularly imprinted electrochemical sensor for pico-molar sensitive detection of L-Tryptophan in milk. Food Chem. 2024, 449, 139114. [Google Scholar] [CrossRef]
- Khoshfetrat, S.M.; Mamivand, S.; Darband, G.B. Hollow-like three-dimensional structure of methyl orange-delaminated Ti3C2 MXene nanocomposite for high-performance electrochemical sensing of tryptophan. Mikrochim. Acta 2024, 191, 546. [Google Scholar] [CrossRef]
- Kholafazadehastamal, G.; Khan, M.; Soylak, M.; Erk, N. Maximizing detection sensitivity of levofloxacin and tryptophan in dairy products: A carbon-based electrochemical sensor incorporating Ti3AlC2 MAX phase and activated nanodiamonds. Carbon Lett. 2024, 34, 929–940. [Google Scholar] [CrossRef]
- Khoshfetrat, S.M.; Motahari, M.; Mirsian, S. 3D porous structure of ionic liquid-delaminated Ti3C2 MXene nanosheets for enhanced electrochemical sensing of tryptophan in real samples. Sci. Rep. 2025, 15, 6804. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, J.; Liu, W.; Dong, J.; Chen, Y.; Zhu, L.; Deng, R.; Lu, X. L-Lysine-functionalized nickel–ainc bis (dithiolene) metal–organic framework for electrochemical chiral recognition of tryptophan enantiomers. Chem. Mat. 2024, 36, 3215–3222. [Google Scholar] [CrossRef]
- An, R.; Hu, Q.-Y.; Song, L.-Y.; Zhang, X.; Li, R.-X.; Gao, E.-Q.; Yue, Q. Isostructural chiral metal–organic frameworks with metal-regulated performances for electrochemical enantiomeric recognition of tyrosine and tryptophan. Inorg. Chem. Front. 2024, 11, 2402–2412. [Google Scholar] [CrossRef]
- Xing, X.; Liu, S.; Yu, J.; Lian, W.; Huang, J. Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine. Biosens. Bioelectron. 2012, 31, 277–283. [Google Scholar] [CrossRef]
- Dalkıran, B.; Kaçar, C.; Can, E.; Erden, P.E.; Kılıç, E. Disposable biosensors based on platinum nanoparticle-modified screen-printed carbon electrodes for the determination of biogenic amines. Monatsh. Chem. 2020, 151, 1773–1783. [Google Scholar] [CrossRef]
- Erden, P.E.; Erdoğan, Z.Ö.; Öztürk, F.; Koçoğlu, İ.O.; Kılıç, E. Amperometric biosensors for tyramine determination based on graphene oxide and polyvinylferrocene modified screen-printed electrodes. Electroanalysis 2019, 31, 2368–2378. [Google Scholar]
- Pradela-Filho, L.A.; Araújo, D.A.G.; Takeuchi, R.M.; Santos, A.L.; Henry, C.S. Thermoplastic electrodes as a new electrochemical platform coupled to microfluidic devices for tryptamine determination. Anal. Chim. Acta 2021, 1147, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Prado, N.S.; Silva, L.A.J.; Takeuchi, R.M.; Richter, E.M.; Falcão, E.H.L.; dos Santos, A.L. Disposable electrochemical sensor for tryptamine detection using a graphite sheet electrode modified with poly (toluidine blue). Electrochim. Acta 2023, 466, 143029. [Google Scholar] [CrossRef]
- Lourenço, A.S.; Nunes, T.A.; Silva, A.C.; Ribeiro, W.F.; Araujo, M.C. Simultaneous voltammetric determination of tryptamine and histamine in wines using a carbon paste electrode modified with nickel phthalocyanine. Food Anal. Methods 2022, 15, 3257–3269. [Google Scholar] [CrossRef]
- Sarf, E.A.; Dyachenko, E.I.; Bel’skaya, L.V. Salivary tryptophan as a metabolic marker of HER2-negative molecular subtypes of breast cancer. Metabolites 2024, 14, 247. [Google Scholar] [CrossRef] [PubMed]
- Nazar, N.S.B.M.; Ramanathan, A.; Ghani, W.M.N.; Rokhani, F.B.; Jacob, P.S.; Sabri, N.E.B.; Hassan, M.S.; Kadir, K.; Dharmarajan, L. Salivary metabolomics in oral potentially malignant disorders and oral cancer patients—A systematic review with meta-analysis. Clin. Oral Investig. 2024, 28, 98. [Google Scholar] [CrossRef]
- Srinath, R.; Acharya, A.B.; Thakur, S.L. Salivary and gingival crevicular fluid melatonin in periodontal health and disease. J. Periodontol. 2010, 81, 277–283. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Sodnom-Ish, B.; Choi, S.W.; Jung, H.-I.; Cho, J.; Hwang, I.; Kim, S.M. Salivary biomarkers in oral squamous cell carcinoma. J. Korean Assoc. Oral Maxillofac. 2020, 46, 301–312. [Google Scholar] [CrossRef]
- Ohshima, M.; Sugahara, K.; Kasahara, K.; Katakura, A. Metabolomic analysis of the saliva of Japanese patients with oral squamous cell carcinoma. Oncol. Rep. 2017, 37, 2727–2734. [Google Scholar] [CrossRef]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, X.; Li, Y.; Li, X.; Qian, C.; Tian, Y.; Ling, R.; Duan, Y. Diagnostic approach to thyroid cancer based on amino acid metabolomics in saliva by ultra-performance liquid chromatography with high resolution mass spectrometry. Talanta 2021, 235, 122729. [Google Scholar] [CrossRef]
- Belstrøm, D.; Holmstrup, P.; Bardow, A.; Kokaras, A.; Fiehn, N.-E.; Paster, B.J. Temporal stability of the salivary microbiota in oral health. PLoS ONE 2016, 11, e0147472. [Google Scholar]
- Tan, Y.; Wei, X.; Zhao, M.; Qiu, B.; Guo, L.; Lin, Z.; Yang, H.-H. Ultraselective homogeneous electrochemical biosensor for DNA species related to oral cancer based on nicking endonuclease assisted target recycling amplification. Anal. Chem. 2015, 87, 9204–9208. [Google Scholar] [CrossRef]
- Hu, Y.; Chang, Y.; Chai, Y.; Yuan, R. An electrochemical biosensor for detection of DNA species related to oral cancer based on a particular host-guest recognition-assisted strategy for signal Tag in situ. J. Electrochem. Soc. 2018, 165, B289. [Google Scholar] [CrossRef]
- Sánchez-Tirado, E.; Salvo, C.; González-Cortés, A.; Yáñez-Sedeño, P.; Langa, F.; Pingarrón, J. Electrochemical immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double–walled carbon nanotubes. Anal. Chim. Acta 2017, 959, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Imani, S.; de Araujo, W.R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T.R.; Mercier, P.P.; Wang, J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 2015, 74, 1061–1068. [Google Scholar] [CrossRef]
- Marcus, J.S.; Anderson, W.F.; Quake, S.R. Microfluidic single-cell mRNA isolation and analysis. Anal. Chem. 2006, 78, 3084–3089. [Google Scholar] [CrossRef] [PubMed]
- Selemani, M.A.; Cenhrang, K.; Azibere, S.; Singhateh, M.; Martin, R.S. 3D printed microfluidic devices with electrodes for electrochemical analysis. Anal. Methods 2024, 16, 6941–6953. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Li, Y.; Wang, W.; Han, R.; Luo, X. A super-antifouling electrochemical biosensor for protein detection in complex biofluids based on PEGylated multifunctional peptide. ACS Sens. 2024, 9, 2956–2963. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, D.; Li, Y. Ratiometric electrochemical sensors associated with self-cleaning electrodes for simultaneous detection of adrenaline, serotonin, and tryptophan. ACS Appl. Mater. Interfaces. 2019, 11, 13557–13563. [Google Scholar] [CrossRef]
- Goldoni, R.; Scolaro, A.; Boccalari, E.; Dolci, C.; Scarano, A.; Inchingolo, F.; Ravazzani, P.; Muti, P.; Tartaglia, G. Malignancies and biosensors: A focus on oral cancer detection through salivary biomarkers. Biosensors 2021, 11, 396. [Google Scholar] [CrossRef]
- Rifai, N.; Gillette, M.A.; Carr, S.A. Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nat. Biotechnol. 2006, 24, 971–983. [Google Scholar] [CrossRef]
- Karthika, B.; Vijayakumar, A. ISO 13485: Medical devices–quality management systems, requirements for regulatory purposes. In Medical Device Guidelines and Regulations Handbook; Springer: Berlin/Heidelberg, Germany, 2022; pp. 19–29. [Google Scholar]
- Pappalardo, F.; Wilkinson, J.; Busquet, F.; Bril, A.; Palmer, M.; Walker, B.; Curreli, C.; Russo, G.; Marchal, T.; Toschi, E. Toward a regulatory pathway for the use of in silico trials in the CE marking of medical devices. IEEE J. Biomed. Health Inform. 2022, 26, 5282–5286. [Google Scholar] [CrossRef]
- Sinha, K.; Uddin, Z.; Kawsar, H.; Islam, S.; Deen, M.; Howlader, M. Analyzing chronic disease biomarkers using electrochemical sensors and artificial neural networks. Trends Anal. Chem. 2023, 158, 116861. [Google Scholar] [CrossRef]
- Siddiqui, J.; Deen, M.J. Modeling biodegradable free chlorine sensor performance using artificial neural networks. Adv. Mater. Technol. 2024, 9, 2300990. [Google Scholar]
- Nashruddin, S.N.A.B.M.; Salleh, F.H.M.; Yunus, R.M.; Zaman, H.B. Artificial intelligence−powered electrochemical sensor: Recent advances, challenges, and prospects. Heliyon 2024, 10, e37964. [Google Scholar] [CrossRef] [PubMed]
Biofluids | Conditions | Concentrations (µM) | References |
---|---|---|---|
Saliva | Oral squamous cell carcinoma | 3.81 ± 0.62 | [30] |
Saliva | Control | 4.4 | [31] |
Urine | Autism | 36.47 ± 6.51 | [32] |
Urine | Control | 69.63 ± 9.98 | [32] |
Plasma | Major depression | 34.3 ± 1.9 | [33] |
Plasma | Control | 46.6 ± 2.7 | [33] |
Functionalized Electrode | Technique | LOD (nM) | LR (µM) | Real Sample | Ref. |
---|---|---|---|---|---|
AuNPs-rGO-Cr.6/GCE | SWV | 480 | 0.l–2.5 | Human blood serum | [45] |
AuNPs/FSN/SPCE | DPV, EIS | 0.01 | 6 × 10−5–0.250 | Human blood serum | [52] |
DGNs/Fe3O4@SiO2/DABCO/SPCE | DPV | 0.002 | 7.0 × 10−6–0.2 | Human blood serum | [53] |
Au-PDNs/GCE | DPV | 0.10 | 160–280 | N/A | [54] |
Apt-MWCNTs/AuSPE | CC-PSA | 0.0049 | 1.0 × 10−3–0.2 | Human blood serum, milk, saliva, urine | [55] |
Apt-MWCNTs/AuE | CC-PSA | 0.064 | 1.0 × 10−4–300 | Human blood serum, milk, saliva, urine | [49] |
AuNPs-MPC/GCE | DPV | 24 | 101,000 | Human blood serum | [56] |
AuNP/EGPU | DPV | 53 | 0.6–2.0 | Synthetic urine | [57] |
AuNP/rGO/P-Arg/GCE | DPV | 100 | 10–100 | Human urine | [58] |
Functionalized Electrode | Techniques | LOD (nM) | LR (µM) | Real Sample | Ref |
---|---|---|---|---|---|
Al-Gr-Cu/GCE | DPV | 9 | 1–1000 | Urine | [15] |
AgY/CPE | DPV | 6.3 | 0.02–1.2 | Milk, wheat flour | [43] |
Ag-TiO2 NPs/GCE | Amperometry | 3 | 10–220 | Egg white | [59] |
WO3/GCE | DPV | 4.4 | 0.02–2000 | Curd, egg, milk | [60] |
PT-ZnO/GCE | SWV | 8.5 | 0.4–200 | Peanut extract | [61] |
CeO-ZnO/CPE | DPV | 10 | 0.02–25 | Urine | [62] |
Functionalized Electrode | Technique | LOD (nM) | LR (µM) | Real Sample | Ref. |
---|---|---|---|---|---|
CHS/rGO/GCE | DPV | 2 | 0.05–175.8 | Urine | [14] |
POM-rGO/GCE | SWV | 0.002 | 1 × 10−5–1 × 10−3 | Human blood serum | [16] |
nano-CeO2/rGO/GCE | SDLSV | 6 | 0.01–10 | Human blood serum, urine | [44] |
Pd-Cu@Cu2O/rGO/GCE | DPV | 1.9 | 0.01–40 | Milk, urine | [46] |
AgNPs/GO/GCE | DPV | 2 | 0.01–800 | Human blood serum, pharmaceutical | [67] |
SGr-Bi2S3/SPCE | DPV | 4 | 0.01–120 | N/A | [68] |
rAu-PtNPs/GQDs/GCE | SWV | 0.3 | 0.001–0.1 | Milk | [69] |
TiO2/rGO/CPE | DPV | 0.4 | 0.1–120 | Huma blood serum, urine | [70] |
MnCo2O4-rGO/GCE | Amperometry | 1 | 0.004–112.9 | Milk | [71] |
N-Gr/CuCo2O4/CPE | DPV | 4.1 | 0.01–3 | Human blood serum, pharmaceutical, urine | [72] |
MnWO4/rGO/GCE | DPV | 4.4 | 0.001–120 | Milk | [50] |
ZrO2-CuO-CeO2/Gr/CPE | DPV | 5.32 | 0.009–193 | Human plasma, urine | [73] |
AgM/rGO/GCE | Amperometry | 5.7 | 0.02–147 | Milk, oats | [74] |
CuO-CeO2-rGO-MWCNT GCE | DPV | 7.3 | 0.01–13.5 | Human blood serum, urine | [75] |
Co3O4/rGO/GCE | LSV | 260 | 1–800 | Amino acid | [76] |
Functionalized Electrode | Technique | LOD (nM) | LR (µM) | Real Sample | Ref. |
---|---|---|---|---|---|
NiCoSe4-CNF/GCE | Amperometry | 0.68 | 0.005–0.095 | Human blood serum, milk, tomato juice | [47] |
Ce-ZnO/f-MWCNT/GCE | DPV | 1. | 0.01–0.1 | Human blood, milk | [78] |
MagNPs/CQDs/GCE | DPV | 4.2 | 0.05–13.5 | N/A | [79] |
Ni NPS/N-C/CPE | SDLSV | 6 | 0.01–80 | Amino acid, human blood serum | [80] |
MWCNT/Mg-Al-CO3/CPE | LSV | 6.85 | 3–1000 | Human blood serum, milk | [81] |
Functionalized Electrode | Technique | LOD (nM) | LR (µM) | Real Sample | Ref. |
---|---|---|---|---|---|
MIP/CS/MWCNTs/GCE | DPV | 500 | 1–300 | Milk | [84] |
OD/f-MWCNTs/p-AMT/GCE | Amperometry | 0.54 | 0.025–0.3 | Blood human serum | [86] |
Schiff base complex NPs/AuE | EIS | 0.78 | 0.004–0.06 | Human blood serum | [88] |
MIP-MWCNTs/GCE | SDLSV | 1 | 0.002–100 | Human blood serum | [89] |
MIP@SiO2@PVP@AuNPs/GrE | LSV | 300 | 1–350 | Pharmaceutical | [51] |
AuNPs/MWCNTs-Chit/SPE | DPV | 1 | 0.003–100 | Human blood serum | [90] |
FC/CS-MWCNTs/GPE | DPV | 3.7 | 1–200 | Human blood serum, urine | [91] |
PProDOT@N-HCS/GCE | DPV | 8.3 | 1–70 | Human blood serum | [92] |
MIP/ABPE | SDLSV | 8 | 0.01–100 | Amino acid, human blood serum | [93] |
PVP-Gr/GCE | SDLSV | 10 | 0.06–100 | Amino acid, human blood serum, urine | [94] |
NiMn-LDH@PLL/GCE | DPV | 52.7 | 0.1–130 | Amino acid, urine | [95] |
PEDOT:PSS/Gr/GCE | DPV | 1.5 | 0.1–1000 | N/A | [96] |
Functionalized Electrode | Technique | LOD (nM) | LR (µM) | Real Sample | Ref. |
---|---|---|---|---|---|
rGO/ILC/CNT/Fe-Zn/GCE | DPV | 1.58 | 0.008–30 | Human blood serum | [98] |
IL/SnO2-Co3O4@rGO/CPE | CV, DPV | 3.2 | 0.02–6 | Human blood serum, pharmaceutical, urine | [99] |
IL/TiC/GCE | DPV | 53 | 0.5–500 | Milk, urine | [100] |
MWCNT@IL/CPE | CV | 2300 | 5–1000 | Amino acid, human blood serum | [101] |
Functionalized Electrode | Technique | LOD (nM) | LR (µM) | Real Sample | Ref. |
---|---|---|---|---|---|
MIP/PEDOT/TiC/IL/GCE | DPV | 2.09 × 10−4 | 1 × 10−6–100 | Milk | [102] |
MO/TiC/GCE | DPV | 15 | 0.01–120 | Egg, urine | [103] |
TiC/GCE | DPV | 309 | 0.5–20.1 | Cheese, milk, yogurt | [104] |
IL-TiC/GCE | DPV | 0.06 | 0.001–240 | Amino acid, urine | [105] |
L-Lys-Ni Zn-MOF/Fc-MWCNTs/GCE | DPV | 400 | 2–100 | Milk | [106] |
Functionalized Electrode | Technique | LOD (nM) | LR (µM) | Real Sample | Ref. |
---|---|---|---|---|---|
GCE | SWV | 0.80 | 0.047–0.54 | Banna, cheese, sausage, tomato | [5] |
PMU/PGE | DPV | 329 | 0.5–40 | Human blood serum | [17] |
CS-MWCNTs/GCE | Amperometry | 41.7 | 0.06–30 | Cheese, lactobacillus beverage | [35] |
MIP/HA-MWCNTs/PPy-SG/GCE | Amperometry | 74 | 0.09–70 | Cheese, lactobacillus beverage | [108] |
DAOx/PtNP/SPCE | Amperometry | 250 | 0.53–72 | Cheese | [109] |
MAOx/PtNP/SPCE | 210 | 0.39–76 | |||
DAOx/PVF/GO/SPCE | Amperometry | 1400 | 6–340 | Cheese | [110] |
MAOx/PVF/GO/SPCE | 1800 | 2.4–120 | |||
CB-PCL/TPE | Amperometry | 3200 | 10–75 | Cheese, tap water | [111] |
PTB/GS | SWV | 12 | 0.05–0.9 | Cheese | [112] |
CPE-NiPC | SWV | 0.85 | 0.0025–0.020 | Wine | [113] |
Biomarkers | Strategy | Electrodes | LOD | Clinical Relevance | Ref. |
---|---|---|---|---|---|
ORAOV1 DNA | NESA | DNA/ITO | 0.35 pM | Novel oncogene, linked to OSCC progression | [122] |
Trp derivatives | Host-guest recognition | Metal catalysts/GCE | 3 fM | Sensitive biosensor for ORAOV1/detection of oral tumor biomarker | [123] |
IL-1β, TNF-α | Multiplexed electrochemical sensor | Hybrids/SPCE | 0.38 pg/mL, 0.85 pg/mL | Inflammatory cytokines, validated in oral cancer | [124] |
Uric acid | Wearable mouthguard | Enzyme integrated electrode | 4.88 µM | Reflects metabolic stress in oral environment | [125] |
OSCC mRNA panel | LOC system | Microfluidic DNA device | 0.1 pg | Early diagnosis through multi-marker RNA | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sridev, J.; Deen, A.R.; Ali, M.Y.; Ting, W.-T.; Deen, M.J.; Howlader, M.M.R. Advanced Electrochemical Sensors for Rapid and Sensitive Monitoring of Tryptophan and Tryptamine in Clinical Diagnostics. Biosensors 2025, 15, 626. https://doi.org/10.3390/bios15090626
Sridev J, Deen AR, Ali MY, Ting W-T, Deen MJ, Howlader MMR. Advanced Electrochemical Sensors for Rapid and Sensitive Monitoring of Tryptophan and Tryptamine in Clinical Diagnostics. Biosensors. 2025; 15(9):626. https://doi.org/10.3390/bios15090626
Chicago/Turabian StyleSridev, Janani, Arif R. Deen, Md Younus Ali, Wei-Ting Ting, M. Jamal Deen, and Matiar M. R. Howlader. 2025. "Advanced Electrochemical Sensors for Rapid and Sensitive Monitoring of Tryptophan and Tryptamine in Clinical Diagnostics" Biosensors 15, no. 9: 626. https://doi.org/10.3390/bios15090626
APA StyleSridev, J., Deen, A. R., Ali, M. Y., Ting, W.-T., Deen, M. J., & Howlader, M. M. R. (2025). Advanced Electrochemical Sensors for Rapid and Sensitive Monitoring of Tryptophan and Tryptamine in Clinical Diagnostics. Biosensors, 15(9), 626. https://doi.org/10.3390/bios15090626