Deep Learning-Based Prediction of Individual Cell α-Dispersion Capacitance from Morphological Features
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Treatments
2.2. Electrode Fabrication
2.3. Experimental Setup
2.4. Capacitance Measurement
2.5. Dataset Establishment
2.6. Training Model Development
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial intelligence |
| CCD | Charge-coupled device |
| CNN | Convolutional neural network |
| DPBS | Dulbecco’s phosphate buffered saline |
| EGF | Epidermal growth factor |
| EGFR | Epidermal growth factor receptor |
| MAE | Mean absolute error |
| MSE | Mean squared error |
References
- Hoffmann, E.K.; Pedersen, S.F. Cell volume homeostatic mechanisms: Effectors and signalling pathways. Acta Physiol. 2010, 202, 465–485. [Google Scholar] [CrossRef]
- Matsumura, R.; Yamamoto, H.; Hayakawa, T.; Katsurabayashi, S.; Niwano, M.; Hirano-Iwata, A. Dependence and Homeostasis of Membrane Impedance on Cell Morphology in Cultured Hippocampal Neurons. Sci. Rep. 2018, 8, 9905. [Google Scholar] [CrossRef]
- O’Leary, T.; Williams, A.H.; Franci, A.; Marder, E. Cell Types, Network Homeostasis, and Pathological Compensation from a Biologically Plausible Ion Channel Expression Model. Neuron 2014, 82, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Frolenkov, L.G.; Mammano, G.; Belyantseva, A.I.; Coling, D.; Kachar, B. Two Distinct Ca(2+)-Dependent Signaling Pathways Regulate the Motor Output of Cochlear Outer Hair Cells. J. Neurosci. 2000, 20, 5940–5948. [Google Scholar] [CrossRef] [PubMed]
- Bandmann, V.; Mirsanaye, A.S.; Shäfer, J.; Thiel, G.; Holstein, T.; Mikosch-Wersching, M. Membrane capacitance recordings resolve dynamics and complexity of receptor-mediated endocytosis in Wnt signalling. Sci. Rep. 2019, 9, 12999. [Google Scholar] [CrossRef] [PubMed]
- Patiño-Ruiz, M.F.; Anshari, Z.R.; Gaastra, B.; Slotboom, D.J.; Poolman, B. Chemiosmotic nutrient transport in synthetic cells powered by electrogenic antiport coupled to decarboxylation. Nat. Commun. 2024, 15, 7976. [Google Scholar] [CrossRef]
- Sohn, L.L.; Saleh, O.A.; Facer, G.R.; Beavis, J.A.J.; Allan, R.S.; Notterman, D.A. Capacitance cytometry: Measuring biological cells one by one. Proc. Natl. Acad. Sci. USA 2000, 97, 10687–10690. [Google Scholar] [CrossRef]
- Ullah, G.; Wei, Y.; Dahlem, M.A.; Wechselberger, M.; Schiff, S.J. The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization. PLoS Comput. Biol. 2015, 11, e1004414. [Google Scholar] [CrossRef]
- Asami, K. Design of a measurement cell for low-frequency dielectric spectroscopy of biological cell suspensions. Meas. Sci. Technol. 2011, 22, 085801. [Google Scholar] [CrossRef]
- Grimnes, S.; Martinsen, Ø.G. Alpha-dispersion in human tissue. J. Phys.: Conf. Ser. 2010, 224, 012073. [Google Scholar] [CrossRef]
- Grosse, C.; Delgado, A.V. Dielectric dispersion in aqueous colloidal systems. Curr. Opin. Colloid Interface Sci. 2010, 15, 145–159. [Google Scholar] [CrossRef]
- Sengupta, A.; Gupta, S.; Sharda, A.; Hemant, S.; Ingle, A. Effect of Low Frequency Electrical Current on the Biophysical and Molecular Properties of Cancer Cells. Int. J. Cancer Clin. Res. 2021, 8, 145. [Google Scholar] [CrossRef]
- Sanganna Gari, R.R.; Montalvo-Acosta, J.J.; Heath, G.R.; Jiang, Y.; Gao, X.; Nimigean, C.M.; Chipot, C.; Scheuring, S. Correlation of membrane protein conformational and functional dynamics. Nat. Commun. 2021, 12, 4363. [Google Scholar] [CrossRef] [PubMed]
- Tsong, T.Y. Electrical Modulation of Membrane Proteins: Enforced Conformational Oscillations and Biological Energy and Signal Transductions. Annu. Rev. Biophys. 1990, 19, 83–106. [Google Scholar] [CrossRef] [PubMed]
- Howell, B.; Medina, L.E.; Grill, W.M. Effects of frequency-dependent membrane capacitance on neural excitability. J. Neural Eng. 2015, 12, 056015. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Kim, P.H.; Choi, J.-W.; Oh-Joon, K.; Kim, K.; Kim, D.; Yun, C.-O.; Yoo, K.-H. Capacitance-based real time monitoring of receptor-mediated endocytosis. Biosens. Bioelectron. 2010, 25, 1325–1332. [Google Scholar] [CrossRef]
- Lee, R.; Jo, D.H.; Chung, S.J.; Na, H.-K.; Kim, J.H.; Lee, T.G. Real-time and label-free monitoring of nanoparticle cellular uptake using capacitance-based assays. Sci. Rep. 2016, 6, 33668. [Google Scholar] [CrossRef]
- Asami, K.; Gheorghiu, E.; Yonezawa, T. Real-Time Monitoring of Yeast Cell Division by Dielectric Spectroscopy. Biophys. J. 1999, 76, 3345–3348. [Google Scholar] [CrossRef]
- Honrado, C.; Michel, N.; Moore, J.H.; Salahi, A.; Porterfield, V.; McConnell, M.J.; Swami, N.S. Label-Free Quantification of Cell Cycle Synchronicity of Human Neural Progenitor Cells Based on Electrophysiology Phenotypes. ACS Sensors 2021, 6, 156–165. [Google Scholar] [CrossRef]
- Nicholson, R.; Gee, J.; Harper, M. EGFR and cancer prognosis. EJC 2001, 37, 9–15. [Google Scholar] [CrossRef]
- Johnston, J.B.; Navaratnam, S.; Pitz, M.W.; Maniate, J.M.; Wiechec, E.; Baust, H.; Gingerich, J.; Skliris, G.P.; Murphy, L.C.; Los, M. Targeting the EGFR Pathway for Cancer Therapy. Curr. Med. Chem. 2006, 13, 3483–3492. [Google Scholar] [CrossRef]
- Shin, D.-M.; Shin, Y.-C.; Lee, J.-H.; Kim, T.-H.; Han, D.-W.; Kim, J.-M.; Kim, H.K.; Kim, K.; Hwang, Y.-H. Highly sensitive detection of epidermal growth factor receptor expression levels using a capacitance sensor. Sens. Actuators B Chem. 2015, 209, 438–443. [Google Scholar] [CrossRef]
- Das, D.; Kamil, F.A.; Biswas, K.; Das, S. Evaluation of single cell electrical parameters from bioimpedance of a cell suspension. RSC Adv. 2014, 4, 18178–18185. [Google Scholar] [CrossRef]
- Tan, Q.; Ferrier, G.A.; Chen, B.K.; Wang, C.; Sun, Y. Quantification of the specific membrane capacitance of single cells using a microfluidic device and impedance spectroscopy measurement. Biomicrofluidics 2012, 6, 034112. [Google Scholar] [CrossRef]
- Homann, U.; Tester, M. Patch-clamp measurements of capacitance to study exocytosis and endocytosis. Trends Plant Sci. 1998, 3, 110–114. [Google Scholar] [CrossRef]
- Lindau, M.; Neher, E. Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflügers Arch. 1988, 411, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, D.; Li, H.; Luo, Y.; Deng, B.; Huang, S.-B.; Chiu, T.-K.; Wu, M.-H.; Long, R.; Hu, H.; et al. A microfluidic system enabling continuous characterization of specific membrane capacitance and cytoplasm conductivity of single cells in suspension. Biosens. Bioelectron. 2013, 43, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-B.; Zhao, Y.; Chen, D.; Lee, H.-C.; Luo, Y.; Chiu, T.-K.; Wang, J.; Chen, J.; Wu, M.-H. A clogging-free microfluidic platform with an incorporated pneumatically driven membrane-based active valve enabling specific membrane capacitance and cytoplasm conductivity characterization of single cells. Sens. Actuators B Chem. 2014, 190, 928–936. [Google Scholar] [CrossRef]
- Feng, Y.; Huang, L.; Zhao, P.; Liang, F.; Wang, W. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement. Anal. Chem. 2019, 91, 15204–15212. [Google Scholar] [CrossRef]
- Murphy, T.W.; Zhang, Q.; Naler, L.B.; Ma, S.; Lu, C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 2018, 143, 60–80. [Google Scholar] [CrossRef]
- Safa, N.; Vaithiyanathan, M.; Sombolestani, S.; Charles, S.; Melvin, A.T. Population-based analysis of cell-penetrating peptide uptake using a microfluidic droplet trapping array. Anal. Bioanal. Chem. 2019, 411, 2729–2741. [Google Scholar] [CrossRef]
- Shin, S.R.; Kilic, T.; Zhang, Y.S.; Avci, H.; Hu, N.; Kim, D.; Branco, C.; Aleman, J.; Massa, S.; Silvestri, A.; et al. Label-Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. Adv. Sci. 2017, 4, 1600522. [Google Scholar] [CrossRef] [PubMed]
- Bagnaninchi, P.O.; Drummond, N. Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing. Proc. Natl. Acad. Sci. USA 2011, 108, 6462–6467. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Mahjoubfar, A.; Tai, L.-C.; Blaby, I.K.; Huang, A.; Niazi, K.R.; Jalali, B. Deep Learning in Label-free Cell Classification. Sci. Rep. 2016, 6, 21471. [Google Scholar] [CrossRef] [PubMed]
- Meng, N.; Lam, E.Y.; Tsia, K.K.; So, H.K.-H. Large-Scale Multi-Class Image-Based Cell Classification With Deep Learning. IEEE J. Biomed. Health Inform. 2019, 23, 2091–2098. [Google Scholar] [CrossRef]
- Yao, K.; Rochman, N.D.; Sun, S.X. Cell Type Classification and Unsupervised Morphological Phenotyping From Low-Resolution Images Using Deep Learning. Sci. Rep. 2019, 9, 13567. [Google Scholar] [CrossRef]
- Armenteros, J.J.A.; Sønderby, C.K.; Sønderby, S.K.; Nielsen, H.; Winther, O. DeepLoc: Prediction of protein subcellular localization using deep learning. Bioinformatics 2017, 33, 3387–3395. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, D.; Yao, Y.; Eubel, H.; Künzler, P.; Møller, I.M.; Xu, D. MULocDeep: A deep-learning framework for protein subcellular and suborganellar localization prediction with residue-level interpretation. Comput. Struct. Biotechnol. J. 2021, 19, 4825–4839. [Google Scholar] [CrossRef]
- Wei, L.; Ding, Y.; Su, R.; Tang, J.; Zou, Q. Prediction of human protein subcellular localization using deep learning. J. Parallel Distrib. Comput. 2018, 117, 212–217. [Google Scholar] [CrossRef]
- Muzio, G.; O’Bray, L.; Borgwardt, K. Biological network analysis with deep learning. Brief. Bioinform. 2021, 22, 1515–1530. [Google Scholar] [CrossRef]
- Jin, S.; Zeng, X.; Xia, F.; Huang, W.; Liu, X. Application of deep learning methods in biological networks. Brief. Bioinform. 2021, 22, 1902–1917. [Google Scholar] [CrossRef]
- Yang, W.; Wang, P.; Luo, M.; Cai, Y.; Xu, C.; Xue, G.; Jin, X.; Cheng, R.; Que, J.; Pang, F.; et al. DeepCCI: A deep learning framework for identifying cell–cell interactions from single-cell RNA sequencing data. Bioinformatics 2023, 39, btad596. [Google Scholar] [CrossRef]
- Cho, S.K.; Kim, S.; Kang, T.Y.; Kim, H.K.; Kim, K.; Hwang, Y.H. Controlled in situ capacitance sensing of single cell via simultaneous optical tweezing. Sens. Actuators B Chem. 2020, 321, 128512. [Google Scholar] [CrossRef]
- Asami, K. Low-frequency dielectric dispersion of bacterial cell suspensions. Colloids Surf. B Biointerfaces 2014, 119, 1–5. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, X.; Liu, K.; Lan, T.; Wang, Z.; Zhu, Z. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis. Biosensors 2021, 11, 470. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, M.C.; Mestre, A.; Inácio, P.; Asgarifar, S.; Araújo, I.M.; Hubbard, P.C.; Velez, Z.; Cancela, M.L.; Rocha, P.R.; de Leeuw, D.M.; et al. An electrical method to measure low-frequency collective and synchronized cell activity using extracellular electrodes. Sens. Bio-Sens. Res. 2016, 10, 1–8. [Google Scholar] [CrossRef]
- Veiga, F.V.; Nimrichter, L.; Teixeira, C.A.; Morales, M.M.; Alviano, C.S.; Rodrigues, M.L.; Holandino, C. Exposure of human leukemic cells to direct electric current: Generation of toxic compounds inducing cell death by different mechanisms. Cell Biochem. Biophys. 2005, 42, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.-Y.; Manjunath, B. EdgeFlow: A technique for boundary detection and image segmentation. IEEE Trans. Image Process. 2000, 9, 1375–1388. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Hamid, O.H. Data-Centric and Model-Centric AI: Twin Drivers of Compact and Robust Industry 4.0 Solutions. Appl. Sci. 2023, 13, 2753. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, T.Y.; Kim, S.; Hwang, Y.-H.; Kim, K. Deep Learning-Based Prediction of Individual Cell α-Dispersion Capacitance from Morphological Features. Biosensors 2025, 15, 753. https://doi.org/10.3390/bios15110753
Kang TY, Kim S, Hwang Y-H, Kim K. Deep Learning-Based Prediction of Individual Cell α-Dispersion Capacitance from Morphological Features. Biosensors. 2025; 15(11):753. https://doi.org/10.3390/bios15110753
Chicago/Turabian StyleKang, Tae Young, Soojung Kim, Yoon-Hwae Hwang, and Kyujung Kim. 2025. "Deep Learning-Based Prediction of Individual Cell α-Dispersion Capacitance from Morphological Features" Biosensors 15, no. 11: 753. https://doi.org/10.3390/bios15110753
APA StyleKang, T. Y., Kim, S., Hwang, Y.-H., & Kim, K. (2025). Deep Learning-Based Prediction of Individual Cell α-Dispersion Capacitance from Morphological Features. Biosensors, 15(11), 753. https://doi.org/10.3390/bios15110753

