Preliminary Study Using Wearable Near-Infrared Spectroscopy for Continuous Monitoring of Hemodynamics Through the Carotid Artery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort Population
2.2. NIRS System
2.3. Study Design and Data Collection
2.4. Statistical Analysis
3. Results
3.1. Trends in HbT Concentration and StO2
3.2. Comparison of NIRS System-Derived Parameters Across Locations
4. Discussion
4.1. Trends in HbT Concentration and StO2 in Response to Breathing Exercises
4.2. Demographic and Anatomical Factors
4.3. Equivalence Testing of System-Derived Parameters
4.4. Study Limitations
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BH | Breath hold |
CBP | Cerebral blood perfusion |
CI | Confidence interval |
DB | Deep breathing |
ECA | External carotid artery |
Hb | Deoxyhemoglobin |
HbO2 | Oxyhemoglobin |
HbT | Total hemoglobin |
ICA | Internal carotid artery |
LVO | Large vessel occlusion |
MoD | Median of differences |
NIRS | Near-infrared spectroscopy |
NYU | New York University |
SNR | Signal-to-noise ratio |
StO2 | Tissue oxygen saturation |
Wilcox-TOST | Wilcoxon-specific continuity corrected two one-sided tests |
References
- Prabhakar, N.R. Oxygen Sensing by the Carotid Body Chemoreceptors. J. Appl. Physiol. 2000, 88, 2287–2295. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, R.; Moya, E.A.; Iturriaga, R. Carotid Body Potentiation during Chronic Intermittent Hypoxia: Implication for Hypertension. Front. Physiol. 2014, 5, 434. [Google Scholar] [CrossRef]
- Sweid, A.; Hammoud, B.; Ramesh, S.; Wong, D.; Alexander, T.D.; Weinberg, J.H.; Deprince, M.; Dougherty, J.; Maamari, D.J.-M.; Tjoumakaris, S.; et al. Acute Ischaemic Stroke Interventions: Large Vessel Occlusion and Beyond. Stroke Vasc. Neurol. 2019, 5, 80–85. [Google Scholar] [CrossRef]
- Phan, T.G.; Beare, R.J.; Jolley, D.; Das, G.; Ren, M.; Wong, K.; Chong, W.; Sinnott, M.D.; Hilton, J.E.; Srikanth, V. Carotid Artery Anatomy and Geometry as Risk Factors for Carotid Atherosclerotic Disease. Stroke 2012, 43, 1596–1601. [Google Scholar] [CrossRef]
- Qaja, E.; Tadi, P.; Theetha Kariyanna, P. Symptomatic Carotid Artery Stenosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Flaherty, M.L.; Kissela, B.; Khoury, J.C.; Alwell, K.; Moomaw, C.J.; Woo, D.; Khatri, P.; Ferioli, S.; Adeoye, O.; Broderick, J.P.; et al. Carotid Artery Stenosis as a Cause of Stroke. Neuroepidemiology 2012, 40, 36–41. [Google Scholar] [CrossRef]
- Huang, Q.; Tian, H.; Jia, L.; Li, Z.; Zhou, Z. A Review of Deep Learning Segmentation Methods for Carotid Artery Ultrasound Images. Neurocomputing 2023, 545, 126298. [Google Scholar] [CrossRef]
- Wang, F.; Jin, P.; Feng, Y.; Fu, J.; Wang, P.; Liu, X.; Zhang, Y.; Ma, Y.; Yang, Y.; Yang, A.; et al. Flexible Doppler Ultrasound Device for the Monitoring of Blood Flow Velocity. Sci. Adv. 2021, 7, eabi9283. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.; Vostrikov, S.; Benini, L.; Cossettini, A. WULPUS: A Wearable Ultra Low-Power Ultrasound Probe for Multi-Day Monitoring of Carotid Artery and Muscle Activity. In Proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10–13 October 2022; pp. 1–4. [Google Scholar]
- Maheshwari, N.; Marone, A.; Altoé, M.; Kim, S.H.K.; Bajakian, D.R.; Hielscher, A.H. Postintervention Monitoring of Peripheral Arterial Disease Wound Healing Using Dynamic Vascular Optical Spectroscopy. J. Biomed. Opt. 2022, 27, 125002. [Google Scholar] [CrossRef]
- Khalil, M.A.; Kim, H.K.; Hoi, J.W.; Kim, I.; Dayal, R.; Shrikhande, G.; Hielscher, A.H. Detection of Peripheral Arterial Disease Within the Foot Using Vascular Optical Tomographic Imaging: A Clinical Pilot Study. Eur. J. Vasc. Endovasc. Surg. 2015, 49, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Marone, A.; Maheshwari, N.; Kim, S.K.; Bajakian, D.R.; Hielscher, A.H. Dynamic Vascular Optical Spectroscopy for Monitoring Peripheral Arterial Disease Patients Undergoing a Surgical Intervention. Front. Photonics 2022, 3, 938144. [Google Scholar] [CrossRef]
- Maheshwari, N.; Marone, A.; Kim, S.H.K.; Bajakian, D.R.; Hielscher, A.H. Evaluating Hemodynamic Response to Treatment in Patients with Peripheral Arterial Disease Using Dynamic Vascular Optical Spectroscopy. J. Biomed. Opt. 2024, 29, 127001. [Google Scholar] [CrossRef]
- Lambert, C.C.; Gayzik, F.S.; Stitzel, J.D. Characterization of the Carotid and Adjacent Anatomy Using Non-Contrast CT for Biomechanical Model Development. Biomed. Sci. Instrum. 2007, 43, 330–335. [Google Scholar]
- Tate, Q.; Kim, S.-E.; Treiman, G.; Parker, D.L.; Hadley, J.R. Increased Vessel Depiction of the Carotid Bifurcation with a Specialized 16-Channel Phased Array Coil at 3T. Magn. Reson. Med. 2013, 69, 1486–1493. [Google Scholar] [CrossRef]
- Hadley, J.R.; Roberts, J.A.; Goodrich, K.C.; Buswell, H.R.; Parker, D.L. Relative RF Coil Performance in Carotid Imaging. Magn. Reson. Imaging 2005, 23, 629–639. [Google Scholar] [CrossRef]
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.O.; Pandian, J.; Lindsay, P.; Grupper, M.F.; Rautalin, I. World Stroke Organization: Global Stroke Fact Sheet 2025. Int. J. Stroke 2025, 20, 132–144. [Google Scholar] [CrossRef]
- Imoisili, O.E.; Chung, A.; Tong, X.; Hayes, D.K.; Loustalot, F. Prevalence of Stroke—Behavioral Risk Factor Surveillance System, United States, 2011–2022. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Abate, M.D.; Abate, Y.H.; Abd ElHafeez, S.; Abd-Allah, F.; Abdelalim, A.; Abdelkader, A.; Abdelmasseh, M.; Abd-Elsalam, S.; Abdi, P.; et al. Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990–2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 973–1003. [Google Scholar] [CrossRef] [PubMed]
- Sheikh-Bahaei, N.; Matys, T.; Gillard, J.H. Anatomy of the Neck Arteries. In Neurovascular Imaging; Springer: New York, NY, USA, 2016; pp. 87–94. ISBN 978-1-4614-9029-6. [Google Scholar]
- Sethi, D.; Gofur, E.M.; Munakomi, S. Anatomy, Head and Neck: Carotid Arteries. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Zhu, X.; Huang, Q.; DiSpirito, A.; Vu, T.; Rong, Q.; Peng, X.; Sheng, H.; Shen, X.; Zhou, Q.; Jiang, L.; et al. Real-Time Whole-Brain Imaging of Hemodynamics and Oxygenation at Micro-Vessel Resolution with Ultrafast Wide-Field Photoacoustic Microscopy. Light Sci. Appl. 2022, 11, 138. [Google Scholar] [CrossRef]
- Beasley, M.G.; Blau, J.N.; Gosling, R.G. Changes in Internal Carotid Artery Flow Velocities with Cerebral Vasodilation and Constriction. Stroke 1979, 10, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Markus, H.S.; Harrison, M.J. Estimation of Cerebrovascular Reactivity Using Transcranial Doppler, Including the Use of Breath-Holding as the Vasodilatory Stimulus. Stroke 1992, 23, 668–673. [Google Scholar] [CrossRef]
- Quiroga, A.; Novi, S.; Martins, G.; Bortoletto, L.F.; Avelar, W.; Guillaumon, A.T.; Li, L.M.; Cendes, F.; Mesquita, R.C. Quantification of the Tissue Oxygenation Delay Induced by Breath-Holding in Patients with Carotid Atherosclerosis. Metabolites 2022, 12, 1156. [Google Scholar] [CrossRef]
- Laganà, M.M.; Di Rienzo, M.; Rizzo, F.; Ricci, C.; D’Onofrio, S.; Forzoni, L.; Cecconi, P. Cardiac, Respiratory and Postural Influences on Venous Return of Internal Jugular and Vertebral Veins. Ultrasound Med. Biol. 2017, 43, 1195–1204. [Google Scholar] [CrossRef]
- Lee, K.; Kim, H.; Cho, S.; Joh, J.H. Change of Venous Return after Diaphragmatic Deep Breathing. Ann. Phlebol. 2022, 20, 95–99. [Google Scholar] [CrossRef]
- Hillman, E.M.C. Coupling Mechanism and Significance of the BOLD Signal: A Status Report. Annu. Rev. Neurosci. 2014, 37, 161–181. [Google Scholar] [CrossRef]
- Hirano, Y.; Stefanovic, B.; Silva, A.C. Spatiotemporal Evolution of the Functional Magnetic Resonance Imaging Response to Ultrashort Stimuli. J. Neurosci. 2011, 31, 1440–1447. [Google Scholar] [CrossRef]
- Martindale, J.; Mayhew, J.; Berwick, J.; Jones, M.; Martin, C.; Johnston, D.; Redgrave, P.; Zheng, Y. The Hemodynamic Impulse Response to a Single Neural Event. J. Cereb. Blood Flow Metab. 2003, 23, 546–555. [Google Scholar] [CrossRef]
- Bijari, P.B.; Wasserman, B.A.; Steinman, D.A. Carotid Bifurcation Geometry Is an Independent Predictor of Early Wall Thickening at the Carotid Bulb. Stroke 2014, 45, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, X.; Iskander, A.J.; Wang, P. On the Flow Characteristics in Different Carotid Arteries. Phys. Fluids 2020, 32, 101902. [Google Scholar] [CrossRef]
- Elfar, S.; Onsy, A.; Farouk, M.A. Clinical and Radiographic Predictors of Successful Coronary Angiography Through Right Radial Artery Access. Interv. Cardiol. 2023, 18, e21. [Google Scholar] [CrossRef] [PubMed]
- Cha, K.S.; Kim, M.H.; Kim, H.J. Prevalence and Clinical Predictors of Severe Tortuosity of Right Subclavian Artery in Patients Undergoing Transradial Coronary Angiography. Am. J. Cardiol. 2003, 92, 1220–1222. [Google Scholar] [CrossRef]
- Narsinh, K.H.; Mirza, M.H.; Duvvuri, M.; Caton Jr, M.T.; Baker, A.; Winkler, E.A.; Higashida, R.T.; Halbach, V.V.; Amans, M.R.; Cooke, D.L.; et al. Radial Artery Access Anatomy: Considerations for Neuroendovascular Procedures. J. Neurointerv. Surg. 2021, 13, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.-W.; He, J.; Kinouchi, Y.; Yamaguchi, H.; Miyamoto, H. Blood Flow in the Carotid Artery during Breath-Holding in Relation to Diving Bradycardia. Eur. J. Appl. Physiol. 1997, 75, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T.; Wong, E.C.; Buxton, R.B. Perfusion MRI. In Encyclopedia of Neuroscience; Squire, L.R., Ed.; Academic Press: Oxford, UK, 2009; pp. 543–549. ISBN 978-0-08-045046-9. [Google Scholar]
- Copen, W.A.; Lev, M.H.; Rapalino, O. Chapter 6—Brain Perfusion: Computed Tomography and Magnetic Resonance Techniques. In Handbook of Clinical Neurology; Masdeu, J.C., González, R.G., Eds.; Neuroimaging Part I; Elsevier: Amsterdam, The Netherlands, 2016; Volume 135, pp. 117–135. [Google Scholar]
- Mathews, P. Sample Size Calculations: Practical Methods for Engineers and Scientists; Mathews Malnar and Bailey: Painesville, OH, USA, 2010; ISBN 978-0-615-32461-6. [Google Scholar]
Characteristics | Total |
---|---|
Sex assigned at birth—female | 13 (65%) |
Race—nonwhite | 14 (70%) |
Systolic blood pressure—mmHg | 115 ± 11 |
Diastolic blood pressure—mmHg | 71 ± 7 |
Heart rate—beats per minute | 72 ± 11 |
Breathing Segment | Parameter |
---|---|
Breath Hold (BH) | Maximum % change [%] in feature 1 |
Deep Breathing (DB) | Mean oscillation time [sec] for feature |
Mean peak-to-peak amplitude [uM or %] of feature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maheshwari, N.; Marone, A.; Sharma, L.; Kim, S.; Favate, A.; Hielscher, A.H. Preliminary Study Using Wearable Near-Infrared Spectroscopy for Continuous Monitoring of Hemodynamics Through the Carotid Artery. Biosensors 2025, 15, 549. https://doi.org/10.3390/bios15080549
Maheshwari N, Marone A, Sharma L, Kim S, Favate A, Hielscher AH. Preliminary Study Using Wearable Near-Infrared Spectroscopy for Continuous Monitoring of Hemodynamics Through the Carotid Artery. Biosensors. 2025; 15(8):549. https://doi.org/10.3390/bios15080549
Chicago/Turabian StyleMaheshwari, Nisha, Alessandro Marone, Lokesh Sharma, Stephen Kim, Albert Favate, and Andreas H. Hielscher. 2025. "Preliminary Study Using Wearable Near-Infrared Spectroscopy for Continuous Monitoring of Hemodynamics Through the Carotid Artery" Biosensors 15, no. 8: 549. https://doi.org/10.3390/bios15080549
APA StyleMaheshwari, N., Marone, A., Sharma, L., Kim, S., Favate, A., & Hielscher, A. H. (2025). Preliminary Study Using Wearable Near-Infrared Spectroscopy for Continuous Monitoring of Hemodynamics Through the Carotid Artery. Biosensors, 15(8), 549. https://doi.org/10.3390/bios15080549