POC Sensor Systems and Artificial Intelligence—Where We Are Now and Where We Are Going?
Abstract
1. Introduction
2. Key Areas of ML and AI Integration in POC Devices
2.1. Data Analysis and Pattern Recognition
2.2. Real-Time Decision Support and Predictive Analytics
2.3. Personalization
2.4. Automation and Workflow Optimization
2.5. ML-Suitable POC Sensors and Devices
2.5.1. Electrochemical Sensors
2.5.2. Optical Sensors
2.5.3. Imaging Systems
2.5.4. Microfluidic Platforms
2.5.5. Wearable Sensors
3. Detailed Examples of POC Devices Using ML
3.1. ML-Powered Continuous Glucose Monitors (CGMs)
3.2. Portable Imaging Devices
3.3. Wearable Cardiac Monitors
3.4. ML-Enhanced Infectious Disease Detection
3.5. Smart Wound Care Systems
3.6. ML Algorithms for POC Systems
4. Gaps and Challenges in POC and ML Integration
4.1. Data Quality, Reliability, and Interoperability
4.2. Technical Workflow Integration
4.3. Ethical, Regulatory, and Bias Considerations
4.4. Scalability and Access
5. New Directions for POC and ML Integration
5.1. Mental Health Monitoring
5.2. Nutrition and Metabolic Health
5.3. Decentralized Clinical Trials (DCTs)
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CDSS | Clinical Decision Support System |
CGM | Continuous Glucose Monitoring |
CGMs | Continuous Glucose Monitors |
CNN | Convolutional Neural Network |
DCTs | Decentralized Clinical Trials |
DL | Deep Learning |
ECG | Electrocardiogram |
GRUs | Gated Recurrent Units |
IoMT | Internet of Medical Things |
LLM | Large Language Model |
LSTM | Long Short-Term Memory Networks |
ML | Machine Learning |
NLP | Natural language processing |
PCA | Principal Component Analysis |
PN | Precision Nutrition |
POC | Point-of-Care |
POCUS | Point-of-Care Ultrasound |
PPG | Photoplethysmography |
RAG | Retrieval-Augmented Generation |
RF | Random Forests |
RL | Reinforcement Learning |
RNN | Recurrent Neural Network |
SVM | Support Vector Machine |
STFT | Short-Time Fourier Transform |
t-SNE | t-distributed Stochastic Neighbor Embedding |
References
- Baribeau, Y.; Sharkey, A.; Chaudhary, O.; Krumm, S.; Fatima, H.; Mahmood, F.; Matyal, R. Handheld Point-of-Care Ultrasound Probes: The New Generation of POCUS. J. Cardiothorac. Vasc. Anesth. 2020, 34, 3139–3145. [Google Scholar] [CrossRef]
- Savino, K.; Ambrosio, G. Handheld Ultrasound and Focused Cardiovascular Echography: Use and Information. Medicina 2019, 55, 423. [Google Scholar] [CrossRef]
- Rice, J.A.; Brewer, J.; Speaks, T.; Choi, C.; Lahsaei, P.; Romito, B.T. The POCUS Consult: How Point of Care Ultrasound Helps Guide Medical Decision Making. Int. J. Gen. Med. 2021, 14, 9789–9806. [Google Scholar] [CrossRef]
- Liu, J.Y.; Xu, J.; Forsberg, F.; Liu, J. Bin CMUT/CMOS-Based Butterfly IQ—A Portable Personal Sonoscope. Adv. Ultrasound Diagn. Ther. 2019, 3, 115–118. [Google Scholar] [CrossRef]
- Thavanathan, R.S.; Woo, M.Y.; Hall, G. The Future Is in Your Hands—Handheld Ultrasound in the Emergency Department. Can. J. Emerg. Med. 2020, 22, 742–744. [Google Scholar] [CrossRef] [PubMed]
- Mäkynen, M.; Ng, G.A.; Li, X.; Schlindwein, F.S. Wearable Devices Combined with Artificial Intelligence—A Future Technology for Atrial Fibrillation Detection? Sensors 2022, 22, 8588. [Google Scholar] [CrossRef]
- Duncker, D.; Ding, W.Y.; Etheridge, S.; Noseworthy, P.A.; Veltmann, C.; Yao, X.; Jared Bunch, T.; Gupta, D. Smart Wearables for Cardiac Monitoring—Real-World Use beyond Atrial Fibrillation. Sensors 2021, 21, 2539. [Google Scholar] [CrossRef]
- Guess, M.; Zavanelli, N.; Yeo, W.H. Recent Advances in Materials and Flexible Sensors for Arrhythmia Detection. Materials 2022, 15, 724. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.M. A Self-Contained STFT CNN for ECG Classification and Arrhythmia Detection at the Edge. IEEE Access 2022, 10, 94469–94486. [Google Scholar] [CrossRef]
- Neri, L.; Oberdier, M.T.; van Abeelen, K.C.J.; Menghini, L.; Tumarkin, E.; Tripathi, H.; Jaipalli, S.; Orro, A.; Paolocci, N.; Gallelli, I.; et al. Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review. Sensors 2023, 23, 4805. [Google Scholar] [CrossRef]
- Mishra, T.; Wang, M.; Metwally, A.A.; Bogu, G.K.; Brooks, A.W.; Bahmani, A.; Alavi, A.; Celli, A.; Higgs, E.; Dagan-Rosenfeld, O.; et al. Pre-Symptomatic Detection of COVID-19 from Smartwatch Data. Nat. Biomed. Eng. 2020, 4, 1208–1220. [Google Scholar] [CrossRef] [PubMed]
- Shandhi, M.M.H.; Cho, P.J.; Roghanizad, A.R.; Singh, K.; Wang, W.; Enache, O.M.; Stern, A.; Sbahi, R.; Tatar, B.; Fiscus, S.; et al. A Method for Intelligent Allocation of Diagnostic Testing by Leveraging Data from Commercial Wearable Devices: A Case Study on COVID-19. NPJ Digit. Med. 2022, 5, 130. [Google Scholar] [CrossRef]
- Radin, J.M.; Vogel, J.M.; Delgado, F.; Coughlin, E.; Gadaleta, M.; Pandit, J.A.; Steinhubl, S.R. Long-Term Changes in Wearable Sensor Data in People with and without Long Covid. NPJ Digit. Med. 2024, 7, 246. [Google Scholar] [CrossRef]
- Thompson, J.S.; Chapin, J.W.; Brown, G.L. Monitoring Parenteral Nutrition Intraoperatively with the Dextrometer. J. Parenter. Enter. Nutr. 1983, 7, 492–494. [Google Scholar] [CrossRef] [PubMed]
- Siriyod, N.; Prabowo, M.H.; Cheeveewattanagul, N.; Manopwisedjaroen, K.; Nguitragool, W.; Sattabongkot Prachumsri, J.; Surareungchai, W.; Rijiravanich, P. Microfluidic Paper-Based Analytical Device for Point-of-Care Nucleic Acid Quantification of Malaria. Microchem. J. 2025, 212, 113139. [Google Scholar] [CrossRef]
- Ates, H.C.; Brunauer, A.; von Stetten, F.; Urban, G.A.; Güder, F.; Merkoçi, A.; Früh, S.M.; Dincer, C. Integrated Devices for Non-Invasive Diagnostics. Adv. Funct. Mater. 2021, 31, 2010388. [Google Scholar] [CrossRef]
- Mejía-Salazar, J.R.; Cruz, K.R.; Vásques, E.M.M.; de Oliveira, O.N. Microfluidic Point-of-Care Devices: New Trends and Future Prospects for Ehealth Diagnostics. Sensors 2020, 20, 1951. [Google Scholar] [CrossRef]
- Perdigones, F.; Giménez-Gómez, P.; Muñoz-Berbel, X.; Aracil, C. Optical Detection Techniques for Biomedical Sensing: A Review of Printed Circuit Board (PCB)-Based Lab-on-Chip Systems. Micromachines 2025, 16, 564. [Google Scholar] [CrossRef]
- Papamatthaiou, S.; Estrela, P.; Moschou, D. Printable Graphene BioFETs for DNA Quantification in Lab-on-PCB Microsystems. Sci. Rep. 2021, 11, 9815. [Google Scholar] [CrossRef]
- Coltro, W. Paper-Based Microfluidics: What Can We Expect? Braz. J. Anal. Chem. 2022, 9, 11–13. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Jeyaraman, N.; Ramasubramanian, S.; Balaji, S.; Iyengar, K.P.; Jain, V.K.; Rajendran, R.L.; Gangadaran, P. Nanomaterials in Point-of-Care Diagnostics: Bridging the Gap between Laboratory and Clinical Practice. Pathol. Res. Pract. 2024, 263, 155685. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Jain, B.; Anand, G.; Heidarian, M.; Lowe, A.; Kalra, A. Technologies for Non-Invasive Physiological Sensing: Status, Challenges, and Future Horizons. Biosens. Bioelectron. X 2024, 16, 100420. [Google Scholar] [CrossRef]
- Jiang, L.; Lin, X.; Chen, F.; Qin, X.; Yan, Y.; Ren, L.; Yu, H.; Chang, L.; Wang, Y. Current Research Status of Tumor Cell Biomarker Detection. Microsyst. Nanoeng. 2023, 9, 123. [Google Scholar] [CrossRef]
- Cappon, G.; Vettoretti, M.; Sparacino, G.; Facchinetti, A. Continuous Glucose Monitoring Sensors for Diabetes Management: A Review of Technologies and Applications. Diabetes Metab. J. 2019, 43, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Zalama-Sánchez, D.; del Pozo Vegas, C.; Sanz-García, A.; de Santos-Castro, P.Á.; Presencio-Dominguez, J.; González-Izquierdo, P.; Sánchez-Ramón, S.; Pinilla-Arribas, L.T.; Baladrón-Segura, M.; Cheayeb-Morán, J.; et al. Diagnostic Performance of Point-of-Care High-Sensitivity Troponin in the Exclusion of Non-ST-Elevation Myocardial Infarction in the Emergency Department. J. Pers. Med. 2024, 14, 762. [Google Scholar] [CrossRef]
- Assalve, G.; Lunetti, P.; Di Cagno, A.; De Luca, E.W.; Aldegheri, S.; Zara, V.; Ferramosca, A. Advanced Wearable Devices for Monitoring Sweat Biochemical Markers in Athletic Performance: A Comprehensive Review. Biosensors 2024, 14, 574. [Google Scholar] [CrossRef]
- Wang, P.; Kricka, L.J. Current and Emerging Trends in Point-of-Care Technology and Strategies for Clinical Validation and Implementation. Clin. Chem. 2018, 64, 1439–1452. [Google Scholar] [CrossRef]
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef]
- Gabriel, J.; Ramírez, C. AI in Healthcare: Revolutionizing Patient Care with Predictive Analytics and Decision Support Systems Introduction. J. Artif. Intell. Gen. Sci. 2024, 1, 31–37. [Google Scholar] [CrossRef]
- Vashistha, R.; Dangi, A.K.; Kumar, A.; Chhabra, D.; Shukla, P. Futuristic Biosensors for Cardiac Health Care: An Artificial Intelligence Approach. 3 Biotech 2018, 8, 358. [Google Scholar] [CrossRef]
- Arya, S.S.; Dias, S.B.; Jelinek, H.F.; Hadjileontiadis, L.J.; Pappa, A.M. The Convergence of Traditional and Digital Biomarkers through AI-Assisted Biosensing: A New Era in Translational Diagnostics? Biosens. Bioelectron. 2023, 235, 115387. [Google Scholar] [CrossRef]
- Kim, S.; Fischetti, C.; Guy, M.; Hsu, E.; Fox, J.; Young, S.D. Artificial Intelligence (AI) Applications for Point of Care Ultrasound (POCUS) in Low-Resource Settings: A Scoping Review. Diagnostics 2024, 14, 1669. [Google Scholar] [CrossRef]
- O’Sullivan, S.; Ali, Z.; Jiang, X.; Abdolvand, R.; Ünlü, M.S.; Da Silva, H.P.; Baca, J.T.; Kim, B.; Scott, S.; Sajid, M.I.; et al. Developments in Transduction, Connectivity and AI/Machine Learning for Point-of-Care Testing. Sensors 2019, 19, 1917. [Google Scholar] [CrossRef]
- Christodouleas, D.C.; Kaur, B.; Chorti, P. From Point-of-Care Testing to EHealth Diagnostic Devices (EDiagnostics). ACS Cent. Sci. 2018, 4, 1600–1616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, Y.; Jiang, N.; Yetisen, A.K. Wearable Artificial Intelligence Biosensor Networks. Biosens. Bioelectron. 2023, 219, 114825. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Bejnordi, B.E.; Veta, M.; Van Diest, P.J.; Van Ginneken, B.; Karssemeijer, N.; Litjens, G.; Van Der Laak, J.A.W.M.; Hermsen, M.; Manson, Q.F.; Balkenhol, M.; et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women with Breast Cancer. JAMA J. Am. Med. Assoc. 2017, 318, 2199–2210. [Google Scholar] [CrossRef]
- Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep Learning for Healthcare: Review, Opportunities and Challenges. Brief. Bioinform. 2017, 19, 1236–1246. [Google Scholar] [CrossRef]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Harry, A. The Future of Medicine: Harnessing the Power of AI for Revolutionizing Healthcare. Int. J. Multidiscip. Sci. Arts 2023, 2, 36–47. [Google Scholar] [CrossRef]
- Frizzell, J.D.; Liang, L.; Schulte, P.J.; Yancy, C.W.; Heidenreich, P.A.; Hernandez, A.F.; Bhatt, D.L.; Fonarow, G.C.; Laskey, W.K. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches. JAMA Cardiol. 2017, 2, 204–209. [Google Scholar] [CrossRef]
- Futoma, J.; Morris, J.; Lucas, J. A Comparison of Models for Predicting Early Hospital Readmissions. J. Biomed. Inf. 2015, 56, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Tătaru, O.S.; Vartolomei, M.D.; Rassweiler, J.J.; Virgil, O.; Lucarelli, G.; Porpiglia, F.; Amparore, D.; Manfredi, M.; Carrieri, G.; Falagario, U.; et al. Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management—Current Trends and Future Perspectives. Diagnostics 2021, 11, 354. [Google Scholar] [CrossRef]
- Vettoretti, M.; Cappon, G.; Facchinetti, A.; Sparacino, G. Advanced Diabetes Management Using Artificial Intelligence and Continuous Glucose Monitoring Sensors. Sensors 2020, 20, 3870. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Cai, A.; Xu, T.; Zhang, X. Artificial Intelligence Biosensors for Continuous Glucose Monitoring. Interdiscip. Mater. 2023, 2, 290–307. [Google Scholar] [CrossRef]
- Li, M.; Jiang, Y.; Zhang, Y.; Zhu, H. Medical Image Analysis Using Deep Learning Algorithms. Front. Public Health. 2023, 11, 1273253. [Google Scholar] [CrossRef]
- Ansari, Y.; Mourad, O.; Qaraqe, K.; Serpedin, E. Deep Learning for ECG Arrhythmia Detection and Classification: An Overview of Progress for Period 2017–2023. Front. Physiol. 2023, 14, 1246746. [Google Scholar] [CrossRef]
- Mazgouti, L.; Laamiri, N.; Ali, J.B.; El Idrissi, N.E.L.A.; Di Costanzo, V.; Naeck, R.; Ginoux, J.M. Optimization of Blood Glucose Prediction with LSTM-XGBoost Fusion and Integration of Statistical Features for Enhanced Accuracy. Biomed. Signal Process. Control 2025, 107, 107814. [Google Scholar] [CrossRef]
- Li, W.; Peng, Y.; Peng, K. Diabetes Prediction Model Based on GA-XGBoost and Stacking Ensemble Algorithm. PLoS ONE 2024, 19, e0311222. [Google Scholar] [CrossRef]
- Duckworth, C.; Guy, M.J.; Kumaran, A.; O’Kane, A.A.; Ayobi, A.; Chapman, A.; Marshall, P.; Boniface, M. Explainable Machine Learning for Real-Time Hypoglycemia and Hyperglycemia Prediction and Personalized Control Recommendations. J. Diabetes Sci. Technol. 2024, 18, 113–123. [Google Scholar] [CrossRef]
- Islam, M.M.; Rifat, H.R.; Shahid, M.S.B.; Akhter, A.; Uddin, M.A.; Uddin, K.M.M. Explainable Machine Learning for Efficient Diabetes Prediction Using Hyperparameter Tuning, SHAP Analysis, Partial Dependency, and LIME. Eng. Rep. 2025, 7, e13080. [Google Scholar] [CrossRef]
- Tasin, I.; Nabil, T.U.; Islam, S.; Khan, R. Diabetes Prediction Using Machine Learning and Explainable AI Techniques. Healthc. Technol. Lett. 2023, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Chu, Y.C.; Tsai, M.T.; Tseng, W.C.; Lin, Y.P.; Ou, S.M.; Tarng, D.C. Artificial Intelligence for Risk Prediction of End-Stage Renal Disease in Sepsis Survivors with Chronic Kidney Disease. Biomedicines 2022, 10, 546. [Google Scholar] [CrossRef] [PubMed]
- Sivaraman, M.; Sumitha, J. Diabetes Prediction Based on Supervised and Unsupervised Learning Techniques—A Review. In Proceedings of the 3rd International Conference on Smart Electronics and Communication, ICOSEC 2022—Proceedings, Trichy, India, 20–22 October 2022; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2022; pp. 1292–1296. [Google Scholar]
- Kumari, V.; Katiyar, A.; Bhagawati, M.; Maindarkar, M.; Gupta, S.; Paul, S.; Chhabra, T.; Boi, A.; Tiwari, E.; Rathore, V.; et al. Transformer and Attention-Based Architectures for Segmentation of Coronary Arterial Walls in Intravascular Ultrasound: A Narrative Review. Diagnostics 2025, 15, 848. [Google Scholar] [CrossRef]
- Vafaei, E.; Hosseini, M. Transformers in EEG Analysis: A Review of Architectures and Applications in Motor Imagery, Seizure, and Emotion Classification. Sensors 2025, 25, 1293. [Google Scholar] [CrossRef] [PubMed]
- Farahmand, E.; Soumma, S.B.; Chatrudi, N.T.; Ghasemzadeh, H. Hybrid Attention Model Using Feature Decomposition and Knowledge Distillation for Glucose Forecasting. arXiv 2025, arXiv:2411.10703. [Google Scholar]
- Glatzer, T.; Ringemann, C.; Militz, D.; Mueller-Hoffmann, W. Concept and Implementation of a Novel Continuous Glucose Monitoring Solution With Glucose Predictions on Board. J. Diabetes Sci. Technol. 2024, 18, 1004–1008. [Google Scholar] [CrossRef]
- Martínez-Sellés, M.; Marina-Breysse, M. Current and Future Use of Artificial Intelligence in Electrocardiography. J. Cardiovasc. Dev. Dis. 2023, 10, 175. [Google Scholar] [CrossRef]
- Raghunath, A.; Nguyen, D.D.; Schram, M.; Albert, D.; Gollakota, S.; Shapiro, L.; Sridhar, A.R. Artificial Intelligence–Enabled Mobile Electrocardiograms for Event Prediction in Paroxysmal Atrial Fibrillation. Cardiovasc. Digit. Health J. 2023, 4, 21–28. [Google Scholar] [CrossRef]
- Bedi, A.; Al Masri, M.K.; Al Hennawi, H.; Qadir, S.; Ottman, P. The Integration of Artificial Intelligence Into Patient Care: A Case of Atrial Fibrillation Caught by a Smartwatch. Cureus 2023, 15, e35941. [Google Scholar] [CrossRef]
- Glatzer, T.; Ehrmann, D.; Gehr, B.; Penalba Martinez, M.T.; Onvlee, J.; Bucklar, G.; Hofer, M.; Stangs, M.; Wolf, N. Clinical Usage and Potential Benefits of a Continuous Glucose Monitoring Predict App. J. Diabetes Sci. Technol. 2024, 18, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Pedroso, A.F.; Khera, R. Leveraging AI-Enhanced Digital Health with Consumer Devices for Scalable Cardiovascular Screening, Prediction, and Monitoring. NPJ Cardiovasc. Health 2025, 2, 34. [Google Scholar] [CrossRef]
- Contreras, I.; Vehi, J. Glucose Monitoring with AI Analytics for Diabetes Management Using Machine Learning and Smart Devices. Int. J. Adv. Nurs. Educ. Res. 2023, 8, 21–36. [Google Scholar] [CrossRef]
- Deekshith Alladi Novel Adaptive AI-Power Insulin Navigator for Diabetes Using Machine Learning. Int. J. Innov. Eng. Res. Technol. 2024, 11, 57–74. [CrossRef]
- Escobedo, P.; Bhattacharjee, M.; Nikbakhtnasrabadi, F.; Dahiya, R. Smart Bandage with Wireless Strain and Temperature Sensors and Batteryless NFC Tag. IEEE Internet Things J. 2021, 8, 5093–5100. [Google Scholar] [CrossRef]
- Mostafalu, P.; Tamayol, A.; Rahimi, R.; Ochoa, M.; Khalilpour, A.; Kiaee, G.; Yazdi, I.K.; Bagherifard, S.; Dokmeci, M.R.; Ziaie, B.; et al. Smart Bandage for Monitoring and Treatment of Chronic Wounds. Small 2018, 14, 1703509. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, E.H.; Khandakar, A.M.; Qiblawey, Y.; Bin Ibne Reaz, M.; Tariqul Islam, M.; Touati, F. Machine Learning in Wearable Biomedical Systems. In Sports Science and Human Health—Different Approaches; IntechOpen: London, UK, 2020. [Google Scholar]
- Mulo, J.; Liang, H.; Qian, M.; Biswas, M.; Rawal, B.; Guo, Y.; Yu, W. Navigating Challenges and Harnessing Opportunities: Deep Learning Applications in Internet of Medical Things. Future Internet 2025, 17, 107. [Google Scholar] [CrossRef]
- Hassan, R.Y.A. Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives. Sensors 2022, 22, 7539. [Google Scholar] [CrossRef]
- Bhaiyya, M.; Panigrahi, D.; Rewatkar, P.; Haick, H. Role of Machine Learning Assisted Biosensors in Point-of-Care-Testing for Clinical Decisions. ACS Sens. 2024, 9, 4495–4519. [Google Scholar] [CrossRef]
- Srinivasan, B.; Tung, S. Development and Applications of Portable Biosensors. J. Lab. Autom. 2015, 20, 365–389. [Google Scholar] [CrossRef]
- Jung, H.H.; Lee, H.; Yea, J.; Jang, K.I. Wearable Electrochemical Sensors for Real-Time Monitoring in Diabetes Mellitus and Associated Complications. Soft Sci. 2024, 4, 15. [Google Scholar] [CrossRef]
- Nouira, W.; Maaref, A.; Vocanson, F.; Siadat, M.; Saulnier, J.; Lagarde, F.; Jaffrezic-Renault, N. Enhancement of Enzymatic IDE Biosensor Response Using Gold Nanoparticles. Example of the Detection of Urea. Electroanalysis 2012, 24, 1088–1094. [Google Scholar] [CrossRef]
- Larcher, R.; Lottelier, M.; Badiou, S.; Dupuy, A.M.; Bargnoux, A.S.; Cristol, J.P. Analytical Performances of the Novel I-STAT Alinity Point-of-Care Analyzer. Diagnostics 2023, 13, 297. [Google Scholar] [CrossRef]
- Saddique, Z.; Faheem, M.; Habib, A.; UlHasan, I.; Mujahid, A.; Afzal, A. Electrochemical Creatinine (Bio)Sensors for Point-of-Care Diagnosis of Renal Malfunction and Chronic Kidney Disorders. Diagnostics 2023, 13, 1737. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Kotanko, P.; Zhang, H.; Wang, Y. Artificial Intelligence and Machine Learning in Dialysis Ready for Prime Time? Clin. J. Am. Soc. Nephrol. 2023, 18, 803–805. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.S.; Fan, S.K. Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications. Sensors 2016, 16, 1175. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.K.; Chatterjee, S.; Bandyopadhyay, S.; Kar, S.; Som, N.K.; Saha, S.; Chakraborty, S. Smartphone-Enabled Paper-Based Hemoglobin Sensor for Extreme Point-of-Care Diagnostics. ACS Sens. 2021, 6, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Guo, J.; Tang, G.; Li, L.; Yao, S.Q. Multiplex Identification of Post-Translational Modifications at Point-of-Care by Deep Learning-Assisted Hydrogel Sensors. Angew. Chem. Int. Ed. 2023, 62, e202218412. [Google Scholar] [CrossRef]
- Davis, A.M.; Tomitaka, A. Machine Learning-Based Quantification of Lateral Flow Assay Using Smartphone-Captured Images. Biosensors 2025, 15, 19. [Google Scholar] [CrossRef]
- Pannipulath Venugopal, V.; Babu Saheer, L.; Maktabdar Oghaz, M. COVID-19 Lateral Flow Test Image Classification Using Deep CNN and StyleGAN2. Front. Artif. Intell. 2023, 6, 1235204. [Google Scholar] [CrossRef]
- Lee, S.; Kyoung Yoo, Y.; Kim, C.; Eun Lee, N.; Hyeon Kim, K.; Kim, H.; Lee, D.; Il Han, S.; Lee, D.; Cho, S.-Y.; et al. Machine Learning-Assisted Lateral Flow Assay for Detecting COVID-19 and Influenza. Available online: https://ssrn.com/abstract=4073623 (accessed on 1 July 2025). [CrossRef]
- Pradela-Filho, L.A.; Veloso, W.B.; Arantes, I.V.S.; Gongoni, J.L.M.; de Farias, D.M.; Araujo, D.A.G.; Paixão, T.R.L.C. Paper-Based Analytical Devices for Point-of-Need Applications. Microchim. Acta 2023, 190, 179. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; Yoon, D.S.; Park, J.S.; Woo, H.; Lee, D.; Cho, S.Y.; Park, C.; Yoo, Y.K.; Lee, K.B.; et al. Sample-to-Answer Platform for the Clinical Evaluation of COVID-19 Using a Deep Learning-Assisted Smartphone-Based Assay. Nat. Commun. 2023, 14, 2361. [Google Scholar] [CrossRef]
- Swanson, K.; Wu, E.; Zhang, A.; Alizadeh, A.A.; Zou, J. From Patterns to Patients: Advances in Clinical Machine Learning for Cancer Diagnosis, Prognosis, and Treatment. Cell 2023, 186, 1772–1791. [Google Scholar] [CrossRef]
- Tokel, O.; Inci, F.; Demirci, U. Advances in Plasmonic Technologies for Point of Care Applications. Chem. Rev. 2014, 114, 5728–5752. [Google Scholar] [CrossRef]
- Yılmaz, F.; Çimen, D.; Denizli, A. Plasmonic Sensors for Point of Care Diagnostics. J. Pharm. Biomed. Anal. 2025, 265, 117042. [Google Scholar] [CrossRef] [PubMed]
- Dabbagh, S.R.; Rabbi, F.; Doǧan, Z.; Yetisen, A.K.; Tasoglu, S. Machine Learning-Enabled Multiplexed Microfluidic Sensors. Biomicrofluidics 2020, 14, 061506. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.K.; Singh, K. Impact of Variation in Number of Channels in CNN Classification Model for Cervical Cancer Detection. In Proceedings of the 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), ICRITO 2021, Noida, India, 3–4 September 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021. [Google Scholar]
- Sathishkumar, R.; Karunamurthy, A.; Saint Jesudoss, S.; Anusri, E.; Ugamaalya, C.; Valarmathy, S. Multimodal Deep Learning for Precise Lung Pathology Discrimination. In Proceedings of the 2024 International Conference on System, Computation, Automation and Networking, ICSCAN 2024, Puducherry, India, 27–28 December 2024; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2024. [Google Scholar]
- Xiao, M.; Tian, F.; Liu, X.; Zhou, Q.; Pan, J.; Luo, Z.; Yang, M.; Yi, C. Virus Detection: From State-of-the-Art Laboratories to Smartphone-Based Point-of-Care Testing. Adv. Sci. 2022, 9, e2105904. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.J.; Lee, D.; Kang, J.; Lee, K.; Chung, W.K. Real-Time Image Processing for Microscopy-Based Label-Free Imaging Flow Cytometry in a Microfluidic Chip. Sci. Rep. 2017, 7, 11651. [Google Scholar] [CrossRef]
- Hassan, S.U.; Tariq, A.; Noreen, Z.; Donia, A.; Zaidi, S.Z.J.; Bokhari, H.; Zhang, X. Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics. Diagnostics 2020, 10, 509. [Google Scholar] [CrossRef]
- Olyanasab, A.; Annabestani, M. Leveraging Machine Learning for Personalized Wearable Biomedical Devices: A Review. J. Pers. Med. 2024, 14, 203. [Google Scholar] [CrossRef]
- Seshadri, D.R.; Bittel, B.; Browsky, D.; Houghtaling, P.; Drummond, C.K.; Desai, M.Y.; Gillinov, A.M. Accuracy of Apple Watch for Detection of Atrial Fibrillation. Circulation 2020, 141, 702–703. [Google Scholar] [CrossRef]
- Wang, Y.; Shan, G.; Li, H.; Wang, L. A Wearable-Sensor System with AI Technology for Real-Time Biomechanical Feedback Training in Hammer Throw. Sensors 2023, 23, 425. [Google Scholar] [CrossRef]
- Kwon, D.; Kang, H.; Lee, D.; Kim, Y.C. Deep Learning-Based Prediction of Atrial Fibrillation from Polar Transformed Time-Frequency Electrocardiogram. PLoS ONE 2025, 20, e0317630. [Google Scholar] [CrossRef] [PubMed]
- Razavi, M.; Ziyadidegan, S.; Jahromi, R.; Kazeminasab, S.; Baharlouei, E.; Janfaza, V.; Mahmoudzadeh, A.; Sasangohar, F. Machine Learning, Deep Learning and Data Preprocessing Techniques for Detection, Prediction, and Monitoring of Stress and Stress-Related Mental Disorders: A Scoping Review (Preprint). JMIR Ment. Health 2023, 11, e53714. [Google Scholar] [CrossRef] [PubMed]
- Hasasneh, A.; Hijazi, H.; Talib, M.A.; Afadar, Y.; Nassif, A.B.; Nasir, Q. Wearable Devices and Explainable Unsupervised Learning for COVID-19 Detection and Monitoring. Diagnostics 2023, 13, 3071. [Google Scholar] [CrossRef]
- Baca, H.A.H.; de Luz Palomino Valdivia, F. Efficient Deep Learning-Based Arrhythmia Detection Using Smartwatch ECG Electrocardiograms. Sensors 2025, 25, 5244. [Google Scholar] [CrossRef]
- Duraj, A.; Szczepaniak, P.S.; Sadok, A. Detection of Anomalies in Data Streams Using the LSTM-CNN Model. Sensors 2025, 25, 1610. [Google Scholar] [CrossRef]
- Dehghani Zahedani, A.; Shariat Torbaghan, S.; Rahili, S.; Karlin, K.; Scilley, D.; Thakkar, R.; Saberi, M.; Hashemi, N.; Perelman, D.; Aghaeepour, N.; et al. Improvement in Glucose Regulation Using a Digital Tracker and Continuous Glucose Monitoring in Healthy Adults and Those with Type 2 Diabetes. Diabetes Ther. 2021, 12, 1871–1886. [Google Scholar] [CrossRef]
- Lukács, A. Continuous Glucose Monitoring (CGM): Technological Advancement in Diabetes Management. Egészségtudományi Közlemények 2024, 14, 11–18. [Google Scholar] [CrossRef]
- Link, M.; Kamecke, U.; Waldenmaier, D.; Pleus, S.; Garcia, A.; Haug, C.; Freckmann, G. Comparative Accuracy Analysis of a Real-Time and an Intermittent-Scanning Continuous Glucose Monitoring System. J. Diabetes Sci. Technol. 2019, 15, 287–293. [Google Scholar] [CrossRef]
- Marx, A.; Di Stefano, F.; Leutheuser, H.; Chin-Cheong, K.; Pfister, M.; Burckhardt, M.A.; Bachmann, S.; Vogt, J.E. Blood Glucose Forecasting from Temporal and Static Information in Children with T1D. Front. Pediatr. 2023, 11, 1296904. [Google Scholar] [CrossRef]
- Li, K.; Daniels, J.; Liu, C.; Herrero, P.; Georgiou, P. Convolutional Recurrent Neural Networks for Glucose Prediction. IEEE J. Biomed. Health Inform. 2020, 24, 603–613. [Google Scholar] [CrossRef]
- Eichenlaub, M.; Waldenmaier, D.; Wehrstedt, S.; Pleus, S.; Link, M.; Jendrike, N.; Öter, S.; Haug, C.; Schinz, M.; Braunack-Mayer, V.; et al. Performance of Three Continuous Glucose Monitoring Systems in Adults with Type 1 Diabetes. J. Diabetes Sci. Technol. 2025, 18, 19322968251315459. [Google Scholar] [CrossRef] [PubMed]
- Freckmann, G.; Wehrstedt, S.; Eichenlaub, M.; Pleus, S.; Link, M.; Jendrike, N.; Öter, S.; Brandt, D.; Haug, C.; Waldenmaier, D. A Comparative Analysis of Glycemic Metrics Derived From Three Continuous Glucose Monitoring Systems. Diabetes Care 2025, 48, 1213–1217. [Google Scholar] [CrossRef]
- Title 21—Food and Drugs Chapter I-Food and Drug Administration, Department of Health and Human Services Subchapter H-Medical Devices Part 862-Clinical Chemistry and Clinical Toxicology Devices Subpart B-Clinical Chemistry Test Systems. 21 CFR 862.1355. Available online: https://www.ecfr.gov/current/title-21/part-862/section-862.1355 (accessed on 1 July 2025).
- Castañeda, J.; Arrieta, A.; van den Heuvel, T.; Battelino, T.; Cohen, O. Time in Tight Glucose Range in Type 1 Diabetes: Predictive Factors and Achievable Targets in Real-World Users of the MiniMed 780G System. Diabetes Care 2024, 47, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Taleb, N.; Emami, A.; Suppere, C.; Messier, V.; Legault, L.; Chiasson, J.L.; Rabasa-Lhoret, R.; Haidar, A. Comparison of Two Continuous Glucose Monitoring Systems, Dexcom G4 Platinum and Medtronic Paradigm Veo Enlite System, at Rest and during Exercise. Diabetes Technol. Ther. 2016, 18, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Isikman, S.O.; Mudanyali, O.; Greenbaum, A.; Ozcan, A. Optical Imaging Techniques for Point-of-Care Diagnostics. Lab Chip 2013, 13, 51–67. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, J.; Shao, Y.; Liu, J.; Shi, K.; He, C.; Kong, D. Deep Learning-Based Medical Ultrasound Image and Video Segmentation Methods: Overview, Frontiers, and Challenges. Sensors 2025, 25, 2361. [Google Scholar] [CrossRef]
- Angehrn, Z.; Haldna, L.; Zandvliet, A.S.; Gil Berglund, E.; Zeeuw, J.; Amzal, B.; Cheung, S.Y.A.; Polasek, T.M.; Pfister, M.; Kerbusch, T.; et al. Artificial Intelligence and Machine Learning Applied at the Point of Care. Front. Pharmacol. 2020, 11, 759. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.C.; Jaeger, D.J.; Berger, M.; Magee, M.; Shaffer, C.; Costantino, T.G. Diagnostic Accuracy of a Handheld Ultrasound vs. a Cart-Based Model: A Randomized Clinical Trial. West. J. Emerg. Med. 2024, 25, 251–257. [Google Scholar]
- Nathe, C.; Scoville, N.M.; Mckay, K.M.; Rezaei, K.; Feng, S. Performance of a Handheld Ultrasound Device in Detecting Retinal Detachments. Indian J. Ophthalmol. 2024, 72, S827–S830. [Google Scholar] [CrossRef]
- Russell, F.M.; Supples, M.; Tamhankar, O.; Liao, M.; Finnegan, P. Prehospital Lung Ultrasound in Acute Heart Failure: Impact on Diagnosis and Treatment. Acad. Emerg. Med. 2024, 31, 42–48. [Google Scholar] [CrossRef]
- K232808-510(k); Premarket Notification: Butterfly IQ3 Ultrasound System. U.S. Food and Drug Administration: Silver Spring, MD, USA, 2024.
- Butterfly Network. Butterfly Network Announces FDA Clearance of Its Next-Generation Handheld Ultrasound System, Butterfly IQ3; Butterfly Network: Burlington, MA, USA, 2024. [Google Scholar]
- Ho-Gotshall, S.; Wilson, C.; Jacks, E.; Kashyap, R. Handheld Ultrasound Bladder Volume Assessment Compared to Standard Technique. Cureus 2024, 16, e64649. [Google Scholar] [CrossRef]
- Hughes, A.; Shandhi, M.M.H.; Master, H.; Dunn, J.; Brittain, E. Wearable Devices in Cardiovascular Medicine. Circ. Res. 2023, 132, 652–670. [Google Scholar] [CrossRef]
- Ali, M. Individual Use of Smartwatches with Self-Monitoring EKG Functionality for Diagnosing Arrhythmias: A Scoping Review. 2021; preprint. [Google Scholar] [CrossRef]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L.; et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Shahid, S.; Iqbal, M.; Saeed, H.; Hira, S.; Batool, A.; Khalid, S.; Tahirkheli, N.K. Diagnostic Accuracy of Apple Watch Electrocardiogram for Atrial Fibrillation: A Systematic Review and Meta-Analysis. JACC Adv. 2025, 4, 101538. [Google Scholar] [CrossRef] [PubMed]
- Apple Inc. MDDT SEBQ—Apple AFib History Feature Medical Device Development Tool (MDDT) Summary of Evidence and Basis of Qualification Apple Atrial Fibrillation History Feature; Apple Inc.: Cupertino, CL, USA, 2023. [Google Scholar]
- U.S Food & Drug Administration. Sleep Apnea Notification Feature (SANF). K240929; 13 September 2024. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K240929 (accessed on 1 July 2025).
- Alavi, A.; Bogu, G.K.; Wang, M.; Rangan, E.S.; Brooks, A.W.; Wang, Q.; Higgs, E.; Celli, A.; Mishra, T.; Metwally, A.A.; et al. Real-Time Alerting System for COVID-19 and Other Stress Events Using Wearable Data. Nat. Med. 2022, 28, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Sultan, L.R.; Haertter, A.; Al-Hasani, M.; Demiris, G.; Cary, T.W.; Tung-Chen, Y.; Sehgal, C.M. Can Artificial Intelligence Aid Diagnosis by Teleguided Point-of-Care Ultrasound? A Pilot Study for Evaluating a Novel Computer Algorithm for COVID-19 Diagnosis Using Lung Ultrasound. AI 2023, 4, 875–887. [Google Scholar] [CrossRef]
- Mohammed, H.T.; Bartlett, R.L.; Babb, D.; Fraser, R.D.J.; Mannion, D. A Time Motion Study of Manual versus Artificial Intelligence Methods for Wound Assessment. PLoS ONE 2022, 17, e0271742. [Google Scholar] [CrossRef]
- Swift Medical. Available online: https://swiftmedical.com/ (accessed on 1 July 2025).
- Belfarsi, E.A.; Flores, H.; Valero, M. Reliable Noninvasive Glucose Sensing via CNN-Based Spectroscopy. arXiv 2025, arXiv:2506.13819. [Google Scholar] [CrossRef]
- Apoorva, S.; Nguyen, N.T.; Sreejith, K.R. Recent Developments and Future Perspectives of Microfluidics and Smart Technologies in Wearable Devices. Lab Chip 2024, 24, 1833–1866. [Google Scholar] [CrossRef]
- Dankwa-Mullan, I.; Rivo, M.; Sepulveda, M.; Park, Y.; Snowdon, J.; Rhee, K. Transforming Diabetes Care Through Artificial Intelligence: The Future Is Here. Popul. Health Manag. 2019, 22, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.M.; Lv, S.; Zhang, W.; Cui, Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. Sensors 2022, 22, 1620. [Google Scholar] [CrossRef]
- Ramachandra Sridhar, G.; Face Frcp, D.; Lakshmi, G. Ethical Issues of Artificial Intelligence in Diabetes Mellitus. Med. Res. Arch. 2023, 11. [Google Scholar] [CrossRef]
- Franzoi, M.A.; Gillanders, E.; Vaz-Luis, I. Unlocking Digitally Enabled Research in Oncology: The Time Is Now. ESMO Open 2023, 8, 101633. [Google Scholar] [CrossRef]
- Azghadi, M.R.; Lammie, C.; Eshraghian, J.K.; Payvand, M.; Donati, E.; Linares-Barranco, B.; Indiveri, G. Hardware Implementation of Deep Network Accelerators towards Healthcare and Biomedical Applications. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 1138–1159. [Google Scholar] [CrossRef]
- World Health Organization. Depression and Other Common Mental Disorders Global Health Estimates; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Gomes, N.; Pato, M.; Lourenço, A.R.; Datia, N. A Survey on Wearable Sensors for Mental Health Monitoring. Sensors 2023, 23, 1330. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Y.; Jiang, N.; Yetisen, A.K. Biosensors for Psychiatric Biomarkers in Mental Health Monitoring. Biosens. Bioelectron. 2024, 256, 116242. [Google Scholar] [CrossRef]
- Cohen, J.; Richter, V.; Neumann, M.; Black, D.; Haq, A.; Wright-Berryman, J.; Ramanarayanan, V. A Multimodal Dialog Approach to Mental State Characterization in Clinically Depressed, Anxious, and Suicidal Populations. Front. Psychol. 2023, 14, 1135469. [Google Scholar] [CrossRef]
- Khoo, L.S.; Lim, M.K.; Chong, C.Y.; McNaney, R. Machine Learning for Multimodal Mental Health Detection: A Systematic Review of Passive Sensing Approaches. Sensors 2024, 24, 348. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Feng, L.; Hu, J.; Jiang, L.; Wang, J.; Han, J.; Gan, L.; He, Z.; Wang, G. Using Deeply Time-Series Semantics to Assess Depressive Symptoms Based on Clinical Interview Speech. Front. Psychiatry 2023, 14, 1104190. [Google Scholar] [CrossRef]
- Zheng, Y.; Blasch, E. Facial Micro-Expression Recognition Enhanced by Score Fusion and a Hybrid Model from Convolutional LSTM and Vision Transformer. Sensors 2023, 23, 5650. [Google Scholar] [CrossRef]
- Moorthy, S.; Moon, Y.K. Hybrid Multi-Attention Network for Audio–Visual Emotion Recognition Through Multimodal Feature Fusion. Mathematics 2025, 13, 1100. [Google Scholar] [CrossRef]
- Fitzpatrick, K.K.; Darcy, A.; Vierhile, M. Delivering Cognitive Behavior Therapy to Young Adults with Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Ment. Health 2017, 4, e19. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Bashyam, V.; Yang, Z.; Yu, F.; Tassopoulou, V.; Chintapalli, S.S.; Skampardoni, I.; Sreepada, L.P.; Sahoo, D.; Nikita, K.; et al. Applications of Generative Adversarial Networks in Neuroimaging and Clinical Neuroscience. Neuroimage 2023, 269, 119898. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Küster, D.; Liu, H.; Krumhuber, E.G. Understanding Naturalistic Facial Expressions with Deep Learning and Multimodal Large Language Models. Sensors 2024, 24, 126. [Google Scholar] [CrossRef] [PubMed]
- Dalirirad, S.; Han, D.; Steckl, A.J. Aptamer-Based Lateral Flow Biosensor for Rapid Detection of Salivary Cortisol. ACS Omega 2020, 5, 32890–32898. [Google Scholar] [CrossRef]
- Xing, Y.; Yang, Y.; Yang, K.; Lu, A.; Xing, L.; Mackie, K.; Guo, F. Intelligent sensing devices and systems for personalized mental health. Med-X 2025, 3, 10. [Google Scholar] [CrossRef]
- Harper, R.; Southern, J. A Bayesian Deep Learning Framework for End-To-End Prediction of Emotion from Heartbeat. IEEE Trans. Affect. Comput. 2022, 13, 985–991. [Google Scholar] [CrossRef]
- Yu, Z.; Dang, J. The Effects of the Generative Adversarial Network and Personalized Virtual Reality Platform in Improving Frailty among the Elderly. Sci. Rep. 2025, 15, 8220. [Google Scholar] [CrossRef]
- Maurya, R.; Rajput, N.; Diviit, M.G.; Mahapatra, S.; Ojha, M.K. Exploring the Potential of Lightweight Large Language Models for AI-Based Mental Health Counselling Task: A Novel Comparative Study. Sci. Rep. 2025, 15, 22463. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, X.; Johnson, J.S.; Spakowicz, D.J.; Agnello, M.; Zhou, W.; Avina, M.; Honkala, A.; Chleilat, F.; Chen, S.J.; et al. Longitudinal Profiling of the Microbiome at Four Body Sites Reveals Core Stability and Individualized Dynamics during Health and Disease. Cell Host Microbe 2024, 32, 506–526.e9. [Google Scholar] [CrossRef]
- Sharma, S.K.; Gaur, S. Optimizing Nutritional Outcomes: The Role of AI in Personalized Diet Planning. Int. J. Res. Publ. Semin. 2024, 15, 107–116. [Google Scholar] [CrossRef]
- Keijer, J.; Escoté, X.; Galmés, S.; Palou-March, A.; Serra, F.; Aldubayan, M.A.; Pigsborg, K.; Magkos, F.; Baker, E.J.; Calder, P.C.; et al. Omics Biomarkers and an Approach for Their Practical Implementation to Delineate Health Status for Personalized Nutrition Strategies. Crit. Rev. Food Sci. Nutr. 2024, 64, 8279–8307. [Google Scholar] [CrossRef]
- Abdallah, S.; Godwins, O.P.; Ijiga, A.C. AI-Powered Nutritional Strategies: Analyzing the Impact of Deep Learning on Dietary Improvements in South Africa, India, and the United States. Magna Sci. Adv. Res. Rev. 2024, 11, 320–345. [Google Scholar] [CrossRef]
- Veluvali, A.; Dehghani Zahedani, A.; Hosseinian, A.; Aghaeepour, N.; McLaughlin, T.; Woodward, M.; DiTullio, A.; Hashemi, N.; Snyder, M.P. Impact of Digital Health Interventions on Glycemic Control and Weight Management. NPJ Digit. Med. 2025, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Rayat, D.Y. Longitudinal Monitoring of Physiological, Psychological and Molecular Responses to Different Dietary Interventions: A Precision Health Approach. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2024. [Google Scholar]
- Hall, H.; Perelman, D.; Breschi, A.; Limcaoco, P.; Kellogg, R.; McLaughlin, T.; Snyder, M. Glucotypes Reveal New Patterns of Glucose Dysregulation. PLoS Biol. 2018, 16, e2005143. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.; Runge, R.; Snyder, M. Wearables and the Medical Revolution. Pers. Med. 2018, 15, 429–448. [Google Scholar] [CrossRef]
- Myles, P.S. Future of Clinical Trial Methodology. Anesth. Analg. 2022, 134, 668–673. [Google Scholar] [CrossRef]
- Saad, N.H.; Alqattan, H.T.; Ochoa, O.; Chrysopoulo, M. Telemedicine and Plastic and Reconstructive Surgery: Lessons from the COVID-19 Pandemic and Directions for the Future. Plast. Reconstr. Surg. 2020, 146, 680E–683E. [Google Scholar] [CrossRef]
- Salvi, M.; Acharya, M.R.; Seoni, S.; Faust, O.; Tan, R.S.; Barua, P.D.; García, S.; Molinari, F.; Acharya, U.R. Artificial Intelligence for Atrial Fibrillation Detection, Prediction, and Treatment: A Systematic Review of the Last Decade (2013–2023). Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2024, 14, e1530. [Google Scholar] [CrossRef]
- Ojo, O.O.; Kiobel, B. Integrating Predictive Analytics in Clinical Trials: A Paradigm Shift in Personalized Medicine. World J. Biol. Pharm. Health Sci. 2024, 19, 308–320. [Google Scholar] [CrossRef]
- Amugongo, L.M.; Mascheroni, P.; Brooks, S.; Doering, S.; Seidel, J. Retrieval Augmented Generation for Large Language Models in Healthcare: A Systematic Review. PLoS Digit. Health 2025, 4, e0000877. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, J.T.; Beecy, A.; Sabuncu, M.R. Rethinking Clinical Trials for Medical AI with Dynamic Deployments of Adaptive Systems. NPJ Digit. Med. 2025, 8, 252. [Google Scholar] [CrossRef] [PubMed]
- Huo, B.; Boyle, A.; Marfo, N.; Tangamornsuksan, W.; Steen, J.P.; McKechnie, T.; Lee, Y.; Mayol, J.; Antoniou, S.A.; Thirunavukarasu, A.J.; et al. Large Language Models for Chatbot Health Advice Studies: A Systematic Review. JAMA Netw. Open 2025, 8, e2457879. [Google Scholar] [CrossRef]
- Gaber, F.; Shaik, M.; Allega, F.; Bilecz, A.J.; Busch, F.; Goon, K.; Franke, V.; Akalin, A. Evaluating Large Language Model Workflows in Clinical Decision Support for Triage and Referral and Diagnosis. NPJ Digit. Med. 2025, 8, 263. [Google Scholar] [CrossRef] [PubMed]
- Klusty, M.A.; Vaiden Logan, W.; Armstrong, S.E.; Mullen, A.D.; Leach, C.N.; Calvert, K.; Talbert, J.; Cody Bumgardner, V.K. Toward Automated Clinical Transcriptions. AMIA Jt. Summits Transl. Sci. Proc. 2025, 2025, 235–241. [Google Scholar] [CrossRef]
- Raza, M.M.; Venkatesh, K.P.; Kvedar, J.C. Generative AI and Large Language Models in Health Care: Pathways to Implementation. NPJ Digit. Med. 2024, 7, 62. [Google Scholar] [CrossRef]
AI Algorithm | Applications in POC | Advantages | Disadvantages | References |
---|---|---|---|---|
Convolutional Neural Networks (CNNs) | Image-based sensing (hand-held ultrasound and optical glucose spectroscopy); ECG/PPG arrhythmia detection | Excellent spatial-feature extraction; well-suited to 2-D sensor outputs (images and spectrograms) | Need large labeled datasets; GPU/TPU requirements can be prohibitive on edge devices | [9,134] |
Recurrent Neural Networks/LSTM | Continuous-glucose monitoring (CGM) forecasting; sequential ECG analysis | Capture long-range temporal patterns in physiological streams | Susceptible to vanishing gradients; output quality degrades with noisy or missing data | [45,49,100,125] |
Transformer and Hybrid Attention Models | Multimodal signal analysis (CGM + activity + sleep); real-time ultrasound interpretation | Attention lets model focus on salient; irregular segments; handles asynchronous inputs | Large memory/computation footprint; data-hungry | [32,66] |
Random Forest (RF) | Tabular risk-stratification dashboards; blood-glucose level prediction | Robust to outliers and missing values; fast inference on CPUs | May overfit noisy signals; interpretability moderate | [46,65,72] |
XGBoost/Gradient-boosted trees | CGM trend prediction; portable vital-sign monitors | High accuracy/speed; native handling of missing data | Hyper-parameter tuning is complex; sensitive to signal noise | [49,59] |
Reinforcement Learning (RL) | Closed-loop insulin delivery (‘artificial pancreas’); adaptive wearable dosing assistants | Learns optimal actions from feedback; personalizes over time | Safety-critical training; needs extensive simulation/data | [24,66,106] |
Explainable AI (e.g., SHAP) | Post-hoc interpretation of CGM/ECG models; clinician-facing dashboards | Quantifies feature impact → boosts trust and regulatory acceptance | Adds compute overhead; explanations are approximations | [51,52,53] |
Unsupervised/Clustering methods | Patient stratification in mobile diagnostics; anomaly detection in wearable streams | No labels required; uncovers hidden phenotypes | Validation and clinical mapping can be difficult | [43] |
Device (Maker) | Application Area | Algorithm Type (Indicative) | Clinical Validation and Regulatory Status | Notable ML/POC Features | References |
---|---|---|---|---|---|
FreeStyle Libre 3 (Abbott) | Diabetes: continuous glucose monitoring (CGM) | Time-series forecasting and predictive analytics; CGM forecasting commonly uses LSTM/RNN, transformers, and gradient-boosted trees in POC settings. | Interventional study (2024–25): MARD vs. venous YSI ≈ 11.6%; studies show device-dependent differences in TIR/GMI across CGMs (Libre 3 vs. G7 vs. Simplera). | Real-time Bluetooth low energy (BLE) streaming to phone; ML-enabled trend prediction and alerts via paired apps; supports proactive insulin decisions. | [110,111] |
Dexcom G7 (Dexcom) | Diabetes: CGM | Time-series forecasting (as above) | Interventional study: MARD ≈ 12.0%; FDA iCGM clearance Dec 2022; expanded 15-day wear cleared Apr 2025. | Integrated decision support via mobile; predictive alerts. | [24,110,111,112] |
Simplera/Simplera Sync (Medtronic) | Diabetes: CGM (incl. AID use) | Time-series forecasting (as above) | Interventional study: MARD 11.6%; performance gains in hypoglycemia vs. comparators; CE-mark 2023; FDA Aug 2024; Simplera Sync approved Apr 2025 for 780G AID. | Parallel-wear studies show clinically meaningful therapy metric differences vs. peers (TIR/GMI). | [110,111,113] |
Butterfly iQ/iQ+/iQ3 (Butterfly Network) | Portable ultrasound (POCUS) | Deep learning (CNNs) for image quality guidance, classification, and feature extraction | RCT in ED (n = 110): sensitivity 92.9%, specificity 92.3%, accuracy 92.5% vs. cart systems; ophthalmic triage: 90% sens/95% spec (κ = 0.85); prehospital lung US improved AHF diagnosis and treatment time; FDA 510(k) for iQ3 (4 January 2024); Auto B-Line Counter AI cleared. | Smartphone-tethered probe; real-time AI guidance; expanding SaMD-aligned toolset for non-expert use. | [118,119,120,121,122,123] |
Apple Watch (Series 4+) (Apple) | Wearable cardiac and sleep monitoring | On-device arrhythmia classification (single-lead ECG), PPG analytics; CNN/ML classification are widely used for ECG/PPG in POC | Post-op cohort: AFib detection 73.9% sens/95.7% spec vs. telemetry; ECG app 95% sens/spec for AFib; AFib History: FDA-cleared (2022), qualified 2024, weekly AF burden within ±5% of reference; Sleep Apnea (2024) 510(k): ~66% sens, >95% spec vs. PSG. | Consumer-grade wearable with medical features; passive monitoring + clinician-shareable outputs. | [98,127,128,129] |
Swift Skin (Swift Medical) | Wound assessment and documentation | ML-assisted computer vision for wound sizing/composition; standardized color/size via fiducial marker | Time-motion study: ~79% faster assessments; higher first-attempt image quality (92.2% vs. 75.7%); saves 1–2 min/assessment; uses FDA-registered HealX marker; improves documentation accuracy and early complication detection. | Mobile imaging with calibration; workflow and quality gains in chronic wound care. | [132,133] |
Category | Challenges | Description | Impacts | Example Applications Affected | Suggested Solutions | References |
---|---|---|---|---|---|---|
Technical and Performance Limitations | -Degraded accuracy in real-world settings | -AI systems perform poorly outside controlled environments due to noise, sensor drift, and physiological variability. | -Reduces reliability in sensitive diagnostics such as metabolic, cardiac, or mental health monitoring. | -Wearables, portable ECGs and glucose monitors | -Adaptive algorithms, robust sensor calibration, and noise filtering | [45,46,48,101,103,110,134] |
Data and Model Limitations | -Limited generalizability -Poor data quality | -ML models trained on narrow datasets perform poorly on diverse populations. -Missing values, irregular sampling, and noisy input degrade AI reliability. | -Biased predictions; poor performance in global/underserved settings. -Unstable outputs; reduced model trustworthiness. | -Global health tools and mobile diagnostics -Continuous glucose monitors, wearable biosensors | -Diverse training datasets, data augmentation, and fairness audits -Signal correction, imputation methods, and data preprocessing pipelines | [32,69,134] |
Ethical, Legal and Regulatory Issues | -Privacy and bias concerns -Legal ambiguity | -Sensitive data handling and biased training data raise ethical risks. -Unclear responsibility for AI-assisted decisions in clinical care. | -Disparities in outcomes; reduced user trust and legal complications. -Deployment hesitancy in regulated environments. | -Mental health apps and biometric wearables -AI diagnostic assistants, automated triage systems | -Differential privacy, bias audits, and transparent model reporting -Legal frameworks, shared accountability models | [117,138] |
Usability and Clinical Integration | -Low clinician trust -Workflow disruption | -Opaque AI models (black-box) hinder clinical acceptance. -High cognitive load, poor UI/UX, and lack of training limit clinical integration. | -Slow adoption despite accuracy benefits. -Inconsistent use; potential errors or delays. | -Medical imaging AI and predictive monitoring -Hospital-based POC systems and remote monitoring dashboards | -Explainable AI (e.g., SHAP and LIME), clinician co-design -Training programs, simplified interfaces, human factors design | [51,52,53,135,136] |
Scalability and Access | -Infrastructure dependency -High cost | -AI-enhanced POC tools rely on stable power, internet, and specialized hardware. -Advanced POC AI systems are expensive to deploy and maintain. | -Limited usability in low-resource settings. -Hinders mass adoption and democratization. | -Smart wound sensors and edge AI diagnostics -Smart diagnostics in rural clinics, mobile labs | -Offline/edge AI models, solar-powered devices -Model compression, open-source platforms, and government subsidies | [32,59,64,131,139] |
Sensor and Device-Specific Issues | -Signal interference and inconsistency -Wearable sensor limitations | -Sensors suffer from contamination, fouling, lighting variation, or user handling errors. -Battery life and algorithm inefficiency limit continuous use. | -Inaccurate AI predictions; poor reproducibility. -Interrupted monitoring; inconsistent results. | -Electrochemical biosensors, optical imaging, microfluidics -Wearables for heart rate, glucose, and motion | -Sensor design improvements, robust preprocessing, and user guidance -Energy-efficient AI, hardware optimization, and lightweight models | [17,74,81,97,137,140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovur, P.; Kovur, K.M.; Rayat, D.Y.; Wishart, D.S. POC Sensor Systems and Artificial Intelligence—Where We Are Now and Where We Are Going? Biosensors 2025, 15, 589. https://doi.org/10.3390/bios15090589
Kovur P, Kovur KM, Rayat DY, Wishart DS. POC Sensor Systems and Artificial Intelligence—Where We Are Now and Where We Are Going? Biosensors. 2025; 15(9):589. https://doi.org/10.3390/bios15090589
Chicago/Turabian StyleKovur, Prashanthi, Krishna M. Kovur, Dorsa Yahya Rayat, and David S. Wishart. 2025. "POC Sensor Systems and Artificial Intelligence—Where We Are Now and Where We Are Going?" Biosensors 15, no. 9: 589. https://doi.org/10.3390/bios15090589
APA StyleKovur, P., Kovur, K. M., Rayat, D. Y., & Wishart, D. S. (2025). POC Sensor Systems and Artificial Intelligence—Where We Are Now and Where We Are Going? Biosensors, 15(9), 589. https://doi.org/10.3390/bios15090589