Monitoring Inhibition of Hemoglobin Peroxidase Activity After Exposure to Cigarette Smoke Using an Electrochemical Biosensor
Abstract
1. Introduction
2. Materials and Methods
2.1. Hemoglobin Sample Preparation
2.2. Measurement of Hb Catalytic Activity by UV–Vis Spectrophotometry
2.3. Characterization of the Catalytic Activity of Hb Using the Electrochemical Biosensor
3. Results
3.1. Optical Characterization of Hb-PLA Activity After Cigarette Smoke Exposure
3.2. Kinetic Analysis of Hb-PLA Activity
3.3. Measurement of Hb-PLA Activity by Cyclic Voltammetry
3.4. Measurement of Hb Activity by Chronoamperometry
4. Discussion
4.1. Spectrophotometry
4.2. Cyclic Voltammetry
4.3. Chronoamperometry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CS | Cigarette smoke |
| ROS | Reactive oxygen species |
| PLA | Peroxidase activity |
| NaN3 | Sodium azide |
| MetHb | Methemoglobin |
| Hb-PLA | Methemoglobin peroxidase activity |
| TMB | Tetramethylbenzidine |
| H2O2 | Hydrogen peroxide |
| HbS | MetHb solutions |
| HbCS | HbS solutions exposed to cigarette smoke |
| HbAZ | HbS solutions with sodium azide |
| *HbS | HbS solutions with TMB as positive control |
| *HbCS | HbS solutions with TMB exposed to cigarette smoke |
| *HbAZ | HbS solutions with sodium azide and TMB as negative control |
| CV | Cyclic voltammetry |
| CA | Chronoamperometry |
| EIS | Electrical impedance spectroscopy |
Appendix A
| *Hbs | *HbAZ | *HbCS1 | *HbCS5 | *HbCS10 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| tm [s] | Ipo | Ipr | Ipo | Ipr | Ipo | Ipr | Ipo1 | Ipo2 | Ipr | Ipo1 | Ipo2 | Ipr |
| 0 | 0.193 | −20.69 | 23.96 | −78.82 | 16.41 | −102 | 22.13 | - | −147.9 | 58.37 | - | −68.62 |
| 30 | 41.43 | −19.15 | 98.82 | −67.75 | 109.9 | −106 | 64.48 | - | −108.4 | 184.2 | - | −39.03 |
| 60 | 29.39 | −18.37 | 124.7 | −66.02 | 174.7 | −86.09 | 164.2 | - | −79.63 | 285.9 | 90.36 | - |
| 90 | 23.86 | −17.43 | 127.9 | −60.74 | 207.5 | −64.21 | 251.1 | - | −36.7 | 363.1 | 230 | - |
| 120 | 20.92 | −16.67 | 133.9 | −55.55 | 219.2 | −51.83 | 310.5 | 230.6 | −10.14 | 449.9 | 417 | - |
| 180 | 17.91 | −16.05 | 135 | −56.69 | 232.3 | −47.1 | 352 | 367 | - | 569.9 | 572.1 | - |
| 300 | 13.25 | −16.6 | 135.5 | −57.34 | 181.2 | −68.74 | 280.1 | 257.4 | −20.68 | 652.5 | 671.5 | - |
| 600 | 4.73 | −19.15 | 81.21 | −78.26 | 33.97 | −90.57 | 91.84 | - | −93.31 | 793 | 888.3 | - |
| 900 | 3.55 | −19.81 | 45.53 | −88.22 | 18.42 | −82.08 | 48.4 | - | −99.11 | 233.8 | - | −68.21 |
| 1200 | 2.82 | −19.93 | 42.3 | −86.89 | 28.95 | −75.95 | 42.04 | - | −97.32 | 74.17 | - | −86.58 |
| 1800 | 1.63 | −19.87 | 30.71 | −85.9 | 53.9 | −71.82 | 25.89 | - | −92.27 | 30.48 | - | −84.39 |
References
- Alayash, A.I. Hemoglobin-based blood substitutes: Oxygen carriers, pressor agents, or oxidants? Nat. Biotechnol. 1999, 17, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.H.; Ghatge, M.S.; Safo, M.K. Hemoglobin: Structure, Function and Allostery. Subcell. Biochem. 2020, 94, 345–382. [Google Scholar] [CrossRef]
- Eaton, W.A. Impact of hemoglobin biophysical studies on molecular pathogenesis and drug therapy for sickle cell disease. Mol. Asp. Med. 2022, 84, 100971. [Google Scholar] [CrossRef]
- Reeder, B.J. The redox activity of hemoglobins: From physiologic functions to pathologic mechanisms. Antioxid. Redox Signal. 2010, 13, 1087–1123. [Google Scholar] [CrossRef]
- Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108365. [Google Scholar] [CrossRef]
- Seo, Y.S.; Park, J.M.; Kim, J.H.; Lee, M.Y. Cigarette Smoke-Induced Reactive Oxygen Species Formation: A Concise Review. Antioxidants 2023, 12, 1732. [Google Scholar] [CrossRef]
- Alayash, A.I. Mechanisms of Toxicity and Modulation of Hemoglobin-Based Oxygen Carriers. Shock 2019, 52 (Suppl. S1), 41–49. [Google Scholar] [CrossRef] [PubMed]
- Pryor, W.A.; Stone, K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann. N. Y. Acad. Sci. 1993, 686, 12–27; discussion 27–28. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. A Review on Electrochemical Sensors and Biosensors Used in Assessing Antioxidant Activity. Antioxidants 2022, 11, 584. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, X.; Wang, E.; Dong, S. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Biosens. Bioelectron. 2005, 21, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Elewi, A.S.; Al-Shammaree, S.A.W.; Al Sammarraie, A.K.M.A. Hydrogen peroxide biosensor based on hemoglobin-modified gold nanoparticles–screen printed carbon electrode. Sens. Bio-Sens. Res. 2020, 28, 100340. [Google Scholar] [CrossRef]
- Abd-Elsabour, M.; Alsoghier, H.M.; Alhamzani, A.G.; Abou-Krisha, M.M.; Yousef, T.A.; Assaf, H.F. A Novel Electrochemical Sensor for Detection of Nicotine in Tobacco Products Based on Graphene Oxide Nanosheets Conjugated with (1,2-Naphthoquinone-4-Sulphonic Acid) Modified Glassy Carbon Electrode. Nanomaterials 2022, 12, 2354. [Google Scholar] [CrossRef]
- Parate, K.; Karunakaran, C.; Claussen, J.C. Electrochemical cotinine sensing with a molecularly imprinted polymer on a graphene-platinum nanoparticle modified carbon electrode towards cigarette smoke exposure monitoring. Sens. Actuators B Chem. 2019, 287, 165–172. [Google Scholar] [CrossRef]
- Mirani, A.; Kianfar, E.; Maleknia, L.; Javanbakht, M. Recent advances in nicotine electrochemical biosensors: A review. Case Stud. Chem. Environ. Eng. 2024, 9, 100753. [Google Scholar] [CrossRef]
- Biswas, P.; Seal, P.; Sikdar, J.; Haldar, R. Oxidative degradation perturbs physico-chemical properties of hemoglobin in cigarette smokers: A threat to different biomolecules. Inhal. Toxicol. 2021, 33, 275–284. [Google Scholar] [CrossRef]
- Alayash, A.I.; Wilson, M.T. Hemoglobin can Act as a (Pseudo)-Peroxidase in vivo. What is the Evidence? Front. Mol. Biosci. 2022, 9, 910795. [Google Scholar] [CrossRef]
- Wilson, M.T.; Reeder, B.J. The peroxidatic activities of Myoglobin and Hemoglobin, their pathological consequences and possible medical interventions. Mol. Asp. Med. 2022, 84, 101045. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Yang, Z.; Wang, Z.; Xie, X.; Zhou, Z.; Yang, X.; Deng, K.; Huang, H. Rapid modification of hemoglobin heme to form enhanced peroxidase-like activity for colorimetric assay. Biosens. Bioelectron. X 2020, 4, 100041. [Google Scholar] [CrossRef]
- Piantadosi, C.A. Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic. Biol. Med. 2008, 45, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Reznick, A.Z.; Klein, I.; Eiserich, J.P.; Cross, C.E.; Nagler, R.M. Inhibition of oral peroxidase activity by cigarette smoke: In vivo and in vitro studies. Free Radic. Biol. Med. 2003, 34, 377–384. [Google Scholar] [CrossRef]
- Liu, G.; Amin, S.; Okuhama, N.N.; Liao, G.; Mingle, L.A. A quantitative evaluation of peroxidase inhibitors for tyramide signal amplification mediated cytochemistry and histochemistry. Histochem. Cell Biol. 2006, 126, 283–291. [Google Scholar] [CrossRef]
- Shaw, M.; Mitchell, R.; Dorling, D. Time for a smoke? One cigarette reduces your life by 11 minutes. BMJ 2000, 320, 53. [Google Scholar] [CrossRef] [PubMed]
- Schimmel, J.; George, N.; Schwarz, J.; Yousif, S.; Suner, S.; Hack, J.B. Carboxyhemoglobin Levels Induced by Cigarette Smoking Outdoors in Smokers. J. Med. Toxicol. 2018, 14, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Furtmüller, P.G.; Zederbauer, M.; Jantschko, W.; Helm, J.; Bogner, M.; Jakopitsch, C.; Obinger, C. Active site structure and catalytic mechanisms of human peroxidases. Arch. Biochem. Biophys. 2006, 445, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Malenica, M.; Prnjavorac, B.; Bego, T.; Dujic, T.; Semiz, S.; Skrbo, S.; Gusic, A.; Hadzic, A.; Causevic, A. Effect of Cigarette Smoking on Haematological Parameters in Healthy Population. Med. Arch. 2017, 71, 132–136. [Google Scholar] [CrossRef]
- Yunus, G.; Singh, R.; Raveendran, S.; Kuddus, M. Electrochemical biosensors in healthcare services: Bibliometric analysis and recent developments. PeerJ 2023, 11, e15566. [Google Scholar] [CrossRef]
- Rifkind, J.M.; Nagababu, E.; Ramasamy, S.; Ravi, L.B. Hemoglobin redox reactions and oxidative stress. Redox Rep. 2003, 8, 234–237. [Google Scholar] [CrossRef]
- Tang, J.; Tang, D.; Su, B.; Li, Q.; Qiu, B.; Chen, G. Nanosilver-penetrated polyion graphene complex membrane for mediator-free amperometric immunoassay of alpha-fetoprotein using nanosilver-coated silica nanoparticles. Electrochim. Acta 2011, 56, 3773–3780. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Begines, E.; Heredia, F.J.; Escudero-Gilete, M.L.; Hernanz, D. Effectiveness of Cyclic Voltammetry in Evaluation of the Synergistic Effect of Phenolic and Amino Acids Compounds on Antioxidant Activity: Optimization of Electrochemical Parameters. Foods 2024, 13, 906. [Google Scholar] [CrossRef]
- Dorey, A.; Scheerlinck, P.; Nguyen, H.; Albertson, T. Acute and Chronic Carbon Monoxide Toxicity from Tobacco Smoking. Mil. Med. 2020, 185, e61–e67. [Google Scholar] [CrossRef]
- Doyle, M.P.; Hoekstra, J.W. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J. Inorg. Biochem. 1981, 14, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Way, J.L. Cyanide intoxication and its mechanism of antagonism. Annu. Rev. Pharmacol. Toxicol. 1984, 24, 451–481. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Banerjee, S.; Mitra, A.; Muralidharan, M.; Roy, B.; Banerjee, R.; Mandal, A.K.; Chatterjee, I.B. Interaction of p-benzoquinone with hemoglobin in smoker’s blood causes alteration of structure and loss of oxygen binding capacity. Toxicol. Rep. 2016, 3, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Boehm, R.E.; Arbo, B.D.; Leal, D.; Hansen, A.W.; Pulcinelli, R.R.; Thiesen, F.V.; Balsan, A.M.; Onsten, T.G.H.; Gomez, R. Smoking fewer than 20 cigarettes per day and remaining abstinent for more than 12 hours reduces carboxyhemoglobin levels in packed red blood cells for transfusion. PLoS ONE 2018, 13, e0204102. [Google Scholar] [CrossRef]
- Fini, H.; Kerman, K. Revisiting the nitrite reductase activity of hemoglobin with differential pulse voltammetry. Anal. Chim. Acta 2020, 1104, 38–46. [Google Scholar] [CrossRef]
- Mocniak, L.E.; Bitzer, Z.T.; Trushin, N.; Richie, J.P. Effects of tobacco nitrate content on free radical levels in mainstream smoke. Free Radic. Biol. Med. 2022, 190, 116–123. [Google Scholar] [CrossRef]
- Chen, H.; Cui, L.; Jiang, X.Y.; Pang, Y.Q.; Tang, G.L.; Hou, H.W.; Jiang, J.H.; Hu, Q.Y. Evaluation of the cytotoxicity of cigarette smoke condensate by a cellular impedance biosensor. Food Chem. Toxicol. 2012, 50, 612–618. [Google Scholar] [CrossRef]
- Sana Rafiq, H.; Fatima, B.; Hussain, D.; Mohyuddin, A.; Majeed, S.; Manzoor, S.; Imran, M.; Nawaz, R.; Shabbir, S.; Mukhtar, S.; et al. Selective electrochemical sensing of hemoglobin from blood of β-thalassemia major patients by tellurium nanowires-graphene oxide modified electrode. Chem. Eng. J. 2021, 419, 129706. [Google Scholar] [CrossRef]
- Duong, C.; Seow, H.J.; Bozinovski, S.; Crack, P.J.; Anderson, G.P.; Vlahos, R. Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2010, 299, L425–L433. [Google Scholar] [CrossRef]
- Arslan, H.; Özdemir, M.; Zengin, H.; Zengin, G. Glucose Biosensing at Carbon Paste Electrodes Containing Polyaniline-Silicon dioxide Composite. Int. J. Electrochem. Sci. 2012, 7, 10205–10214. [Google Scholar] [CrossRef]
- Schinagl, M.; Fasching, M.; Höschele, P.; Ellersdorfer, C. Impact of temperature on Li-ion battery impedance and compensation strategies. J. Power Sources 2025, 649, 237478. [Google Scholar] [CrossRef]
- Mitra, A.; Mandal, A.K. Conjugation of para-benzoquinone of Cigarette Smoke with Human Hemoglobin Leads to Unstable Tetramer and Reduced Cooperative Oxygen Binding. J. Am. Soc. Mass Spectrom. 2018, 29, 2048–2058. [Google Scholar] [CrossRef]
- Méndez-Alvarez, E.; Soto-Otero, R.; Sánchez-Sellero, I.; López-Rivadulla Lamas, M. In vitro inhibition of catalase activity by cigarette smoke: Relevance for oxidative stress. J. Appl. Toxicol. 1998, 18, 443–448. [Google Scholar] [CrossRef]






| Sample | tCS (min) | + %Hb-PLA máx | ++ tkm (min) |
|---|---|---|---|
| *Hbs | N/A | 100 | 2.0 |
| *HbCS1 | 1 | 72 | 10.1 |
| *HbCS5 | 5 | 43 | >30 |
| *HbCS10 | 10 | 20 | >30 |
| *HbAz | N/A | 43 | 17.1 |
| Method | + %HbCS10-PLA | r2 |
|---|---|---|
| Spectrophotometry | 13 ± 4.9 | 0.99 |
| Biosensor using CA | 25 ± 4.2 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sequeda-Juárez, A.; Cortés-Ortegón, F.; Ortega-Picazo, D.; García-García, J.A.; Espinosa-García, A.M.; Sánchez-Pérez, C. Monitoring Inhibition of Hemoglobin Peroxidase Activity After Exposure to Cigarette Smoke Using an Electrochemical Biosensor. Biosensors 2025, 15, 767. https://doi.org/10.3390/bios15120767
Sequeda-Juárez A, Cortés-Ortegón F, Ortega-Picazo D, García-García JA, Espinosa-García AM, Sánchez-Pérez C. Monitoring Inhibition of Hemoglobin Peroxidase Activity After Exposure to Cigarette Smoke Using an Electrochemical Biosensor. Biosensors. 2025; 15(12):767. https://doi.org/10.3390/bios15120767
Chicago/Turabian StyleSequeda-Juárez, Alfonso, Flor Cortés-Ortegón, Diego Ortega-Picazo, José Antonio García-García, Ana María Espinosa-García, and Celia Sánchez-Pérez. 2025. "Monitoring Inhibition of Hemoglobin Peroxidase Activity After Exposure to Cigarette Smoke Using an Electrochemical Biosensor" Biosensors 15, no. 12: 767. https://doi.org/10.3390/bios15120767
APA StyleSequeda-Juárez, A., Cortés-Ortegón, F., Ortega-Picazo, D., García-García, J. A., Espinosa-García, A. M., & Sánchez-Pérez, C. (2025). Monitoring Inhibition of Hemoglobin Peroxidase Activity After Exposure to Cigarette Smoke Using an Electrochemical Biosensor. Biosensors, 15(12), 767. https://doi.org/10.3390/bios15120767

