Development of a Novel Aptamer-Antibody Sandwich Chemiluminescent Biosensor and Its Application in the Detection of Aflatoxin B1
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Measurement and Instruments
2.3. AFB1 Sample Solution Pretreatment
2.4. Preparation of Carboxyl Magnetic Beads Coated with AFB1 Amino Aptamers
2.5. Chemiluminescent Aptamer Indirect Competitive Assay AFB1
3. Results
3.1. Principle of Chemiluminescent Biosensor Detection of AFB1
3.2. Feasibility of AFB1 Detection Using Chemiluminescent Biosensors
3.3. Optimization of Experimental Conditions
3.4. Performance Evaluation of Chemiluminescent Aptamer Sensors
3.5. Comparison of Different Chemiluminescent Aptamer Sensors
3.6. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandey, A.K.; Samota, M.K.; Kumar, A.; Silva, A.S.; Dubey, N.K. Fungal mycotoxins in food commodities: Present status and future concerns. Front. Sustain. Food Syst. 2023, 7, 1162595. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Q.; Hu, X.; Wang, F.; Hu, M.; Yu, Q.; Zhang, G. Electrochemical immunosensor based on AuNPs/Zn/Ni-ZIF-8-800@ graphene for rapid detection of aflatoxin B1 in peanut oil. Anal. Biochem. 2022, 650, 114710. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.; Priest, E.; Naglik, J.R.; Richardson, J.P. Fungal toxins and host immune responses. Front. Microbiol. 2021, 12, 643639. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Pang, J.; Ma, R.; Liang, X.; Wei, M.; Suo, Z.; He, B.; Liu, Y. A signal on-off fluorescence sensor based on the self-assembly DNA tetrahedron for simultaneous detection of ochratoxin A and aflatoxin B1. Anal. Chim. Acta 2022, 1198, 339566. [Google Scholar] [CrossRef] [PubMed]
- Şengül, Ü. Comparing determination methods of detection and quantification limits for aflatoxin analysis in hazelnut. J. Food Drug Anal. 2016, 24, 56–62. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Jia, B.; Tu, Z.; Zeng, J.; Pang, J.; Ren, W.; Haung, Z.; He, B.; Wang, Z. Detection of AFB1 by Immunochromatographic Test Strips Based on Double-Probe Signal Amplification with Nanobody and Biotin-Streptavidin System. Foods 2024, 13, 3396. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Sharma, A.; Khan, R.; Catanante, G.; Sherazi, T.; Bhand, S.; Hayat, A.; Marty, J. Designed strategies for fluorescence-based biosensors for the detection of mycotoxins. Toxins 2018, 10, 197. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Zhai, W.; Feng, X.; Fan, X.; Chen, A.; Wang, M. A lateral flow strip based on a truncated aptamer-complementary strand for detection of type-B aflatoxins in nuts and dried figs. Toxins 2020, 12, 136. [Google Scholar] [CrossRef]
- Zhai, W.; You, T.; Ouyang, X.; Wang, M. Recent progress in mycotoxins detection based on surface-enhanced Raman spectroscopy. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1887–1909. [Google Scholar] [CrossRef]
- Zhou, Q.; Tang, D. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. Trends Anal. Chem. 2020, 124, 115814. [Google Scholar] [CrossRef]
- Su, L.; Song, Y.; Fu, C.; Tang, D. Etching reaction-based photoelectrochemical immunoassay of aflatoxin B1 in foodstuff using cobalt oxyhydroxide nanosheets-coating cadmium sulfide nanoparticles as the signal tags. Anal. Chim. Acta 2019, 1052, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Wang, M.; Yuan, L.; Cheng, Z.; Wu, Z.; Chen, H. Sensitive sandwich ELISA based on a gold nanoparticle layer for cancer detection. Analyst 2012, 137, 1779–1784. [Google Scholar] [CrossRef]
- Chen, T.; Guo, T.; Zhang, J.; Liu, X.; Chen, J.; Wang, P.; Zhang, Y.; Ma, L. An electrochemical aptasensor based on ACEK enrichment for detection of AFB1. Sens. Actuators B Chem. 2024, 417, 136055. [Google Scholar] [CrossRef]
- Gao, X.; Liu, Y.; Wei, J.; Wang, Z.; Ma, X. A facile dual-mode SERS/fluorescence aptasensor for AFB1 detection based on gold nanoparticles and magnetic nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 315, 124268. [Google Scholar] [CrossRef]
- Liu, X.; Singh, R.; Li, M.; Li, G.; Min, R.; Marques, C.; Zhang, B.; Kumar, S. Plasmonic sensor based on offset-splicing and waist-expanded taper using multicore fiber for detection of Aflatoxins B1 in critical sectors. Opt. Express 2023, 31, 4783–4802. [Google Scholar] [CrossRef]
- Yi, Z.; Xiao, S.; Kang, X.; Long, F.; Zhu, A. Bifunctional MOF-encapsulated cobalt-doped carbon dots nanozyme-powered chemiluminescence/fluorescence dual-mode detection of aflatoxin B1. ACS Appl. Mater. Interfaces 2024, 16, 16494–16504. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, Y.; Zhang, J.; Shi, X.; Ma, L.; Yuan, R. Highly Specific Aptamer-Antibody Birecognized Sandwich Module for Ultrasensitive Detection of a Low Molecular Weight Compound. Anal. Chem. 2024, 96, 11326–11333. [Google Scholar] [CrossRef]
- Wang, X.; Dong, S.; Gai, P.; Duan, R.; Li, F. Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy. Biosens. Bioelectron. 2016, 82, 49–54. [Google Scholar] [CrossRef]
- Zhao, M.; Li, S.; Zhou, L.; Shen, Q.; Zhu, H.; Zhu, X. Prognostic values of excision repair cross-complementing genes mRNA expression in ovarian cancer patients. Life Sci. 2018, 194, 34–39. [Google Scholar] [CrossRef]
- Xie, Y.; Ning, M.; Ban, J.; Li, Q. Novel enzyme-linked aptamer assay for the determination of aflatoxin B1 in peanuts. Anal. Lett. 2019, 52, 2961–2973. [Google Scholar] [CrossRef]
- Yang, R.; Liu, J.; Song, D.; Zhu, A.; Xu, W.; Wang, H.; Long, F. Reusable chemiluminescent fiber optic aptasensor for the determination of 17β-estradiol in water samples. Microchim. Acta 2019, 186, 726. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, L.; Ma, W.; Fu, P.; Zhang, Y.; Li, X.; Tao, X. An amplified AuNP-mediated chemiluminescence resonance energy transfer aptasensor based on Nb. BbvCI-powered DNA walker for detecting ochratoxin A in foods. Microchem. J. 2025, 208, 112503. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Xia, S.; Yang, Z.; Zhang, B.; Wang, Y. Chemiluminescence detection of kanamycin by DNA aptamer regulating peroxidase-like activity of Co3O4 nanoparticles. Anal. Sci. 2025, 41, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Fytory, M.; Besbes, F.; Dragoe, D.; Mlika, R.; El Rouby, W.; Farghali, A.; Azzazy, H.; Korri-Youssoufi, H. Biosensors-based polypyrrole/metal-organic framework core-shell for mycotoxins detection. Anal. Chim. Acta 2025, 1372, 344334. [Google Scholar] [CrossRef]
- Sun, Z.; Li, C.; Wu, Z.; Jiang, X.; Zhao, F.; Guo, W.; Guo, Y.; Yu, Q.; Zou, X.; Yang, N. High-precision microfluidic impedance sensing for pretreatment and detection of multiple mycotoxins. Anal. Chem. 2025, 97, 10646–10654. [Google Scholar] [CrossRef]
- Yin, B.; Zeng, S.; Liu, J.; Muhammad, R.; Jiang, Z.; Tan, G.; Yang, Q. Dual-Mode Microfluidic Workstation for Rapid Detection of Multiple Mycotoxins on Chip. Foods 2025, 14, 1928. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, H.; Wang, X.; Wang, X.; Li, F. Development of a chemiluminescent aptasensor for ultrasensitive and selective detection of aflatoxin B1 in peanut and milk. Talanta 2019, 201, 52–57. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, C.; Zhao, Z. Detection of Aflatoxin B1 in Wheat Based on Nucleic Aptamer Chemiluminescence Sensor. Sensors 2025, 25, 988. [Google Scholar] [CrossRef]
- Guan, Y.; Ma, J.; Neng, J.; Yang, B.; Wang, Y.; Xing, F. A novel and label-free chemiluminescence detection of zearalenone based on a truncated aptamer conjugated with a G-quadruplex DNAzyme. Biosensors 2023, 13, 118. [Google Scholar] [CrossRef]
- Yi, Z.; Ren, Y.; Li, Y.; Long, F.; Zhu, A. Development of portable and reusable optical fiber chemiluminescence biosensing platform for rapid on-site detection of aflatoxin B1. Microchem. J. 2023, 186, 108305. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, L.; Wan, Z.; Liu, Y.; Wei, M. Bidirectional hybridized hairpin DNA fluorescent aptasensor based on Au-Pd NPs and CDs for ratiometric detection of AFB1. Microchim. Acta 2024, 191, 489. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, H.; Li, J.; Amin, K.; Lyu, B.; Jing, W.; Wang, S.; Fu, H.; Yu, H.; Guo, Z. Single-walled carbon nanohorn-based fluorescence energy resonance transfer aptasensor platform for the detection of aflatoxin B1. Foods 2023, 12, 2880. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, X.; Kuang, X.; Fan, D.; Sun, X.; Ren, X.; Ma, H.; Wu, D.; Wei, Q. 1,1,2,2-tetra(4-carboxylphenyl) ethylene-based metal-organic gel as aggregation-induced electrochemiluminescence emitter for the detection of aflatoxin B1 based on nanosurface energy transfer. Anal. Chem. 2024, 96, 12593–12597. [Google Scholar] [CrossRef]
Immunoassay Method | Linear Range (ng/mL) | LOD (ng/mL) | References |
---|---|---|---|
Chemiluminescent aptamer | 0.25~10 | 0.067 | This work |
Chemiluminescent aptamer | 0.5~40 | 0.2 | [29] |
Chemiluminescent aptamer | 0.1~10 | 0.09 | [30] |
Chemiluminescent aptamer | 1~100 | 2.85 | [31] |
Chemiluminescent antibody | 0.67~100 | 0.075 | [32] |
Fluorescent aptamer | 1~100 | 0.07 | [33] |
Fluorescent aptamer | 10~100 | 4.1 | [34] |
Electrochemical aptamers | 0.5~200 | 0.17 | [35] |
Added AFB1 (ug/kg) | Detection AFB1 (ug/kg) | Recovery (%) |
---|---|---|
0.5 | 0.483 ± 0.033 | 96.6 ± 6.6 |
1 | 0.944 ± 0.086 | 94.4 ± 8.6 |
2 | 2.161 ± 0.167 | 108.05 ± 8.35 |
5 | 4.880 ± 0.296 | 97.6 ± 5.92 |
10 | 10.366 ± 0.372 | 103.66 ± 3.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Feng, J.; Wu, C. Development of a Novel Aptamer-Antibody Sandwich Chemiluminescent Biosensor and Its Application in the Detection of Aflatoxin B1. Biosensors 2025, 15, 538. https://doi.org/10.3390/bios15080538
Zhao Z, Feng J, Wu C. Development of a Novel Aptamer-Antibody Sandwich Chemiluminescent Biosensor and Its Application in the Detection of Aflatoxin B1. Biosensors. 2025; 15(8):538. https://doi.org/10.3390/bios15080538
Chicago/Turabian StyleZhao, Zhike, Jianghao Feng, and Caizhang Wu. 2025. "Development of a Novel Aptamer-Antibody Sandwich Chemiluminescent Biosensor and Its Application in the Detection of Aflatoxin B1" Biosensors 15, no. 8: 538. https://doi.org/10.3390/bios15080538
APA StyleZhao, Z., Feng, J., & Wu, C. (2025). Development of a Novel Aptamer-Antibody Sandwich Chemiluminescent Biosensor and Its Application in the Detection of Aflatoxin B1. Biosensors, 15(8), 538. https://doi.org/10.3390/bios15080538