Construction of an Immunosensor Based on the Affinity DNA Functional Ligands to the Fc Segment of IgG Antibody
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Characterization of Affinity and Binding Sites
2.2.1. Characterization of Affinity
2.2.2. Verification of Binding Sites
2.2.3. Molecular Docking Simulation Between A-DNAFL and Fc Fragment
2.3. Construction of Immunosensors
3. Results
3.1. Interaction Between ssDNA and Mouse IgG
3.1.1. Affinity
3.1.2. Validation Binding Sites
3.2. MDs Between ssDNA and IgG Antibody
3.3. Toxin Detection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| A-DNAFL | Affinity DNA functional ligand |
| Fab | Antigen-binding fragments |
| Fc | Crystallizable fragment |
| BLI | Bio-Layer Interferometry |
| Ricin McAb | Mouse anti-ricin monoclonal antibody |
| BSA | Bovine serum albumin |
| SAX2.0 | High Precision Streptavidin |
| ProA | Protein A |
| DS4.5 | Discovery Studio 4.5 |
| MDs | Molecular docking simulations |
| SAS | Solvent accessible surface |
| Human IgG | Human immunoglobulin G |
| RSD | Relative standard deviation |
References
- Goulet, D.R.; Atkins, W.M. Considerations for the Design of Antibody-Based Therapeutics. J. Pharm. Sci. 2020, 109, 74–103. [Google Scholar] [CrossRef]
- Strohl, W.R. Current Progress in Innovative Engineered Antibodies. Protein Cell 2018, 9, 86–120. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Sempowski, G.D.; Saunders, K.O.; Acharya, P.; Haynes, B.F. SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. Annu. Rev. Med. 2022, 73, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Muruato, A.E.; Fontes-Garfias, C.R.; Ren, P.; Garcia-Blanco, M.A.; Menachery, V.D.; Xie, X.; Shi, P.-Y. A High-Throughput Neutralizing Antibody Assay for COVID-19 Diagnosis and Vaccine Evaluation. Nat. Commun. 2020, 11, 4059. [Google Scholar] [CrossRef] [PubMed]
- Chrone, V.G.; Jespersen, J.C.; Asani, D.C.; Trier, N.H.; Ray, S.; Berthias, F.; Willemoës, M.; Holm, A.; Frederiksen, J.L.; Houen, G.; et al. Native Structure of the Monoclonal Therapeutic CD20 Antibody Ocrelizumab. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2025, 1873, 141084. [Google Scholar] [CrossRef]
- Wang, S.; Chen, M.; Zhou, T.; Guo, C.; Yan, Z.; Xu, Y.; Xing, H.; Tang, K.; Tian, Z.; Rao, Q.; et al. Novel Loop Structure of Human IgG1 Fc Fused CD38 Targeted Bispecific Antibodies and Their Anti-Tumor Effect in Acute Myeloid Leukemia. J. Transl. Med. 2025, 23, 849. [Google Scholar] [CrossRef]
- McDonald, I.; Murray, S.M.; Reynolds, C.J.; Altmann, D.M.; Boyton, R.J. Comparative Systematic Review and Meta-Analysis of Reactogenicity, Immunogenicity and Efficacy of Vaccines against SARS-CoV-2. npj Vaccines 2021, 6, 74. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Huang, B.; Deng, W.; Quan, Y.; Wang, W.; Xu, W.; Zhao, Y.; Li, N.; Zhang, J.; et al. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell 2020, 182, 713–721.e9. [Google Scholar] [CrossRef]
- Pellini, R.; Venuti, A.; Pimpinelli, F.; Abril, E.; Blandino, G.; Campo, F.; Conti, L.; Virgilio, A.D.; Marco, F.D.; Domenico, E.G.D.; et al. Initial Observations on Age, Gender, BMI and Hypertension in Antibody Responses to SARS-CoV-2 BNT162b2 Vaccine. EClinicalMedicine 2021, 36, 100928. [Google Scholar] [CrossRef]
- Pei, X.; Zhang, B.; Tang, J.; Liu, B.; Lai, W.; Tang, D. Sandwich-Type Immunosensors and Immunoassays Exploiting Nanostructure Labels: A Review. Anal. Chim. Acta 2013, 758, 1–18. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, Q.; Luo, S.; He, L.; Fan, R.; Zhang, S.; Yang, C.; Chen, Y. Dual Near-Infrared Fluorescence-Based Lateral Flow Immunosensor for the Detection of Zearalenone and Deoxynivalenol in Maize. Food Chem. 2021, 336, 127718. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, X.; Liu, L.; Xu, L.; Kuang, H.; Xu, C. Rapid and Sensitive Detection of Diclazuril in Chicken Samples Using a Gold Nanoparticle-Based Lateral-Flow Strip. Food Chem. 2020, 312, 126116. [Google Scholar] [CrossRef]
- Xiao, H.; Han, S.; Zhu, M.; Lin, M.; Cheng, N.; Che, H. State of the Art and Perspectives of Improving Antibody Performance in Food Immunosensors. Trends Anal. Chem. 2025, 191, 118308. [Google Scholar] [CrossRef]
- Eticha, T.; Zhu, M.; Dong, Z.; Tessema, S.S.; Alboull, A.M.A.; Ma, D.; Xu, G. Single-Electrode Electrochemiluminescence Immunosensor for Multiplex Detection of Aquaporin-4 Antibody Using Metal-Organic Gels as Coreactant. Biosens. Bioelectron. 2025, 272, 117128. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.L.; Goulet, D.R.; Teplyakov, A.; Gilliland, G.L. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies 2019, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Erbe, A.K.; Hank, J.A.; Morris, Z.S.; Sondel, P.M. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Front. Immunol. 2015, 6, 368. [Google Scholar] [CrossRef]
- Pincetic, A.; Bournazos, S.; DiLillo, D.J.; Maamary, J.; Wang, T.T.; Dahan, R.; Fiebiger, B.-M.; Ravetch, J.V. Type I and Type II Fc Receptors Regulate Innate and Adaptive Immunity. Nat. Immunol. 2014, 15, 707–716. [Google Scholar] [CrossRef]
- Kastenschmidt, J.M.; Wagar, L.E. Varying the Constant: Mechanisms of Fc-Mediated Immunity to Influenza Virus. Cell Host Microbe 2020, 28, 769–770. [Google Scholar] [CrossRef]
- Nkumama, I.N.; Ogwang, R.; Odera, D.; Musasia, F.; Mwai, K.; Nyamako, L.; Murungi, L.; Tuju, J.; Fürle, K.; Rosenkranz, M.; et al. Breadth of Fc-Mediated Effector Function Correlates with Clinical Immunity Following Human Malaria Challenge. Immunity 2024, 57, 1215–1224.e6. [Google Scholar] [CrossRef]
- Forsgren, A.; Sjöquist, J. “Protein A” from S. Aureus I. Pseudo-Immune Reaction with Human Gamma-Globulin. J. Immunol. 1966, 97, 822–827. [Google Scholar] [CrossRef]
- Bolton, G.R.; Mehta, K.K. The Role of More than 40 Years of Improvement in Protein A Chromatography in the Growth of the Therapeutic Antibody Industry. Biotechnol. Prog. 2016, 32, 1193–1202. [Google Scholar] [CrossRef]
- Jung, Y.; Lee, J.M.; Jung, H.; Chung, B.H. Self-Directed and Self-Oriented Immobilization of Antibody by Protein G-DNA Conjugate. Anal. Chem. 2007, 79, 6534–6541. [Google Scholar] [CrossRef] [PubMed]
- Elshafey, R.; Tavares, A.C.; Siaj, M.; Zourob, M. Electrochemical Impedance Immunosensor Based on Gold Nanoparticles–Protein G for the Detection of Cancer Marker Epidermal Growth Factor Receptor in Human Plasma and Brain Tissue. Biosens. Bioelectron. 2013, 50, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.-H.; Sun, Y. Protein A-Based Ligands for Affinity Chromatography of Antibodies. Chin. J. Chem. Eng. 2021, 30, 194–203. [Google Scholar] [CrossRef]
- Pabst, T.M.; Thai, J.; Hunter, A.K. Evaluation of Recent Protein A Stationary Phase Innovations for Capture of Biotherapeutics. J. Chromatogr. A 2018, 1554, 45–60. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Maranholkar, V.; Hadpe, S.; Iyer, J.; Rathore, A. Optimization of Multi Flow Rate Loading Strategy for Process Intensification of Protein A Chromatography. J. Chromatogr. Open 2022, 2, 100049. [Google Scholar] [CrossRef]
- Mix, K.; Sun, T.; Hall, B.; Newton, J.; Eng, C.; Guo, Y.; Reczek, D. Rapid Affinity-Based Purification of Multi-Specific Antibodies Using Kappa Select and Protein L. mAbs 2025, 17, 2483272. mAbs 2025, 17, 2483272. [Google Scholar] [CrossRef]
- Bhoyar, S.; Foster, M.; Oh, Y.H.; Xu, X.; Traylor, S.J.; Guo, J.; Ghose, S.; Lenhoff, A.M. Engineering Protein A Ligands to Mitigate Antibody Loss during High-pH Washes in Protein A Chromatography. J. Chromatogr. A 2023, 1696, 463962. [Google Scholar] [CrossRef]
- Choi, H.W.; Sakata, Y.; Ooya, T.; Takeuchi, T. Reflectometric Interference Spectroscopy-Based Immunosensing Using Immobilized Antibody via His-Tagged Recombinant Protein A. J. Biosci. Bioeng. 2015, 119, 195–199. [Google Scholar] [CrossRef]
- Mu, X.; Tong, Z.; Huang, Q.; Liu, B.; Liu, Z.; Hao, L.; Zhang, J.; Gao, C.; Wang, F. Nano-Magnetic Immunosensor Based on Staphylococcus Protein a and the Amplification Effect of HRP-Conjugated Phage Antibody. Sensors 2015, 15, 3896–3910. [Google Scholar] [CrossRef]
- Moon, J.; Byun, J.; Kim, H.; Jeong, J.; Lim, E.-K.; Jung, J.; Cho, S.; Cho, W.K.; Kang, T. Surface-Independent and Oriented Immobilization of Antibody via One-Step Polydopamine/Protein G Coating: Application to Influenza Virus Immunoassay. Macromol. Biosci. 2019, 19, e1800486. [Google Scholar] [CrossRef]
- Amritkar, V.; Adat, S.; Tejwani, V.; Rathore, A.; Bhambure, R. Engineering Staphylococcal Protein A for High-Throughput Affinity Purification of Monoclonal Antibodies. Biotechnol. Adv. 2020, 44, 107632. [Google Scholar] [CrossRef]
- Chen, B.; Qin, C.; Chen, M.; Yu, H.-H.; Tao, R.; Chu, Y.-H.; Bu, B.; Tian, D.-S. Dynamic Changes in AQP4-IgG Level and Immunological Markers during Protein-A Immunoadsorption Therapy for NMOSD: A Case Report and Literature Review. Front. Immunol. 2021, 12, 650782. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.-L.; Wu, J.; Jia, L.-Y. Research Progress of Immunoadsorption in The Treatment of Autoimmune Diseases: A Review*. PBB 2022, 49, 139–148. [Google Scholar] [CrossRef]
- Wen, F.; Wu, X.; Liao, R.; Feng, Z.; Li, Z.; Fu, X.; Fu, L.; Li, S.; Li, Z.; Li, S.; et al. Protein A Immunoadsorption Combination with Immunosuppressive Therapy Improves Neuropsychiatric Systemic Lupus Erythematosus: A Case Report. Clin. Case Rep. 2020, 8, 2158–2162. [Google Scholar] [CrossRef] [PubMed]
- Imura, Y.; Tagawa, T.; Miyamoto, Y.; Nonoyama, S.; Sumichika, H.; Fujino, Y.; Yamanouchi, M.; Miki, H. Washing with Alkaline Solutions in Protein A Purification Improves Physicochemical Properties of Monoclonal Antibodies. Sci. Rep. 2021, 11, 1827. [Google Scholar] [CrossRef]
- da Silva, G.F.L.; Plewka, J.; Tscheließnig, R.; Lichtenegger, H.; Jungbauer, A.; Dias-Cabral, A.C.M. Antibody Binding Heterogeneity of Protein A Resins. Biotechnol. J. 2019, 14, e1800632. [Google Scholar] [CrossRef]
- Wang, F.A.S.; Fan, Y.; Chung, W.K.; Dutta, A.; Fiedler, E.; Haupts, U.; Peyser, J.; Kuriyel, R. Evaluation of Mild pH Elution Protein A Resins for Antibodies and Fc-Fusion Proteins. J. Chromatogr. A 2024, 1713, 464523. [Google Scholar] [CrossRef]
- Ramos-de-la-Peña, A.M.; González-Valdez, J.; Aguilar, O. Protein A Chromatography: Challenges and Progress in the Purification of Monoclonal Antibodies. J. Sep. Sci. 2019, 42, 1816–1827. [Google Scholar] [CrossRef]
- Osuofa, J.; Husson, S.M. Comparative Evaluation of Commercial Protein A Membranes for the Rapid Purification of Antibodies. Membranes 2023, 13, 511. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Q.; Hu, M.; Xu, M.; Rao, Z.; Zhang, X. Engineering an Alkaline-Stable Protein A through Rational Design Strategies. Biochem. Biophys. Res. Commun. 2025, 769, 151991. [Google Scholar] [CrossRef]
- Ding, J.; Liao, S.; Wang, N.; Yin, F.; Chen, B.; Zhang, Y.; CHI, J.-C.; CHAN, C.L.L.; He, X.; Wang, B. Process Optimization and Economic Evaluation of Continuous Multi-Column Capture for Monoclonal Antibody—A Case Study. Biochem. Eng. J. 2024, 209, 109378. [Google Scholar] [CrossRef]
- Chen, C.-S.; Konoike, F.; Yoshimoto, N.; Yamamoto, S. A Regressive Approach to the Design of Continuous Capture Process with Multi-Column Chromatography for Monoclonal Antibodies. J. Chromatogr. A 2021, 1658, 462604. [Google Scholar] [CrossRef]
- Vishwakarma, R.K.; Kumar, S.; Sankar, M.; Srivastava, S.K. Kretschmann Configuration Based SPR Sensor for the Detection of Cyanide Ions in Wastewater. Microchem. J. 2025, 215, 114351. [Google Scholar] [CrossRef]
- Krylov, S.N. Underestimation of the Complexity of Kd Determination: Causes, Implications, and Ways to Improve. ACS Meas. Sci. Au 2024, 4, 231–232. [Google Scholar] [CrossRef]
- Wu, Q.; Song, D.; Zhang, D.; Zhang, H.; Ding, Y.; Yu, Y.; Sun, Y. A Highly Sensitive SPR Biosensor Based on a Graphene Oxide Sheet Modified with Gold Bipyramids, and Its Application to an Immunoassay for Rabbit IgG. Microchim Acta 2015, 182, 1739–1746. [Google Scholar] [CrossRef]
- Karakoç, V.; Başoğlu, F.; Erçağ, E. SPR and Molecular Modelling Study of Dipyridamole with Bovine Serum Albumin (BSA) Interaction. J. Mol. Struct. 2025, 1344, 142941. [Google Scholar] [CrossRef]
- Gontier, A.; Varela, P.F.; Nemoz, C.; Ropars, V.; Aumont-Nicaise, M.; Desmadril, M.; Charbonnier, J.-B. Measurements of Protein–DNA Complexes Interactions by Isothermal Titration Calorimetry (ITC) and Microscale Thermophoresis (MST). In Multiprotein Complexes; Poterszman, A., Ed.; Springer US: New York, NY, USA, 2021; Volume 2247, pp. 125–143. ISBN 978-1-0716-1125-8. [Google Scholar]
- Zhang, N.; He, H.; Zhang, M.; Lv, X.; Li, W.; Wang, R.; Chang, J. Investigation of the Interactions between Three Flavonoids and Human Serum Albumin by Isothermal Titration Calorimetry, Spectroscopy, and Molecular Docking. New J. Chem. 2022, 46, 12814–12824. [Google Scholar] [CrossRef]
- Lv, X.; Li, W.; Zhang, M.; Wang, R.; Chang, J. Investigation of Steric Hindrance Effect on the Interactions between Four Alkaloids and HSA by Isothermal Titration Calorimetry and Molecular Docking. J. Mol. Recognit. 2024, 37, e3075. [Google Scholar] [CrossRef] [PubMed]
- Ogur, F.A.; Mamasoglu, S.; Perry, S.L.; Akin, F.A.; Kayitmazer, A.B. Interactions between Hyaluronic Acid and Chitosan by Isothermal Titration Calorimetry: The Effect of Ionic Strength, pH, and Polymer Molecular Weight. J. Phys. Chem. B 2024, 128, 9022–9035. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, H.; Fei, R.; Huang, C.; Qiao, J.; Sun, C.; Zhu, H.; Zhan, L.; Hu, Z.; Li, S.; et al. Efficient Energy Transfer in a Hybrid Organic-Inorganic van Der Waals Heterostructure. Sci. Adv. 2025, 11, 3969. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Xu, P.; Qiu, P. Amino-Functionalized Iron Cerium Bimetallic Organic Framework with Enhanced Peroxidase Activity for Dual-Mode Non-Invasive Detection of Uric Acid. Microchem. J. 2025, 215, 114336. [Google Scholar] [CrossRef]
- Couturier, M.; Guilbert, R.; Clarkson, P.; Argyrou, A. A Complete Mechanistic Framework for Molecular Glue Characterization. J. Am. Chem. Soc. 2025, 147, 34199–34203. [Google Scholar] [CrossRef] [PubMed]
- Calderin, J.D.; Zhang, C.; Tan, T.J.C.; Wu, N.C.; Fratti, R. Use of Bio-Layer Interferometry (BLI) to Measure Binding Affinities of SNAREs and Phosphoinositides. Methods Mol. Biol. 2025, 2887, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.; Kévin, R.; Cerina, C.; Louise, P.; Joanna, L.; Josué, S.G.; Pascal, C.; Alain, C.; Ida, C.G. BLI-MS: Combining Biolayer Interferometry and Mass Spectrometry. Proteomics 2021, 9, 2100031. [Google Scholar] [CrossRef]
- Gao, S.; Cheng, Y.; Zhang, S.; Zheng, X.; Wu, J. A Biolayer Interferometry-Based, Aptamer–Antibody Receptor Pair Biosensor for Real-Time, Sensitive, and Specific Detection of the Disease Biomarker TNF-α. Chem. Eng. J. 2022, 433, 133268. [Google Scholar] [CrossRef]
- Li, A.; Harris, R.J.; Fry, B.G.; Barnes, A.C. A Single-Step, High Throughput, and Highly Reproducible Method for Measuring IgM Quantity and Avidity Directly from Fish Serum via Biolayer Interferometry (BLI). Fish Shellfish Immunol. 2021, 119, 231–237. [Google Scholar] [CrossRef]
- Singh, C.R.; Jaiswal, R.; Escalante, C.R.; Asano, K. Label-Free Protocol to Quantify Protein Affinity Using Isothermal Titration Calorimetry and Bio-Layer Interferometry of a Human eIF5-Mimic Protein. STAR Protoc. 2022, 3, 101615. [Google Scholar] [CrossRef]
- Kamat, V.; Rafique, A. Designing Binding Kinetic Assay on the Bio-Layer Interferometry (BLI) Biosensor to Characterize Antibody-Antigen Interactions. Anal. Biochem. 2017, 536, 16–31. [Google Scholar] [CrossRef]
- Laigre, E.; Goyard, D.; Tiertant, C.; Dejeu, J.; Renaudet, O. The Study of Multivalent Carbohydrate–Protein Interactions by Bio-Layer Interferometry. Org. Biomol. Chem. 2018, 16, 8899–8903. [Google Scholar] [CrossRef]
- EswarKumar, N.; TewarySunil, K.; Ho, M.-C. Protocol for Phospho-SrcKD: rPTPεD1 Complex Preparation and BLI Binding Assays to Demonstrate Their Exosite Interface. STAR Protoc. 2024, 5, 103046. [Google Scholar] [CrossRef]
- Cassinotti, A.; Zadro, V.; Parravicini, M.; Ferraris, M.; Balzarini, M.; Sessa, F.; Rosa, S.L.; Segato, S.; Cortelezzi, C.C.; Segato, S. P125 LCI/BLI Chromoendoscopy plus CAD-EYE Artificial Intelligence for the Detection and Characterization of Endoscopic Visible Lesions in Ulcerative Colitis. J. Crohn’s Colitis 2023, 17, i291. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Zhang, H.; Li, S.; Wang, X.; Baimanov, D.; Zhang, Z.; Li, Y.; Yu, P.; Zhang, X.; et al. Rapid Detection of Spike Protein Receptor Binding Region of SARS-CoV-2 and Its Variants Using a Nanosheet Probe. Anal. Chem. 2025, 97, 3729–3738. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Z.; Xu, X.; Wang, J.; Du, B.; Zhang, P.; Liu, B.; Mu, X.; Tong, Z. Virtual Screening and Validation of Affinity DNA Functional Ligands for IgG Fc Segment. IJMS 2024, 25, 8681. [Google Scholar] [CrossRef] [PubMed]
- Toma, L.; Mattarozzi, M.; Ronda, L.; Marassi, V.; Zattoni, A.; Fortunati, S.; Giannetto, M.; Careri, M. Are Aptamers Really Promising as Receptors for Analytical Purposes? Insights into Anti-Lysozyme DNA Aptamers through a Multitechnique Study. Anal. Chem. 2024, 96, 2719–2726. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Liu, Z.; Xu, X.; Zhao, Z.; Fan, Z.; Du, B.; Xu, J.; Xu, J.; Wang, J.; Liu, B.; et al. Construction of an Immunosensor Based on the Affinity DNA Functional Ligands to the Fc Segment of IgG Antibody. Biosensors 2025, 15, 747. https://doi.org/10.3390/bios15110747
Yang Q, Liu Z, Xu X, Zhao Z, Fan Z, Du B, Xu J, Xu J, Wang J, Liu B, et al. Construction of an Immunosensor Based on the Affinity DNA Functional Ligands to the Fc Segment of IgG Antibody. Biosensors. 2025; 15(11):747. https://doi.org/10.3390/bios15110747
Chicago/Turabian StyleYang, Qianyu, Zhiwei Liu, Xinrui Xu, Zihao Zhao, Ze Fan, Bin Du, Jianjie Xu, Jiwei Xu, Jiang Wang, Bing Liu, and et al. 2025. "Construction of an Immunosensor Based on the Affinity DNA Functional Ligands to the Fc Segment of IgG Antibody" Biosensors 15, no. 11: 747. https://doi.org/10.3390/bios15110747
APA StyleYang, Q., Liu, Z., Xu, X., Zhao, Z., Fan, Z., Du, B., Xu, J., Xu, J., Wang, J., Liu, B., Mu, X., & Tong, Z. (2025). Construction of an Immunosensor Based on the Affinity DNA Functional Ligands to the Fc Segment of IgG Antibody. Biosensors, 15(11), 747. https://doi.org/10.3390/bios15110747

